Leyes del movimiento de Newton



Documentos relacionados
Antecedentes históricos

Dinámica de la partícula: Leyes de Newton

Antecedentes históricos

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Estática. Equilibrio de una Partícula

Guía de Ejercicios en Aula: N 3

GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

GUIA DE ESTUDIO TEMA: DINAMICA

1. Dinámica. Fuerza (relación entre aceleración y fuerza) Dinámica 1. Notas para el curso Física Universitaria 1 ı 7

DINÁMICA: LAS LEYES DE NEWTON DEL MOVIMIENTO

Unidad III. Dinámica

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

F2 Bach. Movimiento armónico simple

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

4. LEYES DE NEWTON. Jereson Silva Valencia

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Tema 4* Dinámica de la partícula

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

Cuestionario sobre las Leyes de Newton

DINÁMICA DEL MOVIMIENTO.

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Impulso y cantidad de movimiento. Principio de conservación de la cantidad de movimiento

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

5 Aplicaciones de las leyes

DINÁMICA DE LA PARTÍCULA

Cinemática y Dinámica

Cinética de partículas Leyes de Newton. Primera Ley de Newton o Ley de Inercia

Sobre La Mecánica Clásica de los Cuerpos Puntuales III

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM

Física: Dinámica Conceptos básicos y Problemas

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS.

Fuerza y movimiento: Leyes de Newton

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos

COMPILACION CONTENIDOS SOBRE LEYES DE NEWTON

1. DINÁMICA. Matías Enrique Puello Chamorro

4. Mecánica Rotacional

COMO LO REPRESENTAMOS? VECTORES

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

FÍSICA GENERAL. Dr. Roberto Pedro Duarte Zamorano 2015 Departamento de Física Universidad de Sonora

Autoevaluación unidad uno

Guía Nº3. Aplicaciones de las Leyes de Newton I

Guía para oportunidades extraordinarias de Física 2

Las Fuerzas. Las fuerzas. Es excelente tener la fuerza de un gigante, pero es tiránico usarla como un gigante. William Shakespeare.

MAGNITUDES FÍSICA. Todo aquello que se pueda medir, es decir, cuantificar. MAGNITUD FÍSICA. Longitud Masa Volumen Temperatura.

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

LAS FUERZAS y sus efectos

Cinemática Estudia las diferentes clases de movimiento de los cuerpos sin atender las causas que lo producen.

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO

Se usó el subíndice m para indicar que se trata de la velocidad media. La rapidez media se define como la distancia recorrida en la unidad de tiempo:

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

Tema 1. Estática de la partícula

Física para Ciencias: Conceptos básicos de dinámica

ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Ejercicios de Dinámica

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A.

Facultad de Ingeniería Civil

F 28º 1200 N ESTÁTICA Y DINÁMICA

Una de las ecuaciones más importantes en la física es la segunda ley de Newton,

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante.

Más ejercicios y soluciones en fisicaymat.wordpress.com

C U R S O: FÍSICA COMÚN MATERIAL: FC-05 DINÁMICA I

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton

CURSO FÍSICA II 2012 CLASE VIII

Resumen de Cinemática

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

ESTUDIO DEL MOVIMIENTO.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

5. Campo gravitatorio

PRIMER EXAMEN PARCIAL DE FÍSICA I MODELO 1

Las 3 leyes de Newton involucran el concepto de fuerza

Trabajo y energía. Física I

COMPOSICION DE FUERZAS

RECUPERACION DE FISICA GRADO 10º JT SEGUNDO PERIODO 2015

TEMA: MOVIMIENTO ARMÓNICO SIMPLE

Subtema 2.1 Equilibrio traslacional: 1ª y 3ª leyes de Newton.

Guillermo Carrión Santiago 4 de enero de 2013

Leyes de Newton o Principios de la dinámica

transparent MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016

LEY DE NEWTON DE LA VISCOSIDAD

Examen de Ubicación. Física del Nivel Cero Enero / 2009

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

2 o Bachillerato. Conceptos básicos

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL

Las leyes del movimiento

Facultad de Ingeniería Civil

EXAMEN DE FISICA I (GTI)

U N I D A D 5 TRABAJO Y ENERGÍA

MECÁ NICÁ GENERÁL. UNIDAD I: SISTEMAS DE FUERZAS EN EL PLANO.

Tema 5: Dinámica de la partícula

TEMA 5: Dinámica. T_m[ 5: Dinámi][ 1

Transcripción:

Leyes del movimiento de Newton

Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física

Qué es una fuerza Intuitivamente, consideramos fuerza a empujar o halar. Idea: La fuerza es la causa del movimiento en mecánica clásica. Tipos de fuerza: 1. Fuerzas de contacto : implican contacto físico entre los objetos: Ejemplo: fuerza de fricción, viscosidad de un fluido, etc. 2. Fuerzas de campo:no implican contacto físico Ejemplos: Gravedad, electromagnetismo

La fuerza F es una cantidad vectorial: Por tanto, la fuerza se especifica con una magnitud y una dirección. Fuerzas fundamentales en la naturaleza Tipos de fuerza Gravitacional Electromagneticas Debil Fuerte

En 1686, Newton presentó las Movimiento: Primera Ley las Tres Leyes del de Newton Un objeto en reposo permanece en reposo, y un objeto en movimiento permanece en movimiento con velocidad constante, a menos que experimente una fuerza neta externa. Velocidad es constante (i.e. aceleración = 0) si no hay fuerza ( o todas las fuerzas externas suman cero)

Marco inercial La tendencia de un objeto a resistir un cambio en su estado de movimiento se denomina inercia. La medida de la inercia es su masa. A la primera Ley de Newton se de denomina ley de inercia Las unidades SI de masa es el kilogramo (kg=1000g). El kg patrón está guardado en la Oficina de Pesos y Medidas en Francia. Primera Ley de Newton: Si, F 0 a 0 entonces.

Segunda Ley de Newon La fuerza es igual a la variación de la cantidad de movimiento en el tiempo. La aceleración de un objeto es directamente proporcional a la fuerza resultante que actúa sobre él e inversamente proporcional a su masa. La dirección de la aceleración es la dirección de la fuerza resultante. p F donde p mv denominada cantidad de movimiento t

La fuerza es un vector La fuerza neta es un vector igual a la suma de todas las fuerzas externa que actúan sobre un objeto de masa m. La masa es un escalar: El valor de la masa de un objeto no cambia con la dirección de la aceleración. La ecuación F=ma es también una defifnición de masa. La masa es invariante: Si dos objetos se colocan juntos ( o separados), la masa combinada del objeto es la suma aritmética de las dos masas m = m 1 +m 2. kg. m La unidad de fuerza en el SI es Newton( N ) 2 s Un Newton es la fuerza requerida para acelerar una masa de un kilgramo un metro por segundo en un segundo. Obsérvese que la primera ley es un caso especial de la segunda F 0 a 0 0 Constante o cero

Naturaleza vectorial de las fuerzas En la formula F = ma, F es la fuerza total (neta) que actúan en el objeto. Consideramos al vector suma o resultante de todas las fuerzas externas que actúan el objeto. Podemos considerar cada dimensión de manera separada F F F x y z ma ma ma x y z

Ejemplo Un objeto de masa 5 kg tiene una aceleración de a = (8 m/s 2 ) ŷ = 8 m/s 2 en dirección + y Cuál es la fuerza en el objeto? F = ma = (5 kg)(8 m/s 2 ) ŷ = 40 kgm/s 2 ŷ ŷ = vector unitario en dirección +y. La fuerza tiene la misma dirección que la aceleración.

Ejemplo: Dos fuerzas F 1 =45.0N y F 2 =25.0N actúan en un bloque de 5.00kg colocado en una mesa como se muestra en la Figura. Cuál es la aceleración horizontal (magnitud y dirección) del bloque? Solución: F 1x = F 1 cos(65.0) = 19.0 N F 2x = F 2 = 25.0 N F x ma x 19.0-25.0 = (5.00)a x a x = -1.2 m/s2

Ejemplo: Cuál es la fuerza media ejercida por una bala de 7.0 kg en el cañón si el la bala se mueve una distancia de 2.8 m y es liberada con una velocidad de 13 m/s. v 0 a Solución: 2 v 2 0 2a( x x 169 2 a 2.8 m 30 2 s F ma 7kg 30 0 ) m 2 s 210N

Tercera Ley de Newton Si un objeto 1 ejerce una fuerza F sobre un objeto 2, entonces el objeto 2 ejerce una fuerza F en el objeto 1. Las fuerzas vienen en pares. Se denominan de acción y reacción. Los pares de fuerza actúan en objetos diferentes. Las fuerzas tienen la misma magnitud pero dirección opuesta. 2en1 1en2 Ejemplo: Empujo una pared con una fuerza de 20 N. La pared me empuja a mí con una fuerza de 20 N en dirección opuesta. F F

Peso El peso de un objeto en la Tierra es la fuerza gravitacional ejercida por la Tierra sobre él. Notas: W = mg El peso es una fuerza ( y por tanto, un vector). El peso no es equivalente a masa. El peso de un objeto es diferente en la Tierra que en la luna debido a que el campo gravitacional es diferente ( g tierra g luna ).

Marco inercial Un marco de referencia inercial es aquel en el cual es válida la primera Ley de Newton (ley de inercia) V V V PA PB BA siendo constante V BA

Marco inercial Para probar si un marco de referencia en particular es inercial, situamos un cuerpo de prueba en reposo dentro del marco y nos aseguramos que no exista ninguna fuerza neta actuando sobre él. Si el cuerpo no permanece en reposo, el marco no es inercial. Las leyes de Newton sólo se cumplen en sistemas de referencia inerciales.

Masa inercial y masa gravitacional Masa inercial Si se aplica una fuerza neta constante a un cuerpo de masa conocida m1 y se observa la aceleración de magnitud a1, luego se aplica la misma fuerza a otro cuerpo de masa m2 desconocida y se observa una aceleración de magnitud a2 F F 1 2 m a m m m 1 1 2 2 a a 2 1 1 2 a m a m 1 2 1 a2

Masa gravitacional Es la propiedad de interacción gravitacional, la masa medida en una balanza respecto a una masa conocida. m asa inercial = m asa gravitacional (experim ento)

Métodos de análisis de fuerzas A. Hallar la aceleración producida por cada fuerza separada y sumar vectorialmente las aceleraciones resultantes B. Sumar las fuerzas vectorialmente a una sola fuerza resultante y luego hallar la aceleración cuando esa sola fuerza neta se ejerce en el cuerpo.

F ma Fuerza neta de todas las fuerzas externa que actúan en el objeto Aceleración resultado de la fuerza neta (no es una fuerza)

Sistema en equilibrio En reposo, v=0 (equilibrio estático) Sistema en equilibrio F 0 (Primera condición de equilibrio) En reposo, v constante (equilibrio dinámico) Sistema no en equilibrio F ma

Fuerzas externas: aquellas fuera del sistema que actúan sobre el sistema Sistema Fuerzas internas: aquellas entre objetos dentro del sistema

Significado de las ecuaciones de la dinámica (Ref. RP Feynman. Vol I.) Por ejemplo, consideremos un resorte de masa m, el cual se ha determinado experimentalmente que la fuerza es proporcional al desplazamiento x y en dirección opuesta. Aplicando la segunda ley de Newton kx dv m x dt

kx dv m dt x k dvx ( x) m dt tomando k/m igual a un con un cambio de escala o unidades dv dt x x Ec.2

Pregunta: Cuál es la velocidad y cuál es la posición en un tiempo t+ε inmediatamente superior? t= tiempo Vx= velocidad X= posición x( t ) x( t) vx t t v x( t ) x( t) x v ( t ) v ( t) a ( t) x x x Sustituyendo la ecuacion 2 en la ecuacion 4 v ( t ) v ( t) x( t) x x x x( t ) x( t) t Ec. 4 Ec. 5 t+ε t

v v( t ) v( t) ax t t a v( t ) v( t) x v( t ) v( t) t t+ε

La ec. 4 es cinemática, describe cómo cambia la velocidad con la aceleración. La ecuación 5 es dinámica, relaciona la aceleración con la fuerza: nos dice que en este instante particular, para este problema particular, puede reemplazarse por x(t)

Solución numérica de las ecuaciones de dinámica Paso Tiempo Posicion Velocidad Aceleración 0 t o x 0 v 0 1 t1 t0 t x1 xo v0t 2 t2 t1 t x2 x1 v1t 3 t t t x x v t Método de Euler.-Aproximan las derivadas como diferencias fintas -Se toman intervalos de tiempo Δt muy pequeños para que el cambio en aceleración sea lineal La aceleración se determina de la fuerza neta externa: 3 2 3 2 2 v v ( t t ) v ( t ) a ( t ) t t v ( t t ) v ( t ) a ( t ) t x ( t t ) x ( t ) v ( t ) t F( x, v, t) a( x, v, t) m v v a t 1 0 0 v v a t 2 1 1 v v a t 3 2 2 a0 F( x0, v0, t0) / m a F( x, v, t ) / m 1 1 1 1 a2 F( x2, v2, t2) / m a F( x, v, t ) / m 3 3 3 3

Algunas fuerzas particulares Peso: : debido a la aceleración de la gravedad, peso= masa x g Fuerza normal= = perpendicular a superficie de soporte. Tensión= = en una cuerda Fricción= = entre dos superficies en contacto

Diagrama de cuerpo libre Muestra las fuerzas externas que actúan en un sistema (objeto) determinado. El objeto se representa por un punto. Las fuerzas se indican como vectores (flechas) con la cola del vector en el objeto. Se dibuja el sistema de coordenada elegido, generalmente con origen el objeto.

Ejemplos de Diagramas de Cuerpo Libre.

Diagramas de cuerpo libre