ESTRUCTURA DE LA MATERIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURA DE LA MATERIA"

Transcripción

1 ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 2 1

2 ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 3 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 4 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 5 2

3 El experimento: Cuando la luz incide en algunas superficies metálicas, se produce una corriente de electrones. A este fenómeno se le conoce con el nombre de efecto fotoeléctrico. Así, algunos metales (los alcalinos) pueden emitir electrones si la luz incidente es visible, en cambio otros solo emiten electrones con luz ultravioleta. 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 6 22/2/18 ESTRUCTURA ATÓMICA 7 22/2/18 ESTRUCTURA ATÓMICA 8 3

4 Es decir, para cada metal hay una frecuencia umbral de la luz, por debajo de la cual no se produce la corriente de electrones. En este fenómeno, la luz al incidir sobre el metal arranca electrones del metal y dependiendo del tipo de radiación éstos serán expulsados del material a mayor o menor velocidad. 22/2/18 ESTRUCTURA ATÓMICA 9 Partículas u ondas? Este fenómeno, no puede explicarse empleando la teoría electromagnética clásica pues según esta, la energía cinética de los electrones debe variar con la intensidad y ser independiente de la frecuencia. En 1905, Albert Einstein, demuestra que se podían resolver estas dificultades si se aplicaban los postulados de Plank a este fenómeno. Para ello, sugiere que en vez de pensar en la luz incidente como un fenómeno ondulatorio, debe considerársele como una corriente de corpúsculos a los que llamó fotones. Cada uno de estos fotones tiene una energía determinada que depende de su frecuencia. 22/2/18 ESTRUCTURA ATÓMICA 10 Partículas u ondas? La cantidad de energía de cada fotón está dada según Einstein por esta expresión: E fotón = hν Cuando los fotones golpean la superficie metálica estos, pueden ceder su energía a un electrón del metal. El potasio necesita al menos 2.0 ev para que se produzca una corriente Parte de esta energía la emplea para arrancarlo de la superficie del metal dándole energía cinética. Si la frecuencia es inferior a la umbral, el efecto no se produce. 22/2/18 ESTRUCTURA ATÓMICA 11 4

5 Por otro lado al mismo tiempo se ha demostrado experimentalmente con un fototubo: Que la energía de los electrones emitidos es independiente de la intensidad del haz incidente Electrodo colector ánodo Corriente (A) Voltaje umbral Voltaje opuesto (V) Incremento de la intensidad de la luz Corriente 22/2/18 eléctrica ESTRUCTURA ATÓMICA 12 Que la energía de los electrones emitidos es proporcional a la frecuencia de la radiación incidente. 22/2/18 ESTRUCTURA ATÓMICA 13 Esto se puede ver claramente en esta gráfica: La cual no depende de la intensidad de la luz incidente. Por tanto la interacción ocurre por medio de algo como una partícula que le da toda su energía al electrón. Expulsándolo con esa energía menos la que se necesita para hacerlo escapar de la superficie 22/2/18 ESTRUCTURA ATÓMICA 14 5

6 Adicionalmente es posible ver que los puntos del experimento se pueden ajustar a una recta. El incremento lineal muestra ΔE = 1.25eV que lo que sea que expulsa a los electrones del metal tiene una Δν = 3 10 energía 14 Hz proporcional a la frecuencia. La ecuación de la línea tiene una W = 2.2 constante de proporcionalidad que vale: m = h = ΔE Δν = ev s 22/2/18 ESTRUCTURA ATÓMICA 15 Otra característica importante del fenómeno es que la frecuencia umbral ν o depende del material. La pendiente de los dos metales es la misma y vale h ν 0 de A ν 0 de B Energía cinética de los electrones (ev) 22/2/18 ESTRUCTURA ATÓMICA 16 Ley de la conservación de la energía: hν = W + K hν = Energía de la luz incidente W = Función trabajo del metal K = Energía cinética de los electrones Esto puede re-arreglarse así: hν = hν 0 + K W = hν 0 Donde ν 0 = Frecuencia umbral O si prefieren: K = hν hν 0 22/2/18 ESTRUCTURA ATÓMICA 17 6

7 22/2/18 Propiedades espectroscópicas Para 1885 se habían medido exactamente las líneas del espectro del hidrógeno. Nombre H-α l (nm) Color rojo H-β acua H-γ H-δ azul violeta H-ε UV H-ζ UV H-η UV Johann Jackob Balmer ( ) propone una n2 fórmula para predecirlas: λ = B 2 2 n m Donde B vale nm, m=2 y n=3, 4,5,6 Y obtiene estos valores en nm: n=3 H-α=656.1; n=4 H-β=486.0; n=5 H-γ=433.9; n=6 H-δ=410.1, n=6 H-ε=396.9; n=7 H-ζ=388.9 Era solo una coincidencia? 22/2/18 ESTRUCTURA ATÓMICA 18 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 19 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 20 7

8 Propiedades espectroscópicas Pues parece que no, al usar n=7; se obtiene que la longitud de onda es , en el extremo del espectro visible en el violeta pero aun se nota: 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 21 Propiedades espectroscópicas Más tarde, Pfund, Brackett, Paschen y Lyman; encuentran algo equivalente para las líneas del espectro que no están en el visible y Johannes Rydberg generaliza la ecuación de Balmer ν = 1 λ =! 1 H 2 n n 2 Donde: R H = cm 1 n 1 y n 2 son enteros mayores que o igual a 1 siempre y cuando cumplan que n 1 < n 2 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 22 Propiedades espectroscópicas El espectro del hidrógeno n 1 n 2 Nombre Tipo de radiación 1 2 Serie de Lyman nm (UV) 2 3 Serie de Balmer nm (Visible) 3 4 Serie de Paschen nm (IR) 4 5 Serie de Brackett nm (IR lejano) 5 6 Serie de Pfund nm (IR lejano) 6 7 Serie de Humphreys nm (IR) 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 23 8

9 Propiedades espectroscópicas Pero a qué se debe este fenómeno? Lo podemos atribuir a que los átomos que componen al gas, absorben la luz. Y por qué absorben la luz? Sabemos que la radiación es causada por la vibración de las cargas y la rapidez de la vibración determina la longitud de onda. Esto significa que, si solamente ciertas longitudes de onda pueden ser absorbidas o emitidas por el átomo, sus electrones vibran solamente a ciertas frecuencias. Modelo del átomo y espectroscopía Los resultados obtenidos del estudio de los espectros de líneas de los elementos no podían explicarse empleando la física clásica. Pues si consideramos el modelo del átomo propuesto por Rutherford, que era muy popular al principio del siglo XX, al electrón se le consideraba como si estuviera dando vueltas alrededor del núcleo. De tal manera que la fuerza centrífuga estuviera balanceada respecto a la atracción coulómbica. Modelo del átomo y espectroscopía De manera que el cambio en su energía meramente alteraría el radio de la órbita. Entonces, un átomo así debería de ser capaz de absorber o emitir cualquier cantidad de energía. Sin embargo, según la teoría electromagnética clásica, una carga acelerada debería emitir radiación electromagnética Por tanto todos los electrones de un átomo deberían caer al núcleo en menos de lo que canta un gallo s! 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 24 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 25 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 26 9

10 Afortunadamente, Niels Bohr ( ) un físico danés, sugiere un cambio al modelo muy radical. Este es el más simple y sensato de los modelos basado en el de Rutherford. Lo radical del modelo, reside en que Bohr propone que para explicar las líneas espectrales, los electrones deben seguir una regla medio mafufa. Esta regla es que sólo pueden estar en ciertas órbitas especiales y todas las otras órbitas están prohibidas. Por lo tanto, los electrones pueden saltar de una órbita a otra y al hacerlo vibran. Consecuentemente producen radiación. 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 27 Entonces, Bohr descubrió que se podía explicar cuantitativamente el espectro del hidrógeno si se consideraba que en el átomo los electrones se movían únicamente en aquellas órbitas especiales donde el momento angular del electrón era un múltiplo de h/ 2π. Es decir que la energía del electrón estaba cuantizada. Esta propuesta tan arbitraria y mafufa para su tiempo, es aceptable en parte, por que consigue salvar el modelo planetario al menos por un tiempo. Y la evidencia experimental de la estructura en capas de los electrones puede verse en los espectros de líneas. 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 28 Su propuesta sigue el siguiente razonamiento: Postulado 1 (o de Rutherford): El átomo consta de una parte central llamada núcleo en la que se encuentra localizada la carga positiva, así como, la casi totalidad de la masa. En torno a este núcleo central y a una gran distancia de él giran los electrones en órbitas circulares. A una gran distancia? Tamaño de los átomos: ~10-10 m ~ 10-8 cm 1 ~ Ǻ Tamaño de los núcleos: ~10-14 m ~10-12 cm 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 29 10

11 Esto significa que el modelo del átomo debe tener estas características: 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 30 Por lo tanto: Y: De manera qué: Que al despejar: F e = Ze2 r 2 F c = mv 2 r Ze 2 r = mv 2 2 r r = Ze2 mv 2 r 2!!!(1) 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 31 Considerando que el átomo de Rutherford es inestable porque toda partícula cargada acelerada irradia energía: Es necesario un segundo postulado (o de la cuantización del momento angular del electrón): El momento angular del electrón está cuantizado, de tal manera que de todas las infinitas órbitas dadas por la ecuación anterior (1), solo son posibles aquellas en las que su momento angular es un múltiplo entero de h/2π = ħ 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 32 11

12 Ahora bien, hay que recordar que el momento lineal se define así: Y el momento angular así: Por lo tanto: Y en un círculo: Por tanto: De manera que: Para n = entero p = mv L = r p L = r p senθ θ = 90 o sen90 o = 1 L = mvr mvr = n!"""(2) 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 33 Ahora debemos determinar cuantas y donde están las órbitas en el átomo. De la ecuación (2): Que al substituir en (1) me da: Que por regla se puede convertir a esto: Y al despejar r: v = n! mr r = n2! 2 Ze 2 m Ze 2 r = m n2! 2 m 2 r 2 r = Ze2 m 2 r 2 mn 2! 2 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 34 Es decir para cada entero positivo n habrá un radio diferente r n. r n = n2! 2 Ze 2 m Donde: n es un entero positivo, ħ, e y m son constantes, por tanto podemos colapsarlas, obteniendo una nueva constante a 0 a la cual llamaremos radio de Bohr, dando a lugar a esta expresión: El valor de a 0 es: (19) Ǻ o (19) m; r n = n2 a 0 Z 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 35 12

13 Esta expresión por tanto la podemos expresar en angstroms o metros o cm, así: r n = n2 ( 0.529) Å Z ( ) r n = n Entonces para el átomo de hidrógeno (Z = 1) los radios de las tres primeras órbitas son: Si n=1, r 1 = 1xa 0 = Ǻ Si n=2, r 2 = 4xa 0 = Ǻ Si n=3, r 3 = 9xa 0 = Ǻ 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 36 Z m Y qué pasa cuando tenemos un átomo con Z diferente? Por ejemplo He + o U 91+ Pues es muy fácil, hay que dividir entre la Z correspondiente: Y He + Z = 2 r 1 = 0.529/2 = r 2 = U 91+ Z = 92 r 1 = 0.529/92 = Ǻ 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 37 Tercer postulado (o de la cuantización de la energía): Cuando el electrón se encuentra en órbita permitida no irradia energía. Pero puede pasar de una órbita permitida a otra. En este caso, el gasto energético será: ΔE = E f E i = hν Ahora bien, dado que la energía total de un sistema es igual a la suma de la energía cinética más la energía potencial : E T = K +V Entonces en nuestro caso: V = Ze2 r K = mv 2 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

14 Por tanto: Ahora bien, de la ecuación (1) tenemos que: Por tanto: E = mv 2 2 Ze2 r E = Ze2 2r Ze2 r Ze 2 r = mv 2 2 r Esta expresión cumple con el teorema del virial y entonces: E = Ze2 2r 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 39 En mecánica clásica, el teorema del virial es una ecuación general que relaciona la energía cinética total promedio K de un sistema con su energía potencial promedio V. En el caso de dos partículas interactuando: V = 2K 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 40 Si recordamos que el segundo postulado establece que r está cuantizado, esto implica que E también está cuantizada. Y cuánto vale? Pues hay que hacer un poco de algebra: r vale: Entonces si lo sustituimos en: Obtenemos: r = n2! 2 Ze 2 m E = Ze2 2 Ze2 m n 2! 2 E = Ze2 2r = e4 m 2! Z 2 2 n 2 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 41 14

15 Entonces tenemos que dado que e, m y ħ son constantes, las podemos evaluar y así obtenemos: En ev: e 4 m = 13.6 ev 2 2! En kj/mol: e 4 m 2! = 1312kJ 2 mol O en kcal/mol: e 4 m 2! = 313kcal 2 mol De manera que: E = 13.6 Z 2 ev Para n entero y positivo: jóvenes les presento su primer numero cuántico 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 42 n 2 Y la energía de cada nivel para el átomo de hidrógeno? E n = 13.6 Z 2 E 1 = ev E 2 = ev E 3 = ev n 2 ev 22/02/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 43 15

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 8/0/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 8/0/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 8/0/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

Propiedades espectroscópicas Si analizamos que le ocurre a un cuerpo al calentarlo nos encontraremos con este comportamiento espectroscópico:

Propiedades espectroscópicas Si analizamos que le ocurre a un cuerpo al calentarlo nos encontraremos con este comportamiento espectroscópico: Propiedades espectroscópicas Si analizamos que le ocurre a un cuerpo al calentarlo nos encontraremos con este comportamiento espectroscópico: Propiedades espectroscópicas Así: Espectro continuo Espectro

Más detalles

Estructura de la Materia. Quinta Sesión Modelo Atómico de Bohr (2)

Estructura de la Materia. Quinta Sesión Modelo Atómico de Bohr (2) Estructura de la Materia Quinta Sesión Modelo Atómico de Bohr () Postulados del Modelo de Bohr Postulado 1 (o de Rutherford): El átomo consta de una parte central llamada núcleo en la que se encuentra

Más detalles

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA CUÁNTICA. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA CUÁNTICA José Luis Rodríguez Blanco CRISIS DE LA FÍSICA CLÁSICA Problemas de la Física Clásica a finales del siglo XIX, principios del XX Espectros discontinuos de gases Efecto fotoeléctrico

Más detalles

Quinta sesión. Tercer postulado de Bohr

Quinta sesión. Tercer postulado de Bohr Quinta sesión Tercer postulado de Bohr Radios de las órbitas en el H Para el Hidrógeno: Z = 1 Si n=1, r 1 = a0 = 0.59 Ǻ Si n=, r =.116 Ǻ Si n=3, r 3 = 4.761 Ǻ Otros hidrogenoides He + Z = U 91+ Z = 9 r

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que

Más detalles

Espectros atómicos y Modelos atómicos

Espectros atómicos y Modelos atómicos Estructura de la Materia Espectros atómicos y Modelos atómicos Martha M. Flores Leonar FQ UNAM 23 de febrero de 2016 CONTENIDO Espectro electromagnético Espectros atómicos Series espectroscópicas del Hidrógeno

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.

RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ. RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

Espectros de emisión y absorción.

Espectros de emisión y absorción. Espectros de emisión y absorción. Los espectros de emisión y absorción de luz por los átomos permitieron la justificación y ampliación del modelo cuántico. Espectros de emisión: Calentar un gas a alta

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr PROFESOR. DR. RAMIRO MARAVILLA GALVAN MODELOS EN LA ENSEÑANZA. EL MODELO

Más detalles

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA. Física de 2º de Bachillerato FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros

Más detalles

FISICA IV Física atómica. Marco A. Merma Jara Versión

FISICA IV Física atómica. Marco A. Merma Jara   Versión FISICA IV Física atómica Marco A. Merma Jara http://mjfisica.net Versión 8.015 Contenido Propiedades de los átomos Modelo de Thompson Modelo atómico de Rutherford Espectros atómicos Números cuánticos Cuantización

Más detalles

La física del siglo XX

La física del siglo XX Unidad 11 La física del siglo XX chenalc@gmail.com Max Planck Albert Einstein Louis de Broglie Werner Heisenberg Niels Bohr Max Born Erwin Schrödinger Radiación del cuerpo negro Todo cuerpo, no importa

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

q electrón m electrón = 1, , C 1, C kg

q electrón m electrón = 1, , C 1, C kg Descubrimiento del Electrón Tema : Estructura Atómica de la Materia Crookes (.875).- rayos catódicos Viajan en línea recta Tienen carga eléctrica negativa Poseen masa Stoney (.89).- electrones Thomson

Más detalles

La frecuencia y la longitud de onda están relacionadas por la velocidad de la luz (c= m s -1 )

La frecuencia y la longitud de onda están relacionadas por la velocidad de la luz (c= m s -1 ) 637 70 3 Descubrimiento del Electrón Crookes (.875).- rayos catódicos Viajan en línea recta Poseen masa Tienen carga eléctrica negativa Stoney (.89).- electrones Thomson (.897).- relación carga masa del

Más detalles

QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales

QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales Contenidos Mínimos: Formalismos Matemáticos de Química Cuántica Métodos computacionales Formalismos mecano cuánticos. Tratamiento atómico y molecular Aplicaciones a moléculas sencillas. Trabajos Prácticos:

Más detalles

Tema 12: EL NACIMIENTO DE LA MECÁNICA CUÁNTICA.

Tema 12: EL NACIMIENTO DE LA MECÁNICA CUÁNTICA. º BACHILLERATO FÍSICA Parte V: INTRODUCCIÓN A LA FÍSICA MODERNA. Tema : EL NACIMIENTO DE LA MECÁNICA CUÁNTICA... La radiación del cuerpo negro... Efectos fotoeléctrico y Compton..3. Espectros y modelos

Más detalles

Tema 14 Mecánica Cuántica

Tema 14 Mecánica Cuántica Tema 14 Mecánica Cuántica 1 14.1 Fundamentos de la mecánica cuántica 14. La ecuación de Schrödinger 14.3 Significado físico de la función de onda 14.4 Soluciones de la ecuación de Schrödinger para el átomo

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

FISICA IV. Física Cuántica Marco A. Merma Jara Versión

FISICA IV. Física Cuántica Marco A. Merma Jara   Versión FISICA IV Física Cuántica Marco A. Merma Jara http://mjfisica.net Versión 8.015 Contenido Inicios de la física moderna Constante de Planck El efecto fotoeléctrico Energía relativista Teoría cuántica de

Más detalles

La Teoría Cuántica Preguntas de Multiopcion

La Teoría Cuántica Preguntas de Multiopcion Slide 1 / 71 La Teoría Cuántica Preguntas de Multiopcion Slide 2 / 71 1 El experimento de "rayos catódicos" se asocia con: A B C D E Millikan Thomson Townsend Plank Compton Slide 3 / 71 2 La carga del

Más detalles

Motivación de la mecánica Cuántica

Motivación de la mecánica Cuántica Motivación de la mecánica Cuántica Química Física Aplicada, UAM 4 de febrero de 2011 (Química Física Aplicada, UAM) Motivación de la mecánica Cuántica 4 de febrero de 2011 1 / 13 Tema 1: Motivación de

Más detalles

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario ANTECEDENTES DEL MODELO ACTUAL DEL ATOMO Raquel Villafrades Torres Universidad Pontificia Bolivariana Química General Química General Ingeniera Química Raquel Villafrades Torres Abril de 2009 Primer Modelo

Más detalles

TEMA 1. ESTRUCTURA DE LA MATERIA

TEMA 1. ESTRUCTURA DE LA MATERIA TEMA 1. ESTRUCTURA DE LA MATERIA EJERCICIOS 1.- El color amarillo de la luz de vapor de sodio se corresponde con una longitud de onda de 5890 Å. a)calcula la energía que corresponde a la emisión lumínica

Más detalles

Robert A. MILLIKAN ( )

Robert A. MILLIKAN ( ) Robert A. MILLIKAN (1906 1914) Modelo atómico de Rutherford - Todo átomo está formado por un núcleo y corteza. - El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual

Más detalles

Estructura de la Materia Serie 1

Estructura de la Materia Serie 1 Estructura de la Materia Serie 1 Dra. Martha M. Flores Leonar Semestre 20182 1. Las partículas alfa (α), se pueden definir como núcleos de Helio, es decir, son átomos de Helio completamente ionizados (que

Más detalles

Física Cuántica Problemas de Practica AP Física B de PSI

Física Cuántica Problemas de Practica AP Física B de PSI Física Cuántica Problemas de Practica AP Física B de PSI Nombre 1. El experimento de "rayos catódicos" se asocia con: (A) R. A. Millikan (B) J. J. Thomson (C) J. S. Townsend (D) M. Plank (E) A. H. Compton

Más detalles

Dr. Gabriel Planes Dra.Cecilia Pagliero Dr. Carlos Sucheti Dr. Daniel Heredia

Dr. Gabriel Planes Dra.Cecilia Pagliero Dr. Carlos Sucheti Dr. Daniel Heredia Dr. Gabriel Planes Dra.Cecilia Pagliero Dr. Carlos Sucheti Dr. Daniel Heredia 1 er cuatrimestre 2017 Química. El estudio de la materia y sus transformaciones Algo muy común: el agua 2 H 2 + O 2 2 H 2

Más detalles

Física Moderna. Profesor: Ignacio J. General 2 do cuatrimestre 2017 Escuela de Ciencia y Tecnología UNSAM

Física Moderna. Profesor: Ignacio J. General 2 do cuatrimestre 2017 Escuela de Ciencia y Tecnología UNSAM Física Moderna Profesor: Ignacio J. General 2 do cuatrimestre 2017 Escuela de Ciencia y Tecnología UNSAM Física Moderna Modelos atómicos Corral cuántico By Julian Voss-Andreae - Own work, CC BY-SA 3.0,

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 06/03/18 FUNDAMENTOS DE LA MECÁNICA

Más detalles

Dualidad onda-partícula: Hipótesis de De Broglie

Dualidad onda-partícula: Hipótesis de De Broglie 5/5/5 Dualidad onda-partícula: Hipótesis de De Broglie Dr. Armando Ayala Corona Dualidad Onda-Partícula: El efecto fotoeléctrico y el efecto Compton ofrecen una rigurosa evidencia de que la luz se comporta

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA CONTENIDOS. 1. Radiación electromagnética y espectros atómicos. 1.1. Espectros atómicos. 1.2. Series espectrales. 1.3. Ley de Rygberg ( ). 2. Orígenes de la teoría cuántica. 2.1.

Más detalles

02/06/2014. Química Plan Común

02/06/2014. Química Plan Común Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios

Más detalles

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK

Síntesis de Física 2º de Bach. Borrador Mecánica Cuántica - 1 RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Síntesis de Física º de Bach. Borrador Mecánica Cuántica - 1 MECÁNICA CUÁNTICA RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK Todos los cuerpos emiten energía radiante debido a su temperatura. Vamos

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA CONTENIDOS. 1.- Radiación electromagnética y espectros atómicos. 1.1. Espectros atómicos. 1.2. Series espectrales. 1.3. Ley de Rygberg ( ). 2.- Orígenes de la teoría cuántica.

Más detalles

1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM)

1º Fenómeno: La radiación de cuerpo negro. ! Radiación: Radiación térmica en forma de ondas electromagnéticas (OEM) FÍSICA CUANTICA:! Área de la física que surgió al analizar y explicar los fenómenos mecánicos que ocurren a escala microscópica (átomos y partículas atómicas)! A principios del siglo XX, una serie de fenómenos

Más detalles

Tema 9: El nacimiento de la mecánica cuántica.

Tema 9: El nacimiento de la mecánica cuántica. Física. 2º Bachillerato. Tema 9: El nacimiento de la mecánica cuántica. 9.. La radiación del cuerpo negro Los cuerpos radian cuando se calientan. La temperatura mide el valor de la energía cinética media

Más detalles

ESTRUCTURA DEL ÁTOMO.

ESTRUCTURA DEL ÁTOMO. ESTRUCTURA DEL ÁTOMO. PARTÍCULAS SUBATÓMICAS PRINCIPALES De todas las partículas subatómicas elementales, hay tres que interesan fundamentalmente, pues son necesarias para construir un modelo atómico satisfactorio.

Más detalles

Física Contemporánea con Laboratorio p. 1

Física Contemporánea con Laboratorio p. 1 Física Contemporánea con Laboratorio Javier M. Hernández FCFM - BUAP Primavera 2015 Física Contemporánea con Laboratorio p. 1 Física clásica Física Clásica (ca. 1880) Teoría: Newton, Maxwell, Gibbs Exps:

Más detalles

2 V [ N] x10. ), de la masa y de la velocidad; de tal forma que puede determinarse el valor del radio de curvatura, como sigue: 1.

2 V [ N] x10. ), de la masa y de la velocidad; de tal forma que puede determinarse el valor del radio de curvatura, como sigue: 1. Cuando un electrón acelerado por una diferencia de potencial de 700 [V] pasa perpendicularmente a través de un campo magnético, se ejerce sobre él una fuerza magnética de.7598x0-4 [N]. Determine la cantidad

Más detalles

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico.

EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico. EL ÁTOMO 1. El átomo. 2. Modelos atómicos. 3. Núcleo atómico. 4. Espectros atómicos. 5. Modelo atómico cuántico. Química 1º bachillerato El átomo 1 El átomo no es una partícula indivisible, sino que está

Más detalles

EJERCICIOS EFECTO FOTOELÉCTRICO

EJERCICIOS EFECTO FOTOELÉCTRICO EJERCICIOS EFECTO FOTOELÉCTRICO Teoría Distribución de la radiación de cuerpo negro, según Planck: Esta era una expresión empírica, para explicarla teóricamente, Planck propuso un modelo detallado de los

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS

MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS MATERIAL 06. TEMA: MÉTODOS ESPECTROSCÓPICOS DE ANÁLISIS La espectroscopia es el estudio de las interacciones de las radiaciones electromagnéticas con la materia (átomos y moléculas). Los métodos analíticos

Más detalles

Estructura de la materia. 2º Bachillerato

Estructura de la materia. 2º Bachillerato Estructura de la materia 2º Bachillerato Indice 1. El átomo. Partículas elementales. 2. Modelo atómico de Rutherford. 3. Modelo atómico de Bohr. 4. Modelo atómico de Bohr-Sommerfeld. 5. Principios de la

Más detalles

Tema 2. Estructura atómica y sistema periódico

Tema 2. Estructura atómica y sistema periódico Tema 2. Estructura atómica y sistema periódico Dalton: átomos par9culas indivisibles Nuevos experimentos: átomos cons>tuidos por unidades más pequeñas: par9culas subatómicas 1. Primeras evidencias de la

Más detalles

Fundamentos de Mecánica Cuántica

Fundamentos de Mecánica Cuántica Fundamentos de Mecánica Cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 207/208 Índice. Orígenes de la Mecánica Cuántica 2. La ecuación de Schrödinger independiente

Más detalles

ies menéndez tolosa 2 Qué significa según la teoría de Bohr que las órbitas de los electrones están cuantificadas?

ies menéndez tolosa 2 Qué significa según la teoría de Bohr que las órbitas de los electrones están cuantificadas? ies menéndez tolosa 1 De las siguientes proposiciones, señala las que considere correctas: a) Todos los isótopos de un elemento tienen el mismo número de electrones. b) Dos isótopos de un elemento pueden

Más detalles

FÍSICA CUÁNTICA. máx = 2, mk/ T

FÍSICA CUÁNTICA. máx = 2, mk/ T FÍSICA CUÁNTICA A finales del siglo XIX, la física clásica, con sus leyes de la mecánica de Newton y la teoría electromagnética de Maxwell, parecía suficiente para explicar todos los fenómenos naturales.

Más detalles

PRÁCTICA 3 CTE I 2018

PRÁCTICA 3 CTE I 2018 PRÁCTICA 3 CTE I 2018 ESPECTROSCOPÍA I) OBJETIVOS Obtener experimentalmente espectros en el visible de átomos y moléculas, y estudiar sus líneas de emisión más prominentes. Identificar especies desconocidas

Más detalles

Examen ud. 1 Estructura atómica de la materia

Examen ud. 1 Estructura atómica de la materia IES Valle del Ambroz º Bachillerato 05/06 OPCIÓN A Examen ud. Estructura atómica de la materia. Indique los postulados del modelo de Bohr así como las deficiencias de dicho modelo. ( p) El modelo atómico

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

Unidad 1: Teoría Cuántica y Estructura Atómica. 1.2 Base experimental de la teoría cuántica

Unidad 1: Teoría Cuántica y Estructura Atómica. 1.2 Base experimental de la teoría cuántica Unidad 1: Teoría Cuántica y Estructura Atómica 1.2 Base experimental de la teoría cuántica Thompson Dalton Rutherford Demócrito Naturaleza eléctrica de la materia La naturaleza de la luz CUANTOS Descubrimiento

Más detalles

Tema 2: Estructura atómica (I): Estructura nuclear del átomo

Tema 2: Estructura atómica (I): Estructura nuclear del átomo Primeros experimentos sobre la estructura atómica Tema : Estructura atómica (I): Estructura nuclear del átomo. Primeros modelos atómicos. Isótopos.3 Radiación y materia: propiedades ondulatorias de la

Más detalles

Unidad 1: Materia, estructura y Periodicidad Base experimental de la teoría cuántica y estructura atómica.

Unidad 1: Materia, estructura y Periodicidad Base experimental de la teoría cuántica y estructura atómica. Unidad 1: Materia, estructura y Periodicidad 1.7. Base experimental de la teoría cuántica y estructura atómica. Modelo de Dalton En 1808, Dalton publicó sus ideas sobre el modelo atómico de la materia

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

CUESTIONES DE FÍSICA CUÁNTICA

CUESTIONES DE FÍSICA CUÁNTICA CUESTIONES DE FÍSICA CUÁNTICA 2017 1) Se puede asociar una longitud de onda a cualquier partícula, con independencia de los valores de su masa y su velocidad? Justifique su respuesta. 2) Explique el principio

Más detalles

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m 2 Física cuántica Actividades del interior de la unidad. Calcula la temperatura de un ierro al rojo vivo para el cual l máx = 2, µm. Para calcular la temperatura que solicita el enunciado, aplicamos la

Más detalles

Determinación de la constante de Rydberg

Determinación de la constante de Rydberg Determinación de la constante de Rydberg Gustav Robert Kirchhoff (1824-1887) En termodinámica, la ley de Kirchhoff de la radiación térmica, es un teorema de carácter general que equipara la emisión y absorción

Más detalles

Tema 8: Física cuántica

Tema 8: Física cuántica Tema 8: Física cuántica 1. Insuficiencia de la física clásica: Emisión del cuerpo negro Espectros atómicos discontinuos Efecto fotoeléctrico 2. Hipótesis de Planck. Cuantización de la energía. Fotón. 3.

Más detalles

Física III clase 21 (07/06/2011) Efecto Compton

Física III clase 21 (07/06/2011) Efecto Compton Física III clase 21 (07/06/2011) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería

Más detalles

NATURALEZA CORPUSCULAR DE LA MATERIA

NATURALEZA CORPUSCULAR DE LA MATERIA NATURALEZA CORPUSCULAR DE LA MATERIA Naturaleza atómica de la materia. Composición de los átomos. Modelo atómico de Thompson. Modelo atómico de Rutherford. Espectros de emisión. Modelo atómico de Bohr

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Propiedades de la ondas Largo de onda (λ)

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Propiedades de la ondas Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largo de onda (λ)

Más detalles

Teoría cuántica y la estructura electrónica de los átomos

Teoría cuántica y la estructura electrónica de los átomos Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PROPIEDADES DE LAS ONDAS Longitud de onda

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 1. Naturaleza de la materia (el átomo). 2. Modelos atómicos clásicos. 3. Modelo mecánico cuántico. 4. Mecánica ondulatoria de Schrödinger. 5. Números cuánticos. 6. Orbitales atómicos.

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Propiedades de la ondas Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largo de onda (λ)

Más detalles

Solución de la ecuación de Schrödinger para el oscilador armónico

Solución de la ecuación de Schrödinger para el oscilador armónico Solución de la ecuación de Schrödinger para el oscilador armónico Erika Armenta Jaime Francisco Barrera Raul Camiña Blando Geraldyne L. Castro Herrera Antecedentes Max Plank (1900) propone que la emisión

Más detalles

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio.

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio. Slide 1 / 32 1 Un Tubo de Crooke (un tubo que contiene gas rarificado a través del cual se hace pasar una corriente entre un cátodo y un ánodo) fue utilizado en el descubrimiento del electrón por: A R.

Más detalles

J.J Thomson propone el primer modelo de átomo:

J.J Thomson propone el primer modelo de átomo: MODELOS ATÓMICOS. DALTON En 1808, Dalton publicó sus ideas sobre el modelo atómico de la materia las cuales han servido de base a la química moderna. Los principios fundamentales de esta teoría son: 1.

Más detalles

Más tarde Millikam calcula la relación caraga masa del electrón con su famoso experimento de la gota de aceite.

Más tarde Millikam calcula la relación caraga masa del electrón con su famoso experimento de la gota de aceite. TEMA 1: ESTRUCTURA ATÓMICA. 1.- Primeros modelos atómicos: La primera vez que se habla de átomos es en la antiguaa Grecia, en el siglo V a.c. donde se dice que la materia puede dividirse hasta un determinado

Más detalles

Junio Pregunta 4A.- a) b) Modelo Pregunta 5B.- a) b) Septiembre Pregunta 5A.- a) b) Modelo Pregunta 4A.

Junio Pregunta 4A.- a) b) Modelo Pregunta 5B.- a) b) Septiembre Pregunta 5A.- a) b) Modelo Pregunta 4A. Junio 2013. Pregunta 4A.- Los electrones emitidos por una superficie metálica tienen una energía cinética máxima de 2,5 ev para una radiación incidente de 350 nm de longitud de onda, Calcule: a) El trabajo

Más detalles

TEMA 13. Fundamentos de física cuántica

TEMA 13. Fundamentos de física cuántica TEMA 13. Fundamentos de física cuántica 1. Limitaciones de la física clásica Física clásica Mecánica (Newton) + Electrodinámica (Maxwell) + Termodinámica (Clausius-Boltzmann) Estas tres ramas explicaban

Más detalles

UNIDAD 1: PRINCIPIOS DE LA QUÍMICA

UNIDAD 1: PRINCIPIOS DE LA QUÍMICA UNIDAD 1: PRINCIPIOS DE LA QUÍMICA MODELO ATOMICO DE DALTON RAYOS CATÓDICOS (Thomsom) EL ELECTRÓN MODELO ATÓMICO DE THOMSOM RAYOS CANALES (Goldstein) EL PROTÓN Rutherford MODELO ATÓMICO DE RUTHERFORD Chadwick:

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

ESTRUCTURA DE LA MATERIA 1

ESTRUCTURA DE LA MATERIA 1 ESTRUCTURA DE LA MATERIA 1 NATURALEZA ELÉCTRICA DE LA MATERIA:EVIDENCIAS EXPERIMENTALES Fueron los experimentos de Faraday sobre la electrólisis los que sugirieron que los átomos no eran tan simples e

Más detalles

1 o Bachillerato. II. QUÍMICA Estructura de la Materia. Prof. Jorge Rojo Carrascosa

1 o Bachillerato. II. QUÍMICA Estructura de la Materia. Prof. Jorge Rojo Carrascosa FÍSICA Y QUÍMICA 1 o Bachillerato I. FÍSICA II. QUÍMICA Estructura de la Materia Prof. Jorge Rojo Carrascosa Índice general 1. ESTRUCTURA DE LA MATERIA 2 1.1. PARTÍCULAS SUBATÓMICAS.....................

Más detalles

FíSICA MODERNA. Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas

FíSICA MODERNA. Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas FíSICA MODERNA Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas Parte I. Introducción a la Mecánica Cuántica 1. Orígenes de las ideas cuánticas

Más detalles

SOLO UNAS CUANTAS DE LAS ÓRBITAS DEL ÁTOMO PLANETARIO ESTÁN PERMITIDAS. 1) La energía total del átomo de Z protones está cuantizada.

SOLO UNAS CUANTAS DE LAS ÓRBITAS DEL ÁTOMO PLANETARIO ESTÁN PERMITIDAS. 1) La energía total del átomo de Z protones está cuantizada. Recapitulando sobre el modelo de Bohr SOLO UNAS CUANTAS DE LAS ÓRBITAS DEL ÁTOMO PLANETARIO ESTÁN PERMITIDAS 1) La energía total del átomo de Z protones está cuantizada E 4 π κ Z e m con n n h 1,,3,...

Más detalles

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010 José Mariano Lucena Cruz chenalc@gmail.com 10 de mayo de 2010 Propiedades periódicas Aquellas cuyo valor se puede estimar según la posición que ocupen los elementos en la tabla periódica. Estas son: Tamaño

Más detalles

Física Contemporánea 2014 Tarea 9. A entregar: Martes 2 de diciembre de El átomo de Bohr

Física Contemporánea 2014 Tarea 9. A entregar: Martes 2 de diciembre de El átomo de Bohr Física Contemporánea 204 Tarea 9 A entregar: Martes 2 de diciembre de 204. El átomo de Bohr Como se discutió en la clase, en 9 y basado en los experimentos de su laboratorio, Ernest Rutherford propuso

Más detalles

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

EL ESPECTRO ELECTROMAGNÉTICO

EL ESPECTRO ELECTROMAGNÉTICO FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.

Más detalles

Física III clase 22 (09/06/2011) Partícula cuántica

Física III clase 22 (09/06/2011) Partícula cuántica Física III clase 22 (09/06/2011) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería

Más detalles

Radiación del cuerpo negro

Radiación del cuerpo negro Radiación del cuerpo negro Aparece un nuevo problema en la Física clásica. Cuando se estudia la emisión de radiación térmica por un cuerpo se ve que ésta depende de la temperatura y de la composición de

Más detalles

ESTRUCTURA DEL ÁTOMO - RESUMEN

ESTRUCTURA DEL ÁTOMO - RESUMEN TEMA 1 ESTRUCTURA DEL ÁTOMO - RESUMEN 1. DESCUBRIMIENTO DE LA ESTRUCTURA ATÓMICA (ideas generales) Dalton: consideraba que un átomo no podía romperse en trozos más pequeños. El primer indicio de que el

Más detalles

TEORÍA CUÁNTICA DE MAX PLANCK

TEORÍA CUÁNTICA DE MAX PLANCK TEORÍA CUÁNTICA DE MAX PLANCK Cuando los sólidos se someten a calentamiento emiten radiación electromagnética que abarca una amplia gama de λ Luz rojiza tenue de un calentador Luz blanca de lámpara tungsteno

Más detalles

Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos

Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos Problemas de Capítulo sobre Teoría Cuántica y Modelos Atómicos Teoría cuántica de Plank 1. Cuál es la energía de un fotón con una frecuencia de 5*10 5 Hz? 2. Cuál es la energía de un fotón con una longitud

Más detalles

Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-)

Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-) Modelo Atómico 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga () Electrón Conceptos:» Neutralidad eléctrica» Carga elemental del

Más detalles