ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3"

Transcripción

1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso ) 6 Sea X una matriz cuadrada de tamaño n n y elementos reales Sea k un número par Probar que si X k = Id, entonces n es también un número par Si se cumple que X k = Id, aplicando determinantes obtenemos que det(x k ) = det( Id) Pero det(x k ) = det(x) k y det( Id) = ( ) n Por tanto: det(x) k = ( ) n Como k es par, det(x) k es positivo; entonces ( ) n ha de ser positivo y en consecuencia n tiene que ser un número par 8 Decidir si la familia de matrices hemisimétricas regulares de M n n (K) verifica alguna de las dos condiciones: (a) dada una matriz de la familia, su inversa también pertenece a la familia; (b) dadas dos matrices de la familia, su producto también pertenece a la familia (a) CIERTO Una matriz hemisimétrica es aquella que es igual a su traspuesta con el signo opuesto Basta razonar como antes pero para matrices hemisimétricas: (A ) t = (A t ) pero por ser A hemisimétrica A t = A, luego (A ) t = A y por tanto la inversa es hemisimétrica (b) FALSO Como antes dadas A, B hemisimétricas, veamos si AB lo es De nuevo, (AB) t = B t A t ; por ser A, B hemisimétricas, (AB) t = ( B)( A) = BA De aquí no se de deduce que AB sea hemisimétrica Ejemplo: A = 0, B = 0 0, AB = Dadas A, B M n n (IR), con A simétrica y B hemisimétrica, razonar la veracidad o falsedad de las siguientes afirmaciones: Observamos que por ser A simétrica A = A t y por ser B hemisimétrica B t = B (a) AB es hemisimétrica Tenemos que: (AB) t = B t A t = BA Si fuese hemisimétrica tendría que cumplirse (AB) t = AB Pero por ejemplo si A = 0, B = ( 0 ) 0 Se tiene A = A t, B = B t pero: y BA = AB = ( 0 ) 2 0 AB 0

2 (b) A + B es simétrica Es falso Basta tomar como ejemplo las matrices del apartado anterior (c) (A B)(A + B) es simétrica Se tiene que: ((A B)(A + B)) t = (A + B) t (A B) t = (A t + B t )(A t B t ) = (A B)(A + B), por tanto si es simétrica Sea n > 2 y A M n n (IR), una matriz inversible Sea adj(a) su matriz adjunta Probar que: (a) det(adj(a)) = det(a) n Sabemos que: A = det(a) adj(a) De donde: adj(a) = det(a) A Aplicando determinantes queda: det(adj(a)) = det(det(a) A ) = det(a) n det(a ) = det(a)n det(a) = det(a)n (b) adj(adj(a)) = det(a) n 2 A Como antes sabemos que: adj(a) = det(a) A Entonces: adj(adj(a)) = det(adj(a)) adj(a) = det(a) n (det(a) A ) = det(a) n det(a) A = det(a) n 2 A 2 Calcular en función de x el siguiente determinante: det x x 2 x x 2 x 2 x x x 2 Para qué valores reales de x se anula? Hacemos operaciones elementales para simplificar el determinante Comenzamos sumando todas las

3 fila a la primera: det 2 + x + x x + x x + x x + x 2 x x 2 x 2 x x x 2 = (2 + x + x 2 )det x x 2 x 2 x x x 2 = = = (2 + x + x 2 x x )det 2 x x x x 2 x 2 x 2 x x 2 = 0 x x 2 = (2 + x + x 2 )det x2 x x x x 2 x 2 x x 2 = 0 x x 2 x = (2 + x + x 2 )(x ) 3 det x x x = 0 x = (2 + x + x 2 )(x ) 3 det x x 2 x = x 2 + x x x + = (2 + x + x 2 )(x ) 3 x x 2 det x 2 = (2 + x + x 2 )(x ) 3 x(x 2 + 2x + 2) + x x El determimante se anula en las raíces de cada factor: 2 + x + x 2 = 0 x = ± 4 2 IR x = 0 x = Es decir se anula para x = 0 ó x = x = 0 x 2 + 2x + 2 = 0 x = ± 2 IR

4 ÁLGEBRA LINEAL I Algunas soluciones a los problemas adicionales Matrices y determinantes (Curso ) I En el conjunto de las matrices n n de elementos reales, demostrar que si AA T = Ω, entonces A = Ω Llamemos B = A T Entonces por definición de traspuesta, b ij = a ji Ahora por hipotésis Ω = AA t = AB Haciendo el producto vemos que para cualquier i, j con, i, j n: En particular, si i = j: 0 = 0 = n a ik b kj = k=0 n a ik a ik = k=0 n a ik a jk Por ser A una matriz con coeficientes reales, los cuadrados a 2 ik son siempre números no negativos Si su suma es cero, todos ellos han de ser cero, y deducimos que a ik = 0 para cualquier i, k con, i, k n Por tanto A = Ω (Primer parcial, febrero 2000) k=0 n k=0 a 2 ik II Calcular las potencias n-simas de las siguientes matrices: El método ( de momento!) más usual es hacer a mano las primeras potencias y luego encontrar una regla general: (a) A = Calculamos las primeras potencias A 2 = , A 3 = , A 4 = , Parece razonable pensar que, en general: A n = n 0 2n 0 Hay que comprobarlo Se hace por inducción Para ello: - Vemos que se cumple para A - Comprobamos que, si suponemos cierta la fórmula para n, entonces se cumple para n, es decir: A n = A A n = A n 0 = n 0 2(n ) 0 2n 0 (b) B = ( )

5 Calculamos las primeras potencias: B 2 =, B 3 = 2 0 Ahora es fácil continuar porque: ( ), B 4 = 4 0 = ( 4)Id 0 4 B 5 = B B 4 = ( 4)B; B 6 = ( 4)B 2 ; B 7 = ( 4)B 3 ; B 8 = ( 4) 2 Id; En general, el exponente n siempre lo podemos escribir como n = 4d + r donde r es el resto de dividir n entre 4 y por tanto es un número entero comprendido entre 0 y 3 Tendremos: B n = B 4d+r = (B 4 ) d B r = ( 4) d Id B r = ( 4) d B r En definitiva escribimos el resultado dependiendo de los 4 posibles valores de r: B n = ( 4) d 0, si n = 4d; 0 B n = ( 4) d B n = ( 4) d, si n = 4d + ;, si n = 4d + 2; 2 0 B n = ( 4) d 2 2, si n = 4d + 3; 2 2 (c) C = 0 a b c 0 0 Hacemos las primeras potencias: C 2 = 0 0 ab bc 0 0, C 3 = abc abc 0 = abc ac abc 0 0 Paramos en la tercera potencia Nos fijamos que C 3 = abcid Ahora es muy fácil multiplicar por C 3 Podemos en general hacer lo siguiente Dado n > 0, sabemos que n = 3q + r, donde q es el cociente y r < 3 es el resto de dividir n por 3 Por tanto: C n = C 3q+r = (C 3 ) q C r = (abci) q C r = a q b q c q C r y, C n = aq b q c q a q b q c q a q b q c q, si n = 3q; 0 a q+ b q c q 0 C n = 0 0 a q + b q+ c q, si n = 3q + ; a q b q c q a q+ b q+ c q C n = a q b q+ c q+ 0 0, si n = 3q a q+ b q c q+ 0

6 (d) D = a2 ab ac ab b 2 bc Hacemos las primeras potencias: ac bc c 2 D 2 = a4 + a 2 b 2 + a 2 c 2 a 3 b + ab 3 + abc 2 a 3 c + ab 2 c + ac 3 a 3 b + ab 3 + abc 2 a 2 b 2 + b 4 + b 2 c 2 a 2 bc + b 3 c + bc 3 a 3 c + ab 2 c + ac 3 a 2 bc + b 3 c + bc 3 a 2 c 2 + b 2 c 2 + c 4 Ahora es fácil seguir haciendo las potencias de D, porque: En general vemos que; D 3 = D 2 D = (a 2 + b 2 + c 2 )D 2 = (a 2 + b 2 + c 2 ) 2 D D 4 = D 3 D = (a 2 + b 2 + c 2 ) 2 D 2 = (a 2 + b 2 + c 2 ) 3 D De nuevo hay que comprobarlo por inducción: D n = (a 2 + b 2 + c 2 ) n D - Para n = es cierto, ya que D = (a 2 + b 2 + c 2 ) D = D - Lo suponemos cierto para n y lo probamos para n: = (a 2 + b 2 + c 2 )D D n = D n D = (a 2 + b 2 + c 2 ) n 2 D D = (a 2 + b 2 + c 2 ) n 2 D 2 = = (a 2 + b 2 + c 2 ) n 2 (a 2 + b 2 + c 2 )D = (a 2 + b 2 + c 2 ) n D III Para las siguientes familias de matrices no singulares de M n n (K), decidir si verifican alguna de las dos condiciones: (a) dada una matriz de la familia, su inversa también pertenece a la familia; (b) dadas dos matrices de la familia, su producto también pertenece a la familia () las matrices simétricas regulares, (a) CIERTO Que sea regular simplemente significa que tiene inversa Y una matriz simétrica es aquella que coincide con su traspuesta Hay que probar que si una matriz es simétrica su inversa es también simétrica Basta usar las propiedades de la trasposición: (A ) t = (A t ) pero por ser A simétrica A t = A, luego (A ) t = A y por tanto la inversa es simétrica (b) FALSO Dadas A, B simétricas, veamos si lo es AB Tenemos (AB) t = B t A t ; por ser A, B simétricas deducimos que (AB) t = BA Teniendo en cuenta que el producto de matrices no es conmutativo, en general BA AB y por tanto AB no tiene porque ser simétrica Veamos un ejemplo del de dos matrices simétricas cuyo prdoducto NO lo es: A = 0, B = 0 0, AB = 0 (2) las matrices regulares que conmutan con una matriz dada A M n n (K), (a) CIERTO Supongamos que una matriz regular B conmuta con A Veamos que también conmuta su inversa Por conmutar A yb se tiene AB = BA Multiplicando ambos términos, por la derecha y por la izquierda por B tenemos, B ABB = B BAB Y como BB = B B = I queda, B A = AB (b) CIERTO Supongamos que B y C conmutan con A Veamos que entonces BC también conmuta con A: (BC)A = B(CA) = B(AC) = (BA)C = A(BC)

7 (3) las matrices ortogonales Una matriz ortogonal es aquella cuya inversa es igual a su traspuesta (a) CIERTO Sea A ortogonal (A t = A ) Veamos que A es ortogonal: (A ) t = (A t ) = (A ) Vemos que su traspuesta coincide con su inversa y es ortogonal (b) CIERTO Sean A, B ortogonales Veamos que AB es ortogonal (AB) t = B t A t = B A = (AB) Luego vemos que su inversa coincide con su traspuesta VI Dada la matriz m n con m, n >, 2 n n n + n + 2 2n 2n A = (m )n + (m )n + 2 mn mn expresar a ij en función de i y j, y calcular su rango El término a ij es de la forma: a ij = j + (i ) n Para hallar el rango hacemos operaciones fila y columna sobre la matriz A Le restamos la primera fila a todas las demás: 2 n n n n n n (m )n (m )n (m )n (m )n Ahora le restamos la primera columna a todas las demás: n 2 n n (m )n Vemos que las filas 3,, m son proporcionales a la segunda Por tanto el rango es a lo sumo 2 Para ver que el rango es exactamente 2 basta mostrar un menor 2 2 de determinante no nulo: n 0 = n VII Dados x R, x 0 y la matriz calcular det(a 3 ) y det(a ) Por las propiedades del determinante: 0 0 x x A =, x 0 x x x 0 det(a 3 ) = det(a) 3 det(a ) = det(a)

8 por lo que nuestro problema se reduce a calcular el det(a): 0 0 x x det(a) = det = det x x 0 = 0 x x 0 x 0 x 0 x 0 x = det 0 0 x 2x x 2x x = det = (4x 2 x 2 ) = 3x 2 x 2x x x 2x y en definitiva: det(a 3 ) = ( 3x 2 ) 3 = 27x 6, det(a ) = 3x 2 VIII Dado a R y para cada n entero positivo definimos las matrices A n M n n (R): (a) Calcular en función de a, det(a 4 ) (b) Calcular en función de a y n, det(a n ) 3 a a a a a 3 a a a a a 3 a a A n = a a a 3 a a a a a 3 Calculemos en general el det(a n ) Si sumamos todas las filas a la primera queda: 3 + (n )a 3 + (n )a 3 + (n )a 3 + (n )a 3 + (n )a a 3 a a a a a 3 a a det(a n ) = = a a a 3 a a a a a 3 a 3 a a a a a 3 a a = (3 + (n )a) a a a 3 a a a a a 3 Ahora le restamos la primera fila multiplicada por a a todas las demás: 0 3 a a 0 0 det(a n ) = (3 + (n )a) = (3 + (n )a)(3 a) n a a En particular: det(a 4 ) = (3 + 3a)(3 a) 3 = 3( + a)(3 a) 3

9 IX Hallar el siguiente determinante para n 2 x + y x + y 2 x + y 3 x + y n x 2 + y x 2 + y 2 x 2 + y 3 x 2 + y n A n = x 3 + y x 3 + y 2 x 3 + y 3 x 3 + y n x n + y x n + y 2 x n + y 3 x n + y n Restamos a las filas 2, 3,, n la primera fila Queda: x + y x + y 2 x x x x x 2 x x 2 x x 2 x x 2 x A n = x 3 x x 3 x x 3 x x 3 x x n x x n x x n x x n x Vemos que en cada fila 2, 3,, n los términos son iguales podemos sacarlos fuera: Por las propiedades del determinante, x + y x + y 2 x x x x A n = (x 2 x )(x 3 x ) (x n x ) Entonces si n > 2, hay dos o más filas iguales y por tanto el determinante es 0 Si n = 2 queda: (Primer parcial, febrero 2003) A 2 = (x 2 x ) x + y x + y 2 = (x 2 x )(y y 2 )

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 3

ÁLGEBRA Ejercicios no resueltos de la Práctica 3 ÁLGEBRA Ejercicios no resueltos de la Práctica 3 Matrices y determinantes (Curso 2007 2008) 15. Encontrar la (única) respuesta correcta, de entre las indicadas, a las siguientes cuestiones: (b) En una

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2013 2014) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2011 2012) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2017 2018) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Matrices y determinantes (Curso )

Matrices y determinantes (Curso ) ÁLGEBRA Práctica 3 Matrices y determinantes (Curso 2008 2009) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz triangular

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 4

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 4 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones (Curso 2016 2017) 1. Hallar la forma reducida equivalente por filas de la matriz: 1 2 1 0 3 2 1 2 2

Más detalles

DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2

DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2 DETERMINANTES Página 77 REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 0x + 6y

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 4

ÁLGEBRA Ejercicios no resueltos de la Práctica 4 ÁLGEBRA Ejercicios no resueltos de la Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones (Curso 2007 2008) 3. Decidir si las matrices A y B son equivalentes por filas y/o equivalentes por columnas.

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

A-PDF Page Cut DEMO: Purchase from to remove the watermark Ejercicios resueltos 29

A-PDF Page Cut DEMO: Purchase from  to remove the watermark Ejercicios resueltos 29 wwwapuntesdematesweeblycom A-PDF Page Cut DEMO: Purchase from wwwa-pdfcom to remove the watermark Ejercicios resueltos 29 Qué coste conlleva el cálculo de la inversa de una matriz A R n n? Calculando A

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 4

ÁLGEBRA Algunas soluciones a la Práctica 4 ÁLGEBRA Algunas soluciones a la Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones Curso 28 29 2. Existen dos matrices de igual dimensión que tengan el mismo rango pero no sean ni equivalentes

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices. Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares

Más detalles

ELEMENTOS DE ALGEBRA LINEAL

ELEMENTOS DE ALGEBRA LINEAL ELEMENTOS DE ALGEBRA LINEAL Matriz Una matriz de orden o dimensión n x p es una ordenación rectangular de elementos dispuestos en n filas y p columnas de la siguiente forma: a11 a1 a1p a1 a a p A an1 an

Más detalles

TEMA 7. Matrices y determinantes.

TEMA 7. Matrices y determinantes. TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a. MATRICES Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas A= 2 1 5 0 3 8 A es de dimensión 2 3. a a a En general una matriz de dimensión 2 3

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

Sistemas de Ecuaciones Lineales. Matrices y determinantes.

Sistemas de Ecuaciones Lineales. Matrices y determinantes. Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Objetivos: Distinguir y realizar los cálculos con las operaciones matriciales básicas. Introducción: Las operaciones matriciales permiten el abordaje de los métodos del álgebra

Más detalles

2.1 Introducción. Propiedades.

2.1 Introducción. Propiedades. 19 2 MATRICES II: DETERMINANTES En este segundo capítulo de matrices, aprenderemos a utilizar una herramienta muy importante como son los determinantes Gracias a ellos, podremos calcular la inversa de

Más detalles

Teoría Tema 8 Propiedades de los determinantes

Teoría Tema 8 Propiedades de los determinantes página 1/6 Teoría Tema 8 Propiedades de los determinantes Índice de contenido Propiedades...2 página 2/6 Propiedades 1. El determinante de una matriz coincide con el determinante de su traspuesta. A=A

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Matrices Una matriz de orden m n es un conjunto de m n números ordenados en m filas y n columnas Por ejemplo, 1 1 2 0 2 0 2 1 1 1 2 1 3 0 2 es una matriz de orden 3 5 Una matriz

Más detalles

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n =

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n = Álgebra Lineal I Examen Final Ejercicio único (3 horas) 0 de enero de 014 1. Sea P un polígono regular de n lados. (i) Cuántas diagonales tiene el polígono?. Las diagonales son segmentos que unen pares

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina

Más detalles

MATEMÁTICAS II: MATRICES Y DETERMINANTES

MATEMÁTICAS II: MATRICES Y DETERMINANTES MATRICES Llamaremos matriz de números reales de orden (o dimensión) m n a un conjunto ordenado de m n números reales, dispuestos en m filas y n columnas: A a 11 a 12 a 13 a 1j a 1n a 21 a 22 a 23 a 2j

Más detalles

Chapter 1. Matrices. 1.1 Introducción y definiciones

Chapter 1. Matrices. 1.1 Introducción y definiciones Chapter 1 Matrices 1.1 Introducción y definiciones Los conceptos de las matrices y determinantes se remonta al siglo segundo BC, incluso antes. Pero no es hasta el siglo XVII cuando las ideas reaparecen

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras

Más detalles

Matemáticas Empresariales II

Matemáticas Empresariales II Matemáticas Empresariales II Lección 3 Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 40 Concepto de Matriz Se define matriz de orden n m a todo conjunto

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

Problemas Sesión 5: Matrices I

Problemas Sesión 5: Matrices I Problemas Sesión 5: Matrices I P) Sean A 2 3 6 sin embargo B C. ; B 3 8 2 3 y C 5 2 2. Comprueba que AB AC y que El resultado de calcular los productos es: AB AC 7 2 2 6 P2) Considera las matrices A y

Más detalles

Unidad 2 Determinantes

Unidad 2 Determinantes Unidad Determinantes 4 SOLUCIONES. Las soluciones son:. Aplicando la regla de Sarrus se obtiene: 3. Queda del siguiente modo: 4. Decimos que: a) El término a5 a5 a44 a3 a 3 es el mismo que a3 a5 a3 a44

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes

Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes Ejemplos: Verifican ciertas reglas o algebra, denominada algebra de matrices.la matriz representa en general

Más detalles

Teoría Tema 7 Operar con matrices

Teoría Tema 7 Operar con matrices página 1/12 Teoría Tema 7 Operar con matrices Índice de contenido Concepto de matriz...2 Matriz traspuesta, simétrica y diagonal...3 Suma de matrices y producto de escalar por matriz...6 Producto de matrices...8

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Práctica N 2: Matrices Ejercicio 1 Probar que los siguientes

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial: Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

MATRICES UNIDAD 2. Página 50

MATRICES UNIDAD 2. Página 50 UNIDAD MATRICE Página 50 1. A tres amigos, M, N, P, se les pide que contesten a lo siguiente: Crees que alguno de vosotros aprobará la selectividad? Di quiénes. Estas son las respuestas: M opina que él

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes A = ( aij)=a mxn m = nº filas y n = nº columnas Orden o dimensión = mxn Matriz cuadrada m=n Matriz rectangular m n Matriz fila A 1xn Definiciones de Matrices a 11 a 12...a 1n a

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales 125 Fundamentos de Matemáticas : Álgebra Lineal 8.1 Definiciones básicas Capítulo 8 Matrices y sistemas lineales Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números.

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Segundo examen parcial. Soluciones. Ejercicio 1 (1 hora y 40 minutos.) 12 de junio de 2008

Segundo examen parcial. Soluciones. Ejercicio 1 (1 hora y 40 minutos.) 12 de junio de 2008 ÁLGEBRA Segundo examen parcial Soluciones Ejercicio 1 (1 hora y 40 minutos 1 de junio de 008 1 En el espacio de matrices M n n (IR consideramos las formas bilineales: f : M n n (IR M n n (IR IR, f(a, B

Más detalles

3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante.

3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante. 37 Determinantes 11 Definición de determinante Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de

Más detalles

1. Determinantes de orden dos y tres:

1. Determinantes de orden dos y tres: 1. Determinantes de orden dos y tres: TEMA 8: DETERMINANTES. A una matriz cuadrada le vamos a asociar un número que servirá para resolver sistemas, calcular matrices inversas y rangos de matrices. A det

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

PRACTICA: MATRICES Y DETERMINANTES A = B = C =

PRACTICA: MATRICES Y DETERMINANTES A = B = C = PRACTICA: MATRICES Y DETERMINANTES 1. Sean las matrices cuadradas siguientes A = 1 2 3 B = 9 8 7 C = 1 3 5 4 5 6 6 5 4 7 9 0 7 8 9 3 2 1-3 -2-1 Se pide calcular: a. 2A -3B + C 2A = 2(1) 2 (2) 3(2) 2 4

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

TEMA 1: MATRICES Y DETERMINANTES

TEMA 1: MATRICES Y DETERMINANTES TEMA 1: MATRICES Y DETERMINANTES 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales de la forma a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Las líneas horizontales (verticales)

Más detalles

UNIVERSIDAD NACIONAL DE ROSARIO

UNIVERSIDAD NACIONAL DE ROSARIO UNIVERSIDAD NACIONAL DE ROSARIO Facultad de Ciencias Exactas, Ingeniería y Agrimensura Licenciatura en Matemática y Profesorado en Matemática Cátedra: Álgebra Sistemas de Ecuaciones Matrices Determinantes

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes Las matrices y los determinantes son herramientas del álgebra de gran utilidad en muchas disciplinas. Los campos de aplicación de la teoría de las matrices y de los determinantes

Más detalles

Matrices 2º curso de Bachillerato Ciencias y tecnología

Matrices 2º curso de Bachillerato Ciencias y tecnología MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza. 1 Introducción y definiciones 2

1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza. 1 Introducción y definiciones 2 1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Contents 1 Introducción y definiciones 2 2 Algebra matricial. 3 3 Matrices por bloques.

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDAD 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES

MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES 1. CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=(aij),de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

Apuntes. 2º Bachillerato Matrices X.B. APUNTS MATRIUS. Prof. Ximo Beneyto

Apuntes. 2º Bachillerato Matrices X.B. APUNTS MATRIUS. Prof. Ximo Beneyto Apuntes Apuntes 2º Bachillerato Matrices * Definición y tipos * Operaciones con matrices * Matriz inversa * Rango de una matriz * Propiedades * EJERCICIOS RESUELTOS Prof. Ximo Beneyto Tema : Matrices Página

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

1 Clase sobre determinantes

1 Clase sobre determinantes 1 Clase sobre determinantes Una herramienta muy útil cuando trabajamos con matrices y con el producto de matrices, es su interpretación como: una colección de números, A = [a ij ] ; como una colección

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

Matrices y sistemas de ecuaciones

Matrices y sistemas de ecuaciones Matrices y sistemas de ecuaciones María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema 2: Determinantes 1. Introducción En este tema vamos a asignar a cada matriz cuadrada de orden, un número real que llamaremos su determinante y escribiremos. Vamos a ver cómo se calcula. Consideremos

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 05 de abril de 2018 1 hora y 15 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN 1. Dadas las matrices A ( 2 1 1 2 ), B ( 0 1 ) e I la matriz identidad de

Más detalles