Capitulo V: Relaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capitulo V: Relaciones"

Transcripción

1 Capitulo V: Relaciones Relaciones Binarias: Consideremos dos conjuntos A B no vacíos, llamaremos relación binaria de A en B o relación entre elementos de A B a todo subconjunto R del producto cartesiano A B, esto es: Re es una relación de A en B R < A B Sea A = {, 2, 3 } B = { 2, 4, 5, 6 } dos conjuntos; entonces las siguientes son relaciones entre A B por ser subconjuntos de A B. R = { (,4), (2,5), (2,6) } A B R 2 = { (2,2), (3,4) } A B R 3 = { (,) A B/ 2 + < 6 } = { (,2), (,4), (2,2) } A B R 4 = { (,) A B/ + = 7 } = { (,6), (2,5), (3,4) } A B Dominio de una Relación: Se llama dominio de una relación R de A en B al conjunto de todas las primeras componentes de los pares ordenados de la Relación. Se denota Dom(R) se simboliza: R: A B, entonces: Dom(R) = { A / B, (,) R } Es decir: Dom(R) B / (,) R Rango de una Relación: Se denomina rango de una relación R de A en B al conjunto de todas las segundas componentes de los pares ordenados de la Relación. Se denota Ran(a) se simboliza: R: A B, entonces: Ran(R) = { B / A, (,) R } Es decir: Ran(R) A / (,) R Hallar el Dominio Rango de las Relaciones en A, siendo: A = {, 2, 3, 4, 5 } R = { (,) A A / + = 7 } R 2 = { (,) A A / + < 4 } R 3 = { (,) A A / < 2 } ( < 2 > 2 ) R = { (2,5), (3,4), (5,2), (4,3) } A A R 2 = { (,), (,2), (,3), (2,), (2,2), (3,) } A A R 3 = { (2,), (3,), (4,), (4,2), (5,), (5,2) } A A Dom R = { 2, 3, 4, 5 } Ran R = { 2, 3, 4, 5 } Dom R 2 = {, 2, 3 } Ran R 2 = {, 2, 3 } Dom R 3 = { 2, 3, 4 } Ran R 3 = {, 2 } Determinar el Rango Dominio de la siguiente relación: R = { (,) R R / = 0 } Página 22 de 67

2 Hallando el dominio: = = = 75 2 ( + 5 ) 2 = 00 2 Hallando el Rango: + 5 = > 0-2 > > 00 < < < 0 = Df = [ -0, 0 ] 2 = = (Metodo de Completar Cuadrados) > > 75 ( ) 25 > 75 ( + 5 ) 2 > 00 (Metodo de Completar Cuadrados) -0 < + 5 < 0-5 < < 5 Rf = [ -5, 5 ] Propiedades de la Relación Binaria: Las Relaciones Binarias gozan de las siguientes propiedades: a) Propiedad Refleiva: Una relación R en A, diremos que es refleiva si (a,a) R para todo a R esto es: R es refleiva en A a A, (a,a) R b) Propiedad Simétrica: Una relación R en A, diremos que es simétrica si (a,b) R implica que (b,a) R, esto es: R es simétrica (a,b) R (b,a) R c) Propiedad Transitiva: Una relación R en A, diremos que es transitiva si (a,b) R (b,c) R, esto es: R es transitiva (a,b,c) A, [(a,b) R (b,c) R (a,c) R ] d) Propiedad Antisimétrica: Una relación R en A, diremos que es antisimétrica si: a,b A, (a,b) R (b,a) R implica que a = b esto es: R es antisimétrica a,b A [ (a,b) R (b,a) R a = b ] e) Relación de Equivalencia: Una relación R en A, diremos que es de equivalencia si es: Refleiva, simétrica transitiva. Si A = {, 2, 3, 4, 5, 6 } las relaciones en A: a) R = { (,), (2,2), (3,3), (4,4), (5,5), (6,6) } Es refleiva en A b) R 2 = { (,), (3,3), (4,4), (5,5), (6,6) } No es refleiva en A porque falta (2,2) Página 23 de 67

3 Si A = { 2, 3, 5, 7 }, las relaciones en A: a) R = { (5,3), (2,7), (3,5), (7,2), (2,2) } Es simétrica porque (,) R (,) R b) R 2 = { (5,3), (2,7), (3,5), (2,2) } No es simétrica porque falta (7,2) Si A = {, 3 7, 9 } las relaciones en A: a) R = { (7,), (3,3), (,3) } No es transitiva porque (7,) R (,3) R (7,3) R Sea Z = conjunto de los números enteros la relación R definida sobre Z en R = { (,) Z Z / = 3m, m Z }. Es una relación de equivalencia. ) Refleiva (a,a) a a = 0 = 0.3 a Z 2) Simétrica (a,b) (b,a) a b = 3m b a = 3m - (a - b) = 3m a b = 3m 3) Transitiva (a,b) (b,c) (a,b) Si a b = 3m b c = 3m a c = (a b) + (b c) a c = 3m + 3m a c = 3 (m + m ) a c = 3m a,b,c Z Sea M = {, 2, 3, 4,... 9 } Si R = { (,) / 2 = 5 } M M si m es la suma de todos los elementos del dominio de R n es la suma de los elementos del Rango de R, entonces, hallar el valor de m.n. Si: = = 2 5 = -3 M (,-3) R = 2 = 4 5 = - M (2,-) R = 3 = 6 5 = M (3,) R = 4 = 8 5 = 3 M (4,3) R = 5 = 0 5 = 5 M (5,5) R = 6 = 2 5 = 7 M (6,7) R = 7 = 4 5 = 9 M (7,9) R R = { (3,), (4,3), (5,5), (6,7), (7,9) } m = = 25 n = = 25 m.n = (25) (25) = 625 Sea B = {, 2, 3, 4 } las Relaciones: R = { (,) B B / = } R 2 = { (,) B B / < } R 3 = { (,) B B / < } Hallar n(r 3 ) + n(r 2 ) - n(r ) Página 24 de 67

4 Luego: R 2 R 3 < < 2 2,3,4 3,2 2 3,4 4,2,3 3 4 R = { (,), (2,2), (3,3), (4,4) } n(r ) = 4 R 2 = { (2,), (3,), (3,2), (4,), (4,2), (4,3) } n(r 2 ) = 6 R 3 = { (,), (,3), (,4), (2,3), (2,4), (3,4) } n(r 3 ) = 6 n(r 3 ) + n(r 2 ) - n(r ) = = 8 Relaciones definidas de R en R:. Producto Cartesiano de R R: El producto cartesiano R R, que e denota por R 2, donde R es el conjunto de números reales, se define como: R 2 = { (,) / R, R } ORDENADA II I b P(a,b) III c a IV ABSCISA 2. Gráfica de una Relación de R en R: Un conjunto G de puntos del plano cartesiano es la gráfica de la relación R si verifican la propiedad: P (a,b) G (a,b) R Ejemplo : Trazar la gráfica de la Relación: R = { (,) R 2 / = 0 } Dom (R ) = R Ran (R ) = R Ejemplo 2: Trazar la gráfica de la Relación: R 2 = { (,) R 2 / = 0, < -2, 4 ] } Dom (R 2 ) = < -2, 4 ] Ran (R 2 ) = < -, 9 ] Página 25 de 67

5 Ejemplo 3: Trazar la gráfica de la Relación: R 3 = { (,) R 2 / [ -3, 5 >, [ -2, 4 ] } -3 < < 5-2 < < 4 Ejemplo 4: Hallar el dominio, rango trazar la gráfica de la Relación: S = { (,) R 2 / 2 + > 4 } R Ejemplos Diversos. Trazar la gráfica de la relación: R = { (,) R = 0 } Completando cuadrados para la variable se tiene: 4 = -( 2 4) = - ( ) + 4 De donde: 4 ( - ) = - ( 2) 2 Entonces: h = 2 k = V (2,) Para esbozar la gráfica de la relación necesitamos otros dos puntos de la parábola, esto se logra intersectando la curva con el eje X, esto es: Si = = 0 = 0 ó = 4 O (0,0), P (4,0) Por lo tanto: Dom (R ) = R Ran (R ) = <-, ] V P Hallar el dominio, rango trazar la gráfica de la relación: R 2 = { (,) R = 0 } Completando cuadrados para la variable se tiene: ( ) = ( 3) 2 = 4 ( + ) h = - k = 3 Vértice de la parábola: V (-,3) Interceptamos la curva con el eje Y Haciendo: = = 0 = ó = 5 P (0,) P 2 (0,5) Página 26 de 67

6 Luego: Dom (R 2 ) = [ -, + >, Ran (R 2 ) = R P 2 V P 3. Hallar el dominio, rango trazar la gráfica de la relación: S 3 = { (,) R < } () Construimos la gráfica de la parábola E(,): = 3 ( ) = + 4 ( - ) 2 = + 4 De donde: h = - 4 k = V (-4,) Si = = 0 = 3 ó = - A (0,3) B (0,-) (2) 0 (0,0) R 0-2(0) 3 < 0, es cierto Luego, se debe sombrear la región R que contiene al origen que corresponde a la gráfica de S 3. (3) Dom (S 3 ) = <-4,+ >, Ran (S 3 ) = R R 2 R -4 0 B 4. Hallar el dominio, rango trazar la gráfica de la relación: R = { (,) R 2 / + < 3, -2 > } + < 3-3 < + < 3-4 < < 2-2 > -2 > = 2 < - > 3 < Luego, Dom (R ) = [-4,2] Ran (R ) = <-,> < 3, + > Página 27 de 67

7 5. Hallar el dominio, rango trazar la gráfica de la relación: R 2 = { (,) R 2 / = -2 } 2- Por definición de valor absoluto: - 2 = ( 2), si > 2 -( 2), si < 2 Luego, si > 2 = (-2) = - 2- si < 2 = -(-2) = Dom (R 2 ) = R {2}, Ran (R 2 ) = {-,} 6. Trazar la gráfica de la relación: S = { (,) R 2 / + < } Si + < + > - Construimos las gráficas de las rectas: L : + = L 2 : + = - Estas rectas determinan en el plano 3 regiones o semiplanos: R, R 2 R 3. R 3 Vemos cual o cuales de estas regiones satisface la relación: S = { (,) R 2 / + < } (,) R + <, es falso. R S (0,0) R <, es cierto. R 2 S (,-) R 3 -- <, es falso. R 3 S Luego, se sombrea la región R 2 que es gráfica de S. 7. Trazar la gráfica de la relación: S 2 ={(,) R 2 / + > 2, si + > 0 + < 2, si < 0} () Construamos la gráfica de: + > 2, si > 0 > 0 ( > 0 > 0) ( < 0 < 0) L 2 L R 2 R Si > 0 > 0 + = 2 () < 0 < 0 -- > 2 (2) (2,) R 2 + > 2, es cierto. Luego, R es la gráfica de () (-2,-) R > 2, es cierto. R 2 R Luego, R 2 es la gráfica de (2) Página 28 de 67

8 (2) Construamos la gráfica de + < 2, si < 0 < 0 ( > 0 < 0) ( < 0 > 0) Si > 0 < 0 - < 2 (3) < 0 > 0 -+ < 2 (4) Considerando las restricciones del dominio rango de (3) (4), deducimos que sus gráficas son las regiones RR 4 3 R 4, respectivamente. Uniendo ambas gráficas obtenemos S 2. 0 R 3 8. Sean las relaciones R = { (,) R 2 / + < 4 } R 2 = { (,) R 2 / > 8 }. Hallar el área de R R 2. En R, por definición de valor absoluto: Si > 0 > 0 + < 4 () > 0 < 0 < 4 (2) < 0 > < 4 (3) < 0 < 0 - < 4 (4) (3) () Vemos que el origen O (0,0) satisface las 4 desigualdades, 4 0 luego, -4 la gráfica de R es el conjunto de puntos dentro del (4) cuadrado de (2) lado 4 2. En R 2 tenemos: = 8, es una circunferencia de radio r = 8..O (0,0) R > 8, es falso. Luego, la gráfica de R 2 es el conjunto de puntos fuera del círculo = 8. Por lo tanto: a (R R 2 ) = ( 4 2 ) 2 8π = 8 (4 - π) u Hallar el área de intersección de las gráficas de las relaciones definidas por: R = { (,) R 2 - < 2 } R 2 = { (,) R 2 < } En R tenemos: Si > 0, > 0 < 2 () > 0, < 0 + < 2 (2) < 0, > < 2 (3) < 0, < < 2 (4) En R 2 tenemos: (4) (2) < - < <, R 2 es el conjunto de puntos entre las rectas =, = -, ( = ) ( = 2) = P (3,) 0 (0,0) satisface las 4 desigualdades de R también a R 2. Luego, R R 2 es la zona sombreada en la figura. a (R R 2 ) = 2 (área del trapecio de base 4,6 altura ) Entonces: a (R R 2 ) = 2 ( 4+6 ) () = 0 u 2 2 (3) () P Página 29 de 67

9 0. Dadas las relaciones: R = { (,) R < 0 } R 2 = { (,) R 2 / > 2 } Hallar el área de la región limitada por R R 2. En R : ( 2-4+4)+( 2 +2+) < +4+ R : (-2) 2 +(+) 2 < 6 Haciendo la traslación: 2 =, + =, se tiene: R : < 6 C(0,0) R < 6, es cierto; luego R es el conjunto de puntos dentro de la circunferencia = 6. En R 2 : + > 2 Si > 0, > 0 + > 2 () > 0, < 0 - > 2 (2) < 0, > > 2 (3) < 0, < > 2 (4) Se observa que C(0,0) no satisface ninguna de las 4 desigualdades, luego R 2 es el conjunto de puntos fuera del cuadrado PQRS. Entonces: a (R R 2 ) = π r 2 = a (PQRS) = 6π - ½ (44) = 8 (2π-)u 2 Q P C R S Página 30 de 67

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Capitulo VI: Funciones.

Capitulo VI: Funciones. Funciones o Aplicaciones: Capitulo VI: Funciones. Ejemplo de función: Sean: A = {, 2, 3 } B = { a, b, c, d, e } F = { (;a) (2;b) (3;e) } es una función de A en B, porque a cada elemento de A, le corresponde

Más detalles

FUNCIONES. DEFINICIONES: Toda relación de A en B tal que cada valor de la variable independiente (dominio) le corresponde uno sólo un valor de la variable dependiente (rango). Conjunto de pares ordenados

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

PRODUCTO CARTESIANO RELACIONES BINARIAS

PRODUCTO CARTESIANO RELACIONES BINARIAS PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

MATEMATICAS DISCRETAS

MATEMATICAS DISCRETAS MTEMTICS DISCRETS Propiedad reflexiva Sea R una relación binaria R en, ( ). Definición: Diremos que R es reflexiva si a, a R a Ejemplo: 1) En N la relación R definida por: x R y x divide a y es reflexiva

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

CAPÍTULO. Funciones. y D f.x/ f.x/ Œx; f.x/ x x

CAPÍTULO. Funciones. y D f.x/ f.x/ Œx; f.x/ x x PÍTULO Funciones. Gráfica de una función real de variable real Definimos la gráfica G f de una función f real de una variable real como: G f def D {.; / R R D R Df & D f./ } : La epresión anterior se lee:

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

(CR) Prof. Manuel López Mateos Curso de Cálculo I,

(CR) Prof. Manuel López Mateos Curso de Cálculo I, (página 81) CAPÍTULO 3 FUNCIONES REALES Función es dependencia. A velocidad fija, la distancia recorrida depende del tiempo transcurrido. El tiempo que tarda en caer una piedra depende de la altura que

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala. Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Álgebra y trigonometría: Gráficas de ecuaciones y funciones

Álgebra y trigonometría: Gráficas de ecuaciones y funciones Álgebra y trigonometría: Gráficas de ecuaciones y funciones CNM-108 Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Este documento es distribuido bajo una licencia

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

1. La siguiente grafica representa. Determine su regla de correspondencia A) B) Calcule C) D) A) 2 B) 4 C) 6 D) 8 E) 10

1. La siguiente grafica representa. Determine su regla de correspondencia A) B) Calcule C) D) A) 2 B) 4 C) 6 D) 8 E) 10 1. La siguiente grafica representa Determine su regla de correspondencia Calcule 2 4 6 8 10 2. Después de graficar la función Indique el rango de la función 3. En el grafico adjunto, halle 5. Determine

Más detalles

RESPUESTAS. Examen UNI 2015 I. Matemática

RESPUESTAS. Examen UNI 2015 I.  Matemática RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5

Más detalles

Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45

Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45 Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 45 Parte I 2/ 45 Definición intuitiva de conjunto Definición Un conjunto

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - [email protected] 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2009-2010 INSTRUCCIONES GENERALES Y VALORACIÓN La prueba

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO.

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO. R = { (, y) A B / + y > } Si lr y > - lr, y lr Dom( R) = lr, Ran( R) = lr Funciones en una variable Real Para aproimar el gráfico realizamos una tabulación: X y : y > -. y y : y > 0. y : y > -.. RELACIONES.

Más detalles

B5 Lugares geométricos

B5 Lugares geométricos Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

Curso Curso

Curso Curso Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R,

Más detalles

Definición matemática de Relación y de Función

Definición matemática de Relación y de Función Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1 1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

MATEMÁTICA CPU MÓDULO 1. Números reales Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.

MATEMÁTICA CPU MÓDULO 1. Números reales Ecuaciones e inecuaciones. Representaciones en la recta y en el plano. MATEMÁTICA CPU MÓDULO Números reales. Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Polígonos Polígonos especiales: Cuadriláteros y triángulos

Polígonos Polígonos especiales: Cuadriláteros y triángulos Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Matemáticas III. Geometría analítica

Matemáticas III. Geometría analítica Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles