UNIDAD TEMÁTICA Nº: 1
|
|
|
- Luis Miguel Barbero Ferreyra
- hace 7 años
- Vistas:
Transcripción
1 Objetivos de la materia: Que el alumno: Aprecie el valor instrumental del álgebra y la geometría, relacionándolas con los demás espacios curriculares. Articule el registro algebraico con el del lenguaje natural y el gráfico, haciendo representaciones y tratamiento de conjeturas en diferentes marcos (gráfico, algebraico, funcional, etc). Logre habilidad para realizar procesos de análisis y síntesis para la resolución de situaciones problemáticas relacionadas con la Ingeniería. Sea capaz de identificar sus errores, respuestas incompletas e imprecisiones. Título: Algebra vectorial Desarrolle la capacidad de participación, de iniciativa y responsabilidad. Utilice, como usuario crítico, diferentes paquetes computacionales con capacidades de cálculo simbólico y numérico para la resolución de problemas complejos. UNIDAD TEMÁTICA Nº: 1 Magnitudes escalares y vectoriales. Vectores fijos, deslizantes y libres. Equipolencia. Igualdad de vectores. Operaciones: suma, resta, producto de un vector por un escalar, propiedades. Expresión de un vector en coordenadas cartesianas, en E 2 y E 3 y en el espacio tridimensional. Norma. Angulos y cosenos directores. Versores. Producto escalar entre dos vectores: definiciones y propiedades. Angulo entre dos vectores. Condiciones de paralelismo y de perpendicularidad. Producto vectorial: definición y propiedades. Interpretación geométrica de la norma del producto vectorial. Producto mixto: definición y propiedades. Interpretación geométrica. Condición de coplanaridad entre tres vectores. Combinación lineal de vectores. Independencia lineal de un conjunto de vectores. Interpretación geométricas. Título: Rectas y planos UNIDAD TEMÁTICA Nº: 2 La recta en E 2 : su determinación. Distintas formas de la ecuación de la recta a partir de la forma vectorial. Angulo entre rectas. Condiciones de paralelismo y de perpendicularidad.
2 Distancia de punto a recta. El plano: su determinación. Distintas formas de la ecuación del plano a partir de la ecuación vectorial. Distancia de un punto a plano. Angulo entre dos planos. La recta en E 3 : distintas formas de su ecuación a partir de la ecuación vectorial; ecuaciones paramétricas, ecuaciones cartesianas simétricas. La recta dada como intersección de planos. Angulo entre rectas. Angulo entre recta y plano. Intersección entre recta y plano. Posiciones relativas entre rectas del espacio: análisis de las distintas posibilidades; obtención de la intersección. Distancia: entre rectas alabeadas. Distancia de punto a recta UNIDAD TEMÁTICA Nº: 3 Título: Introducción a las cónicas y las superficies cuádricas Definición general de las cónicas. Expresiones canónicas de la circunferencia, la elipse, la hipérbola y la parábola; elementos y construcciones. Elementos de las mismas. Gráficas. Recta tangente a una cónica. Traslación de ejes en el plano. Las cónicas con centro o vértice desplazado. Obtención a partir de la misma de las ecuaciones canónicas. Sistemas de coordenadas polares, cilíndricas y esféricas. Parametrización. Las cuádricas en forma canónica. Análisis de las superficies: intersección con los ejes coordenados, con los planos coordenados, con planos paralelos a los coordenados, simetría. Gráficas. Superficies de revolución. Aplicaciones. Título: Números complejos UNIDAD TEMÁTICA Nº: 4 La representación cartesiana en el espacio bidimensional. Par ordenado. Definición de número complejo. La unidad imaginaria. Sus potencias y propiedades. Forma binómica de un complejo. Los
3 números reales como complejos. Operaciones algebraicas. Complejo conjugado. Representación cartesiana y vectorial. Operaciones. Sistemas de representación polar. Forma polar de los complejos: producto, potencia y cociente. Fórmula de De Moivre. Raíz n-sima de un complejo. Forma exponencial : operaciones. Logaritmos. Aplicaciones Título: Sistemas lineales y matrices: UNIDAD TEMÁTICA Nº: 5 Sistemas de ecuaciones lineales con m ecuaciones y n incógnitas: resolución por Gauss, Gauss Jordan. Matriz: definición, notación, orden. Igualdad de matrices. Matriz nula. Matriz de coeficientes y matriz ampliada de un sistema lineal de ( m x n ). Operaciones elementales con las filas de una matriz. Definición de matriz escalonada, escalonada reducida por filas y pivotes. Matriz identidad. Eliminación de Gauss y de Gauss Jordan. Sistemas de ecuaciones lineales homogéneos. Suma de matrices. Multiplicación de una matriz por un escalar. Propiedades. Producto de dos matrices. Propiedades. Definición: transpuesta de una matriz, matriz simétrica y antisimétrica. Propiedades. Expresión matricial de un sistema lineal. Definiciones: Matriz inversa, matriz Singular. Calculo de matriz inversa, si existe, por Gauss - Jordan. Resolución de sistemas lineales por inversa de un matriz. Aplicaciones. Resolución numérica de sistemas de ecuaciones lineales: métodos iterativos de Jacob y de Gauss Seidel. Corrección de los elementos de la inversa. Título: Determinantes UNIDAD TEMÁTICA Nº: 6 Determinante de una matriz de 2º orden. Determinante de una matriz de 3º orden. Menor complementario de un elemento de una matriz cuadrada ( M ij). Cofactor de un elemento de una matriz cuadrada ( A ij). Determinante de una matriz cuadrada de orden n. Propiedades de los determinantes. Matriz adjunta de una matriz. Propiedad de la adjunta. Criterio para invertibilidad de una matriz cuadrada. Regla de Cramer. Título: Valores y Vectores propios UNIDAD TEMÁTICA Nº: 7
4 Valores y vectores propios de una matriz cuadrada: Definición. Ecuación y polinomio característicos. Subespacios propios. Multiplicidad algebraica y geométrica de los valores propios. Matrices semejantes: Definición. Propiedad. Matriz diagonalizable. Matrices simétricas: Diagonalización ortogonal. Aplicaciones. Título: Espacios vectoriales UNIDAD TEMÁTICA Nº: 8 Espacios vectoriales reales R n y R m x n. Subespacios. Subespacios trivial.conjunto generador. Subespacios generados por un conjunto de vectores. Bases y dimensión. Espacio de solución de un sistema lineal homogéneo. Espacio de las filas y columnas de una matriz. Rango de una matriz. Condición de existencia de soluciones de un sistema lineal ( Teorema de Rouche - Frobenius). Cambio de Base: Coordenadas de un vector. Matriz de cambio de base o matriz de Transición. Título: Transformaciones lineales UNIDAD TEMÁTICA Nº: 9 Definición de transformación lineal. Definición de Núcleo e Imagen de una transformación lineal. Matriz asociada a una transformación lineal. Aplicaciones. Bibliografía obligatoria: Nociones de Geometría Analítica y Álgebra Lienal Kosak, Ana María; Pastorelli, Sonia; Vardanega, Pedro (Editorial Mc Graw Hill) Bibliografía complementaria: Introducción al Álgebra Lineal Howard Anton (Editorial Limusa) Álgebra Lineal con aplicaciones George Nakos; David Joyner (Editorial Thomson) Álgebra Lineal y sus aplicaciones David Lay (Editorial Prentice may) Álgebra Lineal con aplicaciones Stanley Grossman (Editorial Mc Graw Hill)
5 Álgebra Lineal Juan Burgos (Editorial Mc Graw Hill) Álgebra Lineal John Fraleigh ; Raymond Beauregard (Editorial Addison Wesley) Álgebra Lineal Harvey Gerber (Editorial Grupo Editorial Iberoamericano) Álgebra Lineal Seymour Lipschutz (Serie Schaum Editorial Mc Graw Hill) Álgebra Lineal Serge Lang (Editorial Fondo Educativo Iberoamericano)
Q-ALGEBRA Y GEOMETRÍA ANALÍTICA
CÁTEDRA Q-ALGEBRA Y GEOMETRÍA ANALÍTICA RESPONSABLE DE LA CÁTEDRA CAPELLO Viviana CARRERA INGENIERIA QUIMICA CARACTERÍSTICAS DE LA ASIGNATURA PLAN DE ESTUDIOS 2005 ORDENANZA CSU. Nº 1028 OBLIGATORIA ELECTIVA
PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante
Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica
ÁLGEBRA Y GEOMETRÍA ANALÍTICA. Ing. Carlos Alfredo LOPEZ Profesor Titular Ordinario. Avda. 60 esq. 124 Tel. /Fax (0221) /
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Ing. Carlos Alfredo LOPEZ Profesor Titular Ordinario Avda. 60 esq. 124 Tel. /Fax (0221) 421-7578 / 482-4855 CARRERA INGENIERÍA ELÉCTRICA ASIGNATURA ÁLGEBRA Y GEOMETRÍA ANALÍTICA
Pontificia Universidad Católica del Ecuador
1. DATOS INFORMATIVOS: MATERIA: Algebra Lineal y Geometría Analítica CÓDIGO: CARRERA: Civil NIVEL: Primero No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 6 SEMESTRE/AÑO ACADÉMICO: Agosto Diciembre 2008 CRÉDITOS PRÁCTICA:
DISEÑO CURRICULAR ALGEBRA LINEAL
DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO
INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV
INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía
Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303
1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : ACM-9303 Horas teoría-horas
Fecha: 29/10/2013 MATEMÁTICAS
Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o
MICRODISEÑO CURRICULAR FACULTAD DE CIENCIAS EXACTAS Y APLICADA. Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128
FACULTAD DE CIENCIAS EXACTAS Y APLICADA 1. IDENTIFICACIÓN Asignatura Algebra Lineal Área Ciencias Básicas Código ALX04 Correquisitos Prerrequisitos Créditos 4 TPS 4 TIS 8 TPT 64 TIT 128 2. JUSTIFICACIÓN
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:
UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS SILABO DE ALGEBRA LINEAL
UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS FACULTAD DE INGENIERÍAS Y TECNOLOGÍAS SILABO DE ALGEBRA LINEAL 1. DATOS INFORMATIVOS: Facultad: Ingenierías y Tecnologías Escuela: Ingeniería Mecánica
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA PROGRAMA INSTRUCCIONAL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito ALGEBRA LINEAL
MATEMÁTICAS. PRIMERO DE E.S.O.
MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.
PROGRAMA DE CURSO. Resultados de Aprendizaje
PROGRAMA DE CURSO Código Nombre MA1102 Algebra Lineal Nombre en Inglés Linear Algebra SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0 5,0 Requisitos MA1101
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
PLAN DE ESTUDIOS DE MS
PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
PROGRAMA ANALÍTICO. I. Objetivos El alumno deberá: II. Contenidos del Programa Analítico. Año 2013
Año 013 PROGRAMA ANALÍTICO Asignatura: ÁLGEBRA Y GEOMETRÍA ANALÍTICA Departamento: Matérias Básicas Unidad Docente Básica: Matemática Bloque: Ciencias Básicas Especialidad: COMÚN A TODAS LAS ESPECIALIDADES
ÁLGEBRA SUPERIOR II. Semestre: segundo Total Hrs/sem L.C.C. 90 LA-LEM-LM 72 horas Hrs/sem: 4.5 Créditos: 10 Clave: AG-02 DESCRIPCIÓN DE LA ASIGNATURA:
ÁLGEBRA SUPERIOR II Semestre: segundo Total Hrs/sem L.C.C. 90 LA-LEM-LM 72 horas Hrs/sem: 4.5 Créditos: 10 Clave: AG-02 DESCRIPCIÓN DE LA ASIGNATURA: En Álgebra Superior I fueron introducidos los conceptos
TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS
HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
ESPACIOS VECTORIALES
MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial
Universidad Industrial de Santander. Escuela de Matemáticas. Programa de Álgebra Lineal I.
Universidad Industrial de Santander. Escuela de Matemáticas. Programa de Álgebra Lineal I. Introducción. El álgebra lineal es una rama de las matemáticas que estudia fenómenos de naturaleza lineal en muchas
Temario de Matemáticas V (1500)
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO SECRETARÍA GENERAL DIRECCIÓN GENERAL DE INCORPORACIÓN Y REVALIDACIÓN DE ESTUDIOS Temario de Matemáticas V (1500) Plan ENP - 1996 TEMARIO MATEMÁTICAS V ( 1500 ) A
UNIVERSIDAD AUTONOMA DE TAMAULIPAS
R-RS-01-25-03 UNIVERSIDAD AUTONOMA DE TAMAULIPAS NOMBRE DE LA FACULTAD O UNIDAD ACADEMICA NOMBRE DEL PROGRAMA INGENIERO INDUSTRIAL NOMBRE DE LA ASIGNATURA GEOMETRIA ANALITICA PROGRAMA DE LA ASIGNATURA
Matemáticas para estudiantes de Química
Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
Objetivos formativos de Álgebra
Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Matemáticas I. Carrera: DCM PARTICIPANTES
1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: Matemáticas I Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Ingeniería en Desarrollo Comunitario DCM-053 3--. HISTORIA DEL PROGRAMA
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la
TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA
Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*
CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS
CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones
Introducción a la Matemática
Introducción a la Matemática Página 1 de 5 Programa de: Introducción a la Matemática UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería
1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales
EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades
Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática
Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Programa de la asignatura: MAT-151 ALGEBRA LINEAL Total de Créditos: 4 Teórico:
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Unidad 1: Sistemas de ecuaciones. Método de Gauss
CRITERIOS DE EVALUACIÓN Y EXIGIBLES. MATEMÁTICAS II Unidad 1: Sistemas de ecuaciones. Método de Gauss Sistemas de ecuaciones lineales - Sistemas equivalentes. - Transformaciones que mantienen la equivalencia.
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
MATEMÁTICAS 2º DE BACHILLERATO
MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.
Matemática I Página 1 de 5. Programa de:
Matemática I Página 1 de 5 Programa de: MATEMÁTICA I (C.G.) UNIVERSIDAD NACIONAL DE CORDOBA Facultad De Ciencias Exactas, Físicas y Naturales Republica Argentina Código: 1405 Carrera: Materia común Plan:
PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM
Matemáticas III (Álgebra Lineal)
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Matemáticas lll (Álgebra Lineal) Ingeniería en Industrias Alimentarias ACM-9504
Contenidos mínimos Criterios de evaluación Ejemplos de preguntas
Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.
Matemáticas III. Geometría analítica
Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
FACULTAD DE INGENIERÍA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA PROGRAMAS DE ASIGNATURAS DEL PROCESO DE ADMISIÓN AL CURSO PREPARATORIO DE INGENIERÍA (CPI) MATEMÁTICA I AÑO 2012 ASIGNATURA: MATEMÁTICA I I. FUNDAMENTACIÓN
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS SILABO P.A. 2012-1 1. INFORMACION GENERAL Nombre del
Dirección de Desarrollo Curricular Secretaría Académica
PLAN DE ESTUDIOS DE EDUCACIÓN MEDIA SUPERIOR CAMPO DISCIPLINAR Matemáticas PROGRAMA DE ASIGNATURA (UNIDADES DE APRENDIZAJE CURRICULAR) Geometría Analítica PERIODO III CLAVE BCMA.03.04-08 HORAS/SEMANA 4
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución
FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO
FACULTAD DE: CIENCIAS DE LA EDUCACIÓN PROGRAMA DE: LICENCIATURA EN MATEMÁTICAS 1. IDENTIFICACIÓN DEL CURSO PLANEACIÓN DEL CONTENIDO DE CURSO NOMBRE : GEOMETRÍA II CÓDIGO : 22136 SEMESTRE : SEGUNDO NUMERO
MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).
1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden
46 CONCURSO ANUAL DE MATEMÁTICAS DEL SURESTE TEMARIO DE LAS FASES ESCRITA Y ABIERTA. Contenido
Contenido Área Álgebra... Geometría Plana... Trigonometría y Geometría Analítica... Probabilidad y Estadística... Precálculo... Página 2 4 6 8 9 ÁLGEBRA 1. Números reales. 1.1 Subconjuntos importantes
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
Preparación matemática para la física universitaria
Preparación matemática para la física universitaria Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan
PROGRAMACIÓN DE AULA MATEMÁTICAS II 2º DE BACHILLERATO COLEGIO MARAVILLAS. Realizada por Dª Teresa González.
PROGRAMACIÓN DE AULA MATEMÁTICAS II 2º DE BACHILLERATO COLEGIO MARAVILLAS Realizada por Dª Teresa González. UNIDAD 1. MATRICES Objetivos Identificar los elementos de una matriz y clasificarla atendiendo
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.
DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,
e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105
e+ I f 1.1 Números reales y desigualdades 2 1.2 Coordenadas y rectas 16 1.3 Circunferencias y gráficas de ecuaciones 32 1.4 Funciones 42 1.5 Gráficas de funciones S5 1.6 Funciones trigonométricas 61 Ejercicios
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
ALGLIN - Álgebra Lineal
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 250 - ETSECCPB - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona 727 - MA III - Departamento
Club de Matemáticas CBTis 149. clubmate149.com
PROGRAMA DE MATEMATICAS III (Geometría Analítica) Con este curso se inicia el estudio de la geometría analítica, rama de las Matemáticas cuyos inicios se remontan a la segunda mitad del siglo XVII con
PROGRAMA DE MATEMATICAS BASICAS
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA SISTEMAS PROGRAMA DE MATEMATICAS BASICAS 1. DATOS INFORMATIVOS 1.1 Escuela : Ingeniería 1.2 Carrera : Ingeniería
Syllabus Asignatura: Matemáticas para la Empresa
Syllabus Asignatura: Matemáticas para la Empresa Grado en Publicidad y Relaciones Públicas y Título Superior en Marketing (GRPUB+TSMK) Curso 2012/2013 Profesor/es: Periodo de impartición: Tipo: Idioma
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii
ÍNDICE Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii 1 Los números reales... 1 1.1 QUÉ ES EL ÁLGEBRA?... 1 1.2 LOS NÚMEROS REALES POSITIVOS... 10 Números reales y sus propiedades...
MATRICES. Rango de una matriz. Matriz Inversa. Determinante de una matriz cuadrada. Sistemas de Ecuaciones Lineales. Nociones de espacios vectoriales
MATRICES Rango de una matriz Matriz Inversa Determinante de una matriz cuadrada Sistemas de Ecuaciones Lineales Nociones de espacios vectoriales MATRICES -DEFINICIÓN DE MATRIZ. -ALGUNOS TIPOS DE MATRICES.
Guía para la Evaluación Diagnóstica en Matemáticas. Programa
UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas División de Economía y Sociedad Departamento de Métodos Cuantitativos Academia de Matemáticas Generales Guía para la
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA
5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución de problemas Fracciones y Números
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA AÑO 2014 I. FUNDAMENTACIÓN En esta disciplina se estudian las operaciones
DOCENTE: JESÚS E. BARRIOS P.
DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
EXTRACTO DE PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º BACHILLERATO CONTENIDOS MÍNIMOS
MATERIA: CURSO: MATEMÁTICAS 2º BACHILLERATO CONTENIDOS MÍNIMOS ÁLGEBRA LINEAL 1) Realizar operaciones con matrices (con un número de filas y columnas no superior a tres) así como obtener la traspuesta
Geometría. Descripción. Índice general. Capítulo 1. Capítulo 2. Pág. N. 1. Generalidades. Ángulos. Francisco Ramos Ttito ISBN:
Pág. N. 1 Geometría Familia: Editorial: Autor: Ciencias Básicas Macro Francisco Ramos Ttito ISBN: 978-612-304-117-5 N. de páginas: 512 Edición: 1. a 2013 Medida: 17.5 x 24.8 Colores: 1 Papel: Material
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015
CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
Asignatura: MATEMÁTICA I (1013) Programa aprobado por Resolución UNM-R Nº 48/11
Asignatura: MATEMÁTICA I (1013) Programa aprobado por Resolución UNM-R Nº 48/11 Carrera: LICENCIATURA EN RELACIONES DEL TRABAJO (Plan de estudios aprobado por Resolución UNM-R Nº 21/10) 1 Carrera: LICENCIATURA
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
1º ESO MATEMÁTICAS. No se dan tareas, para superar la signatura se debe aprobar el examen que constará de 10 preguntas.
1º ESO MATEMÁTICAS CONTENIDOS MÍNIMOS. Conocer los números naturales, su utilidad y las propiedades generales del sistema de numeración decimal. Realizar correctamente operaciones con números naturales.
Planificación Anual 2016 Ciclo Básico Secundario
Escuela Provincial de Educación Técnica N 1 UNESCO Planificación Anual 2016 Ciclo Básico Secundario Espacio Curricular: Matemática Cursos: 2 División/es: A, B, C, D, E, F, G, H Profesor/es: Carlos, Cantero;
Luis Miguel Nevado Garrido Irene Tusset Relaño Ángel de la Llave Canosa Mª Teresa González Barazón Carmen de la Llave Peral Ángel Almaraz Martín
Luis Miguel Nevado Garrido Irene Tusset Relaño Ángel de la Llave Canosa Mª Teresa González Barazón Carmen de la Llave Peral Ángel Almaraz Martín MATEMÁTICAS 3º E.S.O. ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS
Syllabus Asignatura : Matemáticas Empresariales
Syllabus Asignatura : Grado oficial en Marketing (GRMK) Curso 2012/2013 Profesor/es: Periodo de impartición: José Manuel Casteleiro Villalba Ramón Arilla Llorente 1 er cuatrimestre, 1º de carrera Tipo:
CÁLCULO INTEGRAL TEMARIO
CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos
