PAIEP. Complemento Ortogonal
|
|
|
- Julio Valenzuela Duarte
- hace 9 años
- Vistas:
Transcripción
1 Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios vectoriales, para concluir con un resultado que nos dice que dado un subespacio vectorial W de V, existe un subespacio ortogonal U de manera que V es suma directa de los subespacios W y U. Como ejemplo consideremos a V R. Sabemos que R {x, y) R : y 0} {x, y) R : x 0} esto es pues x, y) x, 0) + 0, y), además la intersección de ambos subespacios que son los ejes X e Y del plano cartesiano) es el vector nulo y que todo vector del eje Y es ortogonal a todo vector del eje X. La idea es buscar espacios vectoriales que tengan descomposición en suma directa de un subespacio y otro formado con vectores ortogonales a él, es decir, buscamos espacios que sean parecidos al del ejemplo. Definición: Sea V un espacio vectorial sobre un cuerpo K. Sean S y T subespacios vectoriales tales que V S + T y S T {0}, en este caso diremos que V es suma directa de S y T y la escribiremos como V S T. Observación: Recuerde que S + T es el subespacio vectorial consistente de todos los elementos de la forma s + t tales que s S y t T. Definición: Sea V un espacio vectorial sobre K con producto interno. Sea W V. Definimos el conjunto W : {w V :< v, w > 0 v W }, el cual llamaremos complemento ortogonal de W. Ejemplos 1) Sea V R 3 con el producto interno usual. Sea W {1, 1, 1)}, entonces W {x, y, z) R 3 :< x, y, z), 1, 1, 1) > 0} {x, y, z) R 3 : x + y + z 0}; despejando x y z {x, y, x y) : x, y R} {x1, 0, 1) + y0, 1, 1) : x, y R} W < {1, 0, 1), 0, 1, 1)} > el área de Matemática PAIEP-Revisado 09/08 1
2 ) Sea V C[0, 1]) el espacio de funciones continuas definidas en el intervalo [0, 1] con el producto interno usual. Sea W {1}, donde 1x) 1 para todo x [0, 1]), entonces W {f C[0, 1]) :< f, 1 > 0} {f C[0, 1]) : 1 0 ft)dt 0} Las siguientes proposiciones no son complejas de demostrar, por lo que quedan de ejercicio. Proposición: Sea V un espacio vectorial sobre K, sea W un subespacio vectorial de V. i) W es un subespacio vectorial de V. ii) Sea B {v 1, v..., v n } unase de W. Entonces v W si y sólo si v v i, i 1,,..., r Ejemplo: Sea V R 3 con el producto interno usual. Sea W {x, y, z) R 3 : x + y + z 0} el cual es subespacio de V. Sea B {1, 0, 1), 0, 1, 1)} unase para W, entonces W < {1, 1, 1)} >. Proposición: Sea V un espacio vectorial sobre K, sea W un subespacio vectorial de V de dimensión finita. Entonces V W W. Esto es, V W + W y W W {0}. Además si dimv ) <, entonces dimv ) dimw ) + dimw ). Ejercicios Resueltos 1. Sea V M R) el espacio vectorial real de matrices de dos por dos con entradas reales. Pruebe que { ) } W 1 V : a + d 0 y { ) } W V : a b c 0 son dos subespacios de V. Demuestre también que V W 1 W Solución: Se deja para el lector demostrar que W 1 y W son subespacios vectoriales de V. Ahora veamos que V es la suma de tales subespacios. Es evidente que W 1 + W V. ) Ahora, sea A V, note que a c ) b a d c ) b + a 0 a + d donde el primer sumando está en W 1 y el segundo en W. Luego V W 1 + W, falta ver que la intersección de tales subespacios es la matriz nula. En efecto, ) el área de Matemática PAIEP-Revisado 09/08
3 A a c b d ) W 1 W a + d 0 a b c 0 a b c d 0 ) A.. Sea U el subespacio de R 4 generado por los vectores 1, 0,, 1), 4, 3, 0, 1), 0, 3, 8, 5). Encuentre unase ortonormal para U y U Solución: Sean v 1 1, 0,, 1), v 4, 3, 0, 1) y v 3 0, 3, 8, 5), note que esos vectores son linealmente dependientes ya que v 3 4v 1 v. Luego U < {v 1, v } > y más aún estos dos vectores son linealmente indepenientes y forman unase para U. Note que estos vectores no son ortogonales entre si, pues < v 1, v > 3. Sea u 1 v 1, usando el Proceso de Gram-Schmidt podemos encontrar u ortogonal a u 1. En efecto, tenemos u v < v, u 1 > < u 1, u 1 > u 1 4, 3, 0, 1) 1 1, 0,, 1) ) 7, 3, 1, 3 Así, U < {1, 0,, 1), 7, 6,, 3)} > y ahora normalizando estos vectores obtenemos unase ) ortonormal para U dada por los vectores u 1 6, 0, 3, y u 6, 3 7, 7, 3 ). 14 Ahora necesitamos unase para U, sabemos que la dimensión de este subespacio es dos pues dimu) y dimr 4 ) 4). Luego, x, y, z, t) U < x, y, z, t), 1, 0,, 1) >< x, y, z, t), 7, 6,, 3) > 0 x z + t 0 7x + 6y + z 3t 0 x, y, z, t) z, 83 ), 1, 0 + t 1, 53 ), 0, 1 Luego U < {6, 8, 3, 0), 3, 5, 0, 3)} >, y estos vectores son l.i, pero no ortogonales. Nuevamente usando el proceso de Gram-Schmidt se tiene w 1 6, 8, 3, 0) w 3, 5, 0, 3) , 8, 3, 0) , , 174 ) 109, 3 el área de Matemática PAIEP-Revisado 09/08 3
4 Así, U < {6, 8, 3, 0), 7, 7, 49, 109)} > y ahora normalizando estos vectores obtenemos unase 6 ortonormal para U dada por los vectores w 1, 8 ) 3,, 0 y w ,,, ) el área de Matemática PAIEP-Revisado 09/08 4
5 Ejercicios Propuestos 1. Sea U el subespacio de C 3 con el producto interno estándar generado por los vectores 1, i, 0), 1,, 1 i). Encuentre unase ortonormal para U y extiendala a unase ortonormal para V.. Sea W {x, y, z, t) R 4 : x + y + 3z t 0 x z + t 0}. Hallar unase para W y W. 3. Sea V espacio vectorial de dimensión finita con producto interno. Sean A y B subconjuntos de V. Probar que: i) A B B A. ii) A A ). 4. Sea V espacio vectorial de dimensión finita con producto interno. Sean S y W subespacios de V. Probar que: i) S S ). ii) S + W ) S W. iii) S W ) S + W. 5. Consideremos C 3 con el producto interno estándar, sea S el subespacio generado por i, 0, 1). Hallar unase para S. 6. Consideremos R 3 con el producto interno definido por: < x, y > x 1 y 1 + x y + x 3 y 3, donde x x 1, x, x 3 ) e y y 1, y, y 3 ). Sea S el subespacio generado por 1, 1, 1). Cual de los siguientes conjuntos forma unase ortogonal de S? a) {3, 4, 1), 1, 1, )} b) {1, 0, 1), 1, 0, 1)} c) {0, 1, 1), 1, 1, 1)} d) {, 1, 1), 0, 1, 1)} e) { 1, 0, ),, 5, 1)} 7. Sea V M R) con el producto interno < A, B > trb t A) i) Hallar unase ortonormal de V. ii) Sea D el subespacio de las matrices diagonales. Hallar D. iii) Sea S el subespacio de las matrices simétricas. Hallar S. Si encuentras algún error en el documento, envíanos un mensaje para corregirlo. el área de Matemática PAIEP-Revisado 09/08 5
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión
TEMA 11. VECTORES EN EL ESPACIO
TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.
2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
SESIÓN 4: ESPACIOS VECTORIALES
SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será
ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano
ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores
FASÍCULO: ESPACIOS CON PRODUCTO INTERNO Teorema. Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : i) ii) iii) iv) Ejemplo: Sean el espacio vectorial con el producto interno definido
Subespacios Vectoriales
Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si
Tema 5: Sistemas de ecuaciones lineales.
TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1
Sobre funciones reales de variable real. Composición de funciones. Función inversa
Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
3.1 El espacio afín R n
3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero
Análisis Matemático I: La integral de Riemann
Contents : La integral de Riemann Universidad de Murcia Curso 2006-2007 Contents 1 Definición de la integral y propiedades Objetivos Definición de la integral y propiedades Objetivos 1 Definir y entender
10. 1 Definición de espacio euclídeo.
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar
1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.
. Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
Dependencia e independencia lineal
CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto
r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =
ESPACIO DUAL 1. Espacio Dual En temas anteriores dados V y V espacios vectoriales sobre k, definíamos en Hom(V, V ) una suma y un producto por elementos de k que convertían este conjunto en un espacio
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios
Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.
Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso
Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices
TEMA 2. ESPACIOS VECTORIALES
TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas
Tema 2 ESPACIOS VECTORIALES
Tema 2 ESPACIOS VECTORIALES Prof. Rafael López Camino Universidad de Granada 1 Espacio vectorial Definición 1.1 Un espacio vectorial es una terna (V, +, ), donde V es un conjunto no vacío y +, son dos
MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO
1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
Guı a de Estudio: Matema tica Inecuaciones con Valor absoluto
Guı a de Estudio: Matema tica Inecuaciones con Valor absoluto Resultados de aprendizaje Determinar el conjunto solucio n de una inecuacio n con valor absoluto. Contenidos 1. Inecuaciones. Valor absoluto
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,
Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.
Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla
Herramientas digitales de auto-aprendizaje para Matemáticas
real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
TEMA 6. ECUACIONES DE LA RECTA
TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera
1. Convergencia en medida
FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas
Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.
Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 6 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar
Definición de la integral de Riemann (Esto forma parte del Tema 1)
de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de
ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.
ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS
Problemas de exámenes de Aplicaciones Lineales y Matrices
1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector
Funciones integrables en R n
Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
SESIÓN 3 SERIES, SUCESIONES Y LÍMITES
SESIÓN SERIES, SUCESIONES Y LÍMITES I. CONTENIDOS: 1. Sucesiones y series. Idea intuitiva de límite. Ejercicios resueltos.- Estrategias Centradas en el Aprendizaje: Ejercicios propuestos II. OBJETIVOS:
Capitulo V: Relaciones
Capitulo V: Relaciones Relaciones Binarias: Consideremos dos conjuntos A B no vacíos, llamaremos relación binaria de A en B o relación entre elementos de A B a todo subconjunto R del producto cartesiano
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Tema 6: Espacio vectorial euclídeo
Tema 6: Espacio vectorial euclídeo 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que
elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;
3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes
Semana05[1/14] Relaciones. 28 de marzo de Relaciones
Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación
Capítulo 8: Vectores
Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
1. ESPACIOS VECTORIALES
1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos
Axiomas de separación
CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Espacios vectoriales con producto interior
Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
Espacios conexos. Capítulo Conexidad
Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio
1. Sucesiones y redes.
1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
Subconjuntos notables de un Espacio Topológico
34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.
Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad
13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.
ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN
IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.
Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar
Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS
1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar
MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios
Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa
TRA NSFORMACIO N ES LIN EA LES
TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican
Diagonalización de matrices.
Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que
