SEGUNDO PARCIAL - EJERCICIOS DE REPASO
|
|
|
- Montserrat Torres Segura
- hace 7 años
- Vistas:
Transcripción
1 Algebra y Geometría 28 SEGUNDO PARCIAL - EJERCICIOS DE REPASO ESPACIOS VECTORIALES. Construya en R 2 un subconjunto que sea: a cerrado para la suma y resta de vectores, pero no para la multiplicacion por un escalar; b cerrado para la multiplicacion por un escalar, pero no para la suma de vectores 2. Mostrar que el conjunto de matrices inversibles no es un espacio vectorial 3. Cuales de las siguientes afirmaciones son correctas? Las soluciones de ( x ( Ax = x 2 2 = x 3 constituyen: un plano una recta un punto un subespacio el espacio nulo de A el espacio columna de A 4. Encuentre el mayor numero posible de vectores independientes entre los siguientes: v = ; v 2 = ; v 3 = 5. Describa el subespacio de R 3 generado por los vectores (,,, (,, los vectores (,,, (,, y (,, ; v 4 = ; v 5 = las columnas de una matriz escalonada 3 5 con dos pivotes todos los vectores con segunda componentes nula ; v 6 =
2 Algebra y Geometría Encuentre una base para cada uno de los siguientes subespacios: todos los vectores cuyas componentes son iguales todos los vectores cuya tales que la suma de sus componentes es todos los vectores perpendiculares a (,,, y (,,, El espacio columna y el espacio fila de la matriz ( A = En cada caso, indique la dimension del mismo 7. Encuentre la dimension y una base para los espacios fila, columna, nucleo e imagen de la matriz A = Sea A es una matriz m n con rango ν(a = r. Suponga que hay miembros b para los cuales Ax = b no tiene solucion. cuales desigualdades (< o deben ser ciertas ebtre m, n y r que se puede decir de la nulidad de A 9. Encuentre todos los vectores perpendiculares a (, 4, 4, y (2, 9, 8, 2. Encuentre una tercera columna de A = para que resulte ortogonal. TRANSFORMACIONES LINEALES. Sea π el plano en R 3 dado por la ecuacion x + 2y z +. Determinar una matriz A (3 3 tal que el nucleo de A sea el plano π una matriz B (3 3 tal que la imagen de B sea el plano π
3 Algebra y Geometría Sea P 3 (R el espacio de los polinomios de grado menor o igual que 4. Sea T : P 3 (R P 3 (R la transformacion lineal definida por T (p = p. Determine la representacion matricial de T con respecto a la base canonica 3. Cuales de las siguientes transformaciones de R 2 en R 2 no son lineales? T (x, y = (y, x T (x, y = (x, x T (x, y = (, x T (x, y = (, 4. Sea P 3 (R el espacio de los polinomios de grado menor o igual que 3, y sea S = Mostrar que S es un subespacio de P 3 (R y encontrar una base para S. { p P 3 (R : 5. Que matriz transforma (, en (2, 5 y (, en (, 3. Por que no existe una matriz que transforme el (2, 6 en el (, y el (, 3 en el (,? 6. Sea T : R 3 R 3 dada por T (x, y, z + (x + y + z, x + y, x. Encontrar la representacion matricial de T con respecto a la base canonica Es T inversible. En caso de serlo, encontrar T 7. Que matriz tiene el efecto de rotar cada vector un angulo de π/2 y luego reflejar el vector sobre el eje x? Que matriz representa una reflexion sobre el eje x seguida por una reflexion sobre el eje y? 8. Construya una matriz cuyo: espacio nulo contenga al vector (,, 2 cuyo espacio columna este generado por el (,, 2 y cuyo espacio renglon este generado por el (, 2 9. Sea T (, = (2, 2, y T (2, = (,. Si T es lineal, encontrar T (2, 2 y T (3, 4. Por que las siguientes transofmraciones lineales no son isomorfismos? T (x, y = (y, y T (x, y = (x, y, x + y T (x, y = x. Describa las transformaciones lineales de R 2, representadas en la base canonica por las matrices: ( ( 2 ( } p(xdx =.
4 Algebra y Geometría 28 4 VALORES Y VECTORES PROPIOS. Encontrar la multiplicidad geométrica de los autovalores de la matriz Es la matriz A diagonalizable? A = Encontrar los valores y vectores característicos de la matriz A =. ( Encontrar los valores y vectores caracterisiticos de las siguientes matrices: Sea A una matriz (3 3 con valores caracteristicos, 3, 5 con vectores propios independientes u, v, w respectivamente. proporcione una base para el nucleo y el espacio columna de A encuentre una solucion particular de Ax = v + w Por que el sistema Ax = u no tiene solucion? 5. Si A tiene autovalores λ = 4 y λ 2 = 5, ecnuentre tres matrices (2 2 tales que su traza sea 2 (la suma de los elementos de la diagonal y cuyo determinante sea Cuales de las siguientes matrices no pueden diagonalizarse: ( ( ( Completar las siguientes matrices tales que su determinante sea 25. Son estas matrices diagonalizables? ( 8 2 ( 9 4 ( Para que valores de c la matriz 2 2 c 5 3
5 Algebra y Geometría 28 5 tiene autovalores reales y autovectores ortogonales? De existir tal valor de c, encontrar los autovalores y autovectores de la matriz? Es diagonalizable? 9. Encuentre una matriz 2x2 A tal que tenga valores característicos λ = λ 2 =. a Si A 2 = I, cuáles son los valores característicos de A? b Si esta matriz A es 2x2, y no es ni I ni I, encuentre su determinante c Si el primer renglón de A es (3,, cuál es el segundo renglón?
Matemáticas para la Empresa
Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)
Relación 1. Espacios vectoriales
MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3
Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio
ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando
ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4
Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?
Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.
Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:
Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1
Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1
FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 0 mayo 006 Tema Apellido y nombres:... 4 5 Calificación final ) Dadas las rectas : x y + z = r : r : ( x, y, z) = (,,) + λ(, ) x z + k = 0 k para que las rectas sean
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
2.5 Ejercicios... 59
Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................
Matrices. Operaciones con matrices.
Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =
ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio
ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,
Práctica 5. Autovalores y autovectores. Diagonalización de matrices y de transformaciones lineales.
Práctica 5 Autovalores y autovectores Diagonalización de matrices y de transformaciones lineales Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C n n 1 Encuentre los
Práctica 6: Autovalores y autovectores - Diagonalización
ALGEBRA LINEAL Primer Cuatrimestre 2010 Práctica 6: Autovalores y autovectores - Diagonalización 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de
Geometría afín y proyectiva, 2016 SEMANA 4
Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra
b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas.
UTN. FRBA ÁLGEBRA Y GEOMETRÍA ANALÍTICA de Mayo de01 Tema: 1 Apellido y nombres del alumno:...legajo:. 1 4 5 Calificación final La condición para aprobar el examen es tener como mínimo tres ejercicios
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA SEMESTRE 1/2011 INFORMACIÓN GENERAL I. INFORMACIÓN CURRICULAR Código: 0250
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL
1. Definiciones básicas. UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL I. Sistemas homogéneos y subespacios de R n. (a) Para el sistema
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
7 Aplicaciones ortogonales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial
Hoja de diagonalización MATEMÁTICAS I
Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
Hoja de diagonalización MATEMÁTICAS I
Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales
TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN
RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño
UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...
UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.
Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas
Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema
PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante
Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2018 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica
Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,
2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012
2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada
Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (
Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)
Preparaduría V. 1.- Sea A una matriz diagonal n n cuyo polinomio característico es
Preparaduría V 1.- Sea A una matriz diagonal n n cuyo polinomio característico es (x c 1 ) d1 (x c 2 ) d2... (x c k ) d k donde los c 1,..., c k son distintos dos a dos. Sea V el espacio de matrices n
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018 I. Sistemas homogéneos, subespacios, dependencia e independencia lineal 1. En cada caso
ESPACIOS VECTORIALES Y APLICACIONES LINEALES
Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes
Aplicaciones Lineales. Diagonalización de matrices.
Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición
Clase de Álgebra Lineal
Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial
ALGEBRA LINEAL Segundo Semestre. Parte II
1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios
ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =
ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}
Hoja de diagonalización MATEMÁTICAS I
Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA II
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA II Elaborado por: Lic. Bismar Choque Nina TRANSFORMACIONES LINEALES Cuando no comprendemos una cosa, es preciso declararla absurda o superior
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06
PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x
ETSI de Topografía, Geodesia y Cartografía
3ª Prueba de Evaluación Continua 7 05 12 (Grupo C) Espacio vectorial 1. a) Definir vectores linealmente dependientes en un espacio vectorial V. u,u,,u de un espacio vectorial V son b) Demostrar que si
1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.
EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {
2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de:
MATERIA: ÁLGEBRA LINEAL CÓDIGO: 08091 REQUISITOS: Algebra y Funciones (08272), Lógica y Argumentación (08273) PROGRAMAS: Ingenierías, Química. PERÍODO ACADÉMICO: 2017-2 INTENSIDAD HORARIA: 4 Horas por
N o de examen: ESCRIBIR LAS RESPUESTAS AQUÍ Este examen consta de diez preguntas tipo verdadero/falso y diez ejercicios
N o de examen: NOMBRE: C.I.: Examen de Geometría y Álgebra Lineal 1 22 de julio de 2014 Instituto de Matemática y Estadística Rafael Laguardia Facultad de Ingeniería ESCRIBIR LAS RESPUESTAS AQUÍ 1 2 3
SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013)
ÁLGEBRA LINEAL 1S1M-b SOLUCIONES DEL SEGUNDO PARCIAL 17/12/2013 1. Dada una aplicación lineal f : de manera que : Se pide, obtener su matriz con respecto a las bases canónicas. Calculamos =col 2. Calcular
DIAGONALIZACIÓN DE MATRICES CUADRADAS
DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué
TEMA V. Espacios vectoriales
TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,
Solución de problemas III 1
Solución de problemas III Álgebra II Curso 25-6. Espacio Afín.. Ejercicios Ejercicio.4.3 Encontrar la expresión analítica de las siguientes aplicaciones afines de R 2 : a Giro de centro (, ángulo π/2 b
Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales
Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número
Cuestiones de Álgebra Lineal
Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que
MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009
Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por
Espacios Vectoriales
Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma
ÁLGEBRA LINEAL I Práctica 7
ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores
Diagonalización de Endomorfismos
Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,
Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios
61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial
1.5.3 Sistemas, Matrices y Determinantes
1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,
Tema 11.- Autovalores y Autovectores.
Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica
Ejercicios resueltos de Examenes anteriores
FACULTAD DE CIENCIAS EXACTAS DPTO. DE MATEMÁTICAS UNIVERSIDAD ANDRÉS BELLO Álgebra Lineal FMM Ejercicios resueltos de Examenes anteriores. (a) Sea A ( ) 2. Calcule las matrices P y J tal que A P JP 8 5.
ÁLGEBRA LINEAL I Práctica 7
ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2017 2018) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores
Podemos pues formular los dos problemas anteriores en términos de matrices.
Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión
Universidad de Los Andes Álgebra lineal 1. Parcial 3 - Tema A. 20 de abril 2013 MATE 1105
Universidad de Los Andes Álgebra lineal Parcial 3 - Tema A de abril 3 MATE 5 Esto es un examen individual. No se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Los
Álgebra Lineal 2015 Práctica 5: Diagonalización.
Álgebra Lineal 2015 Práctica 5: Diagonalización. 1. Sean T (a, b) = (4a b, b+2a), B = {(1, 0), (0, 1)} y C = {(1, 3), (2, 5)}. (a) Hallar la matriz camio de base de B a C, la matriz cambio de base de C
A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva
Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,
Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización.
Álgebra II(6108, 8102) Segundo cuatrimestre 2017 Práctica 4 Autovalores y autovectores de matrices Diagonalización Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C
TEMA III: DIAGONALIZACIÓN.
TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:
ÁLGEBRA LINEAL I Práctica 7
ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2016 2017) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores
UNIDAD TEMÁTICA Nº: 1
Objetivos de la materia: Que el alumno: Aprecie el valor instrumental del álgebra y la geometría, relacionándolas con los demás espacios curriculares. Articule el registro algebraico con el del lenguaje
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
