El estrés salino incrementa la actividad de enzimas antioxidantes y la concentración de polifenoles en Vinal (Prosopis ruscifolia G.



Documentos relacionados
ÁREA DE BIOLOGÍA CELULAR DEPARTAMENTO DE BIOLOGÍA AMBIENTAL Y SALUD PÚBLICA FACULTAD DE CIENCIAS EXPERIMENTALES UNIVERSIDAD DE HUELVA ESTRÉS OXIDATIVO

CONVENIO ENTORN QUÍMIC - UAB

Requisitos del semillero

CONTROL DE LA ACTIVIDAD CELULAR

Acción Enzimática: Actividad de la Catalasa

SEMINARIO 2 Parámetros del grado de perecibilidad de un alimento

6. Reacciones de precipitación

Programa donde se inscribe la beca y/o la tesis: Interacciones biológicas: de las

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

BLOQUE I. CUÁL ES LA COMPOSICIÓN DE LOS SERES VIVOS? LAS MOLÉCULAS DE LA VIDA

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO

H + =10-7 y ph=7. H + <10-7 y ph>7.

CélluVîtas Omega 3 Natural

ALTERACIÓN DE LOS ALIMENTOS

Acondicionador de suelos INFORME TÉCNICO

Universidad Tecnológica de Panamá Centro de Investigaciones Hidráulicas e Hidrotécnicas Laboratorio de Sistemas Ambientales

ALI: 004 Fecha: 08 Julio 2011 AREA DE NEGOCIO ALIMENTO DEL CAMPO A LA MESA

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de

EVALUACION POSTERIOR A LA VISITA DE VEGETALISTA EVALUACIÓN SUMATIVA

Practica la genética Ficha didáctica del profesorado Bachillerato

ACUERDO DE ACREDITACIÓN N 107 CARRERA DE DERECHO UNIVERSIDAD DE ATACAMA SEDE COPIAPÓ

gsoluto %p/p = 100 gdedisolución

Normalización de soluciones de NaOH 0,1N y HCl 0,1N.

QUÉ PREFIERE: MARCA PROPIA O MARCA COMERCIAL LÍDER?

En el APOENZIMA se distinguen tres tipos de aminoácidos:

PRUEBA RAPIDA EN EMBARAZADAS (n=62, Junio 2010) NO REACTIVO n=218 REACTIVO INDETERMINADO. Tabla 9: Resultados Prueba rápida

Evolución de la vida en la tierra:la Célula

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

Identificación varietal en vid por técnicas de Biología Molecular. Lic. Luciana Garcia Lic. Carolina Chiconofri

ACONDICIONAMIENTO TÉRMICO DE TORONJA (Citrus paradisi Macf.): CONTROL DE DAÑOS POR FRÍO

LABORATORIO DE ANALISIS Página 1 de 5. ANALISIS DE FERTILIZANTES Y AFINES 28/02/2006 LA MATERIA ORGANICA Revisión 1 CSR SERVICIOS

Estudio de la evaporación

CAPÍTULO III RESULTADOS Y ANÁLISIS DE RESULTADOS

METABOLISMO CELULAR. Es el conjunto de reacciones químicas a través de las cuales el organismo intercambia materia y energía con el medio

Transporte en el Floema

NOGAL COMÚN (Juglans Regia)

Guía de Problemas. Espectrofotometría: Técnicas de Muestreo, Análisis e Interpretación de Datos Ingeniería Ambiental

HOJA INFORMATIVA DE HORTICULTURA

EFECTO DE LA DIGESTIÓN SOBRE PROTEINAS, GRASAS Y GLÚCIDOS

Universidad Torcuato Di Tella. Escuela de Gobierno/Educación. Documento de Trabajo. Octubre 2014

Cuantificación de Clorofila a

CENTRO DE CONOCIMIENTO Gran Chaco Americano

PRINCIPIOS ASOCIADOS A LAS RESPUESTAS DE LOS CULTIVOS AL MEDIOAMBIENTE

PT FOODFORLIFE Madrid- Febrero 2012

Efecto del Peroxido de Carbamida sobre el esmalte a diferentes concentraciones y tiempo de exposición. (Estudio. in Vitro) INTRODUCCION

SEPARACIÓN DE ALUMINIO A PARTIR DE MATERIAL DE DESECHO

Efectos del agua oxigenada sobre los componentes de la leche

ALTAS CONCENTRACIONES DE LUTEÍNA POTENCIAN EL DESARROLLO DE CÁNCER DE COLON

Tema 7: Solubilidad. (Fundamentos de Química, Grado en Física) Equilibrio químico Enero Mayo, / 24

El sector de comercio y servicios genera dos tercios del PIB de la República Argentina

HIDROSTANK. Catalogo 76.1

Ficha Técnica Biodiésel

ISOTERMA DE ADSORCIÓN DE ÁCIDO OXÁLICO SOBRE CARBÓN ACTIVO. Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara

11.2-DISCUSIÓN Prueba rápida

MASTER EN ALTO RENDIMIENTO DEPORTIVO

Área de Ciencias de los Alimentos

SITUACIÓN EPIDEMIOLÓGICA DEL VIRUS DE INMUNODEFICIENCIA HUMANA EN LA REGIÓN DE ARICA Y PARINACOTA


FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.

PRACTICA No. 9 PREPARACION DE DISOLUCIONES

Densidad. Bogotá D.C., 17 de marzo de 2014

El análisis de un rollo de fibra de xylit Aqualog en el laboratorio durante el período de un año dio lugar a las siguientes conclusiones:


Objetivos de la Sedesol

Área Académica de: Química. Programa Educativo: Licenciatura de Química en Alimentos. Nombre de la Asignatura: Biología celular

EFECTOS DE LA LLUVIA ÁCIDA EN EL ENTORNO

ESTRÉS OXIDATIVO EN EL SINDROME DE RETT

Electrólisis. Electrólisis 12/02/2015

Realizado por los siguentes alumnos de 1ºBach. A Jesús Domínguez Roldán Jesús Lebrón Martín José Antonio Lebrón Martín Pablo Muñoz Burguillos

CUANTIFICACIÓN DE ADENOSIN DESAMINASA (ADA)

CAPÍTULO 7. CONCLUSIONES FINALES

ESTUDIO DE SEGURIDAD DEL SECTOR COMERCIAL

LOS FERTILIZANTES: MITOS Y REALIDADES

LAS GRASAS INERTES EN RUMEN MEGALAC

DOSSIER CIENTÍFICO ANTI-AGRESIONES

Naturaleza y educación

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1

El sol y la piel 2. INTERACCIÓN DE LA RADIACIÓN SOLAR EN LA PIEL HUMANA. ASPECTOS BIOLÓGICOS

El más reciente análisis de latas de metal, tarros de cristal, envases de cartón, bolsas y recipientes de plástico para alimentos

21/02/2013 Características nutricionales de productos elaborados con nuez

Optimización del proceso de remojo para la producción de malta producida en el estado de Hidalgo y Tlaxcala.

CONSECUENCIAS RECAUDATORIAS DEL CAMBIO EN EL IMPUESTO SELECTIVO AL CONSUMO (ISC) A LOS ALCOHOLES Y PRODUCTOS DEL TABACO

-Determinación del cloro libre y combinado cuando no hay presencia de dióxido de cloro ni clorito.

Curso de Fertilidad de Suelos y Su Manejo

La Absorción del Agua

Abonado eficiente y rentable en fertirrigación. Solub

TaqMan GMO Maize Quantification Kit. Part No:

Propiedades de los ácidos grasos y sus esteres. grasos y sus esteres. Punto de fusión Solubilidad Actividad óptica Indice de refracción

PRODUCCIÓN DE BIODIESEL. Paula Castro Pareja Ing. Ambiental

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006

LA MIGRACIÓN INTERNACIONAL EN URUGUAY

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas

AGUA Y SOLUCIONES Elaborado por: Lic. Raúl Hernández M.

DEMANDA BIOQUÍMICA DE OXIGENO. Calidad del Agua Ninoschtka Freire Morán

TRATAMIENTO DE CALDERAS SQUIB MEXICO LABORATORIOS DE INVESTIGACIÓN DIVISIÓN TRATAMIENTO DE AGUA

IMPACTO DE LOS ESTUDIOS CON NOPAL

Revelado de películas blanco y negro con exposición a sensibilidad nominal.

Prensas troqueladoras mecánicas actuadas mediante un servo motor. Por Dennis Boerger, Gerente de Producto: AIDA-America Corporation

Informe del trabajo práctico nº7

proporción de diabetes = = % expresada en porcentaje

Transcripción:

Queracho N 15 (27-31) El estrés salino incrementa la actividad de enzimas antioxidantes y la concentración de polifenoles en Vinal (Prosopis ruscifolia G.) Saline stress increases antioxidative enzymes activity and polyphenol content in vinal (Prosopis ruscifolia G.) Meloni, D. A. 1,2 ; M. R. Gulotta 2 ; M. A. Oliva Cano 3 RESUMEN El ojetivo de este traajo fue evaluar la importancia de las enzimas superóxido dismutasa (SOD) y peroxidasa (POD), y los polifenoles en la tolerancia del vinal a altas concentraciones salinas. Plántulas de vinal, de días de edad se cultivaron hidropónicamente en solución nutritiva de Hoagland modificada, suplementada con concentraciones de ;,1;,2;,3 y,4 mol L -1 de NaCl. Luego de 3 días de tratamiento se determinó la peroxidación de lípidos a través de la concentración de malondialdehído (MDA), y se evaluó la capacidad antioxidante a través de la determinación de las actividades de las enzimas SOD y POD, y las concentraciones de polifenoles en hojas. Se utilizó un diseño experimental completamente aleatorizado con 5 repeticiones. Los datos se analizaron con ANOVA y test de Duncan. Los niveles de MDA no fueron modificados por la salinidad, demostrando que la especie posee un eficiente sistema de detoxificación de especies reactivas de oxígeno. Coincidiendo con este resultado, el estrés incrementó las actividades de las enzimas SOD y POD, y las concentraciones de polifenoles. Se concluye que en presencia de altas concentraciones NaCl, vinal incrementa la actividad de enzimas antioxidantes y sintetiza polifenoles en hojas, para contrarrestar los efectos negativos del estrés oxidativo. Palaras claves: Estrés salino; NaCl; Polifenoles; Superóxido dismutasa. 1. INTRODUCCION Vinal (Prosopis ruscifolia G.), es una especie leñosa nativa de la Región Fitogeográfica del Gran Chaco, que se destaca por su elevada tolerancia a la salinidad y al estrés hídrico (Giménez y Moglia, 3). Posee múltiples usos. Sus frutos son aptos para el consumo humano, y muy apetecidos por el ganado. Presenta propiedades terapéuticas, siendo las hojas utilizadas como antiséptico, desinflamante, y para el tratamiento de conjuntivitis, y los frutos muy apreciados para el control de la diaetes y como desinfectante externo. Tamién es utilizado como leña y para la producción de postes (Leonardis, 1949). La realización de investigaciones ásicas permitirá incrementar el valor agregado a los productos de esta especie forestal. Sus aplicaciones, y la tolerancia a los estreses aióticos, la constituyen en una halófita muy interesante para el desarrollo de zonas áridas con suelos salinos, dónde no pueden prosperar otras especies. Para tal fin, es necesario realizar un mejoramiento genético de la especie, y conocer los mecanismos que le confieren tolerancia a tales condiciones. 1 Instituto para el Desarrollo de Zonas Áridas y Semiáridas (INDEAS), Facultad de Agronomía y Agroindustrias. Universidad Nacional de Santiago del Estero. E-mail: dmeloni@unse.edu.ar 2 Laoratorio de Fisiología Vegetal, Instituto de Silvicultura y Manejo de Bosques (INSIMA). Facultad de Ciencias Forestales. Universidad Nacional de Santiago del Estero. Av. Belgrano (s) 1912. Santiago del Estero. Argentina. 3 Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-, Viçosa, Minas Gerais, Brasil.

28 Revista de Ciencias Forestales Queracho N 15 Junio 8 Las plantas tolerantes al estrés salino recurren a diferentes estrategias: ajuste osmótico, exclusión de iones tóxicos de la parte aérea, traslocación de fotoasimilados a órganos suterráneos, para incrementar el crecimiento del sistema radicular y asegurar una mayor disponiilidad de agua y nutrientes, etc (Meloni et al., 4). Por otra parte, la salinidad puede producir una rápida acumulación de especies reactivas de oxígeno (ROS), tales como los radicales superóxido (O - 2 ), oxidrilo (OH ) y oxígeno singlete ( 1 O 2 ), en cloroplastos y mitocondrias (Zhu, 1). Estrés oxidativo, es un término comúnmente utilizado para descriir los efectos adversos de las ROS sore las plantas. Éstos pueden consistir en la degradación de pigmentos fotosintéticos, peroxidación de lípidos, alteraciones en la permeailidad selectiva de las memranas celulares, desnaturalización de proteínas, y mutaciones en el ADN (Mittler, 2). Para reparar y mitigar el daño producido por las ROS, ciertas especies han desarrollado mecanismos de protección como la síntesis de dos tipos de antioxidantes: a) sustancias no enzimáticas, de ajo peso molecular, como los fenoles, y ) enzimas como la superóxido dismutasa (SOD, EC 1.15.1.1) y la peroxidasa (POD, EC 1.11.1.7) (Gossett et al., 1994). La SOD participa en la detoxificación del radical superóxido, y su acción produce H 2 O 2 y O 2. La POD, por su parte, descompone el H 2 O 2, por la oxidación de cosustratos, como fenoles y antioxidantes (Mittler, 2). En este traajo hipotetizamos que en presencia de altas concentraciones NaCl, vinal incrementa la actividad de enzimas antioxidantes y sintetiza fenoles, para contrarrestar los efectos negativos del estrés oxidativo. El ojetivo de este traajo fue evaluar la importancia de las enzimas SOD y POD, y los polifenoles en la tolerancia del vinal a altas concentraciones salinas. 2. MATERIAL Y MÉTODOS Se cosecharon frutos de vinal, en las inmediaciones de la localidad de Maco, Santiago del Estero, Argentina (27º 51 latitud S y 64º 13 longitud W), durante el mes de ferero del año 7. Las semillas se extrajeron manualmente, y escarificaron con ácido sulfúrico concentrado durante 1 minutos. Posteriormente se lavaron durante media hora con agua corriente, y finalmente se enjuagaron tres veces con agua destilada. La siemra se realizó sore toallas de papel de filtro emeidas con solución nutritiva de Hoagland modificada (Meloni et al., 1), dispuestas en forma de rollos, y cuiertas con olsas de plástico transparente para disminuir la evaporación. La incuación se realizó en cámara de crecimiento, a 25ºC de temperatura y 12 horas de fotoperíodo. Plántulas así otenidas, de días de edad, se cultivaron hidropónicamente, en recipientes de 3 litros de capacidad, conteniendo solución nutritiva de Hoagland modificada (Meloni et al., 1), ajo aireación continua. El ph se ajustó diariamente a 6,5, mediante la adición de KOH ó H 2 SO 4, y la solución nutritiva se camió semanalmente. Al cao de 7 días, se iniciaron los tratamientos de salinidad, mediante la adición de 5 mm de NaCl cada 24 hs, hasta lograr concentraciones finales de ;,1;,2;,3 y,4 mol L -1. Luego de 3 días de tratamiento las hojas se extrajeron y congelaron en nitrógeno líquido, para su conservación. La peroxidación de lípidos se determinó a través de la cuantificación de la concentración de malondialdehído, mediante la técnica descripta por Hendry et al., (1993). Las enzimas se extrajeron a partir de,4 g de hojas, que se homogeneizaron con 5 mmol L -1 de uffer fosfato de sodio (ph 6.8), conteniendo 1 mmol L -1 de EDTA.Na 2 y 2% (p/v) de polivinilpolipirrolidona (PVPP). El proceso de extracción se realizó a 4ºC. Posteriormente los extractos se centrifugaron a 13. g durante minutos, y el sorenadante se utilizó para la

Meloni et al.: El estrés salino incrementa la actividad de enzimas antioxidantes... 29 determinación de las actividades enzimáticas. Éstas se expresaron en función de la concentración proteica, determinada mediante la técnica Bradford (1976), usando alúmina sérica ovina como standard. La actividad de la enzima superóxido dismutasa se estimó espectrofotométricamente, a 56 nm, siguiendo el método de Beauchamp y Fridovich, (1971). La actividad de la enzima peroxidasa se cuantificó a través de la oxidación del guayacol, según la técnica de Maehly y Chance (1954). Para la extracción de los polifenoles, las hojas se secaron a temperatura amiente durante una semana. Al material, previamente molido, se le adicionó metanol y se lo incuó durante 24 horas a 4ºC. Luego se filtró y se determinó la concentración a través del método de Singleton modificado (Dewanto et al., 2). Se utilizó un diseño experimental completamente aleatorizado con 5 repeticiones. Los datos se analizaron con ANOVA y test de Duncan. 3. RESULTADOS Y DISCUSIÓN El incremento de la salinidad en la solución nutritiva no modificó los tenores de malondialdehído en las hojas de vinal (Figura 1 A), lo que demuestra que la especie posee un eficiente sistema de detoxificación de radicales lires. Coincidiendo con este resultado, el estrés salino incrementó la actividad de la enzima SOD, a partir de concentraciones de,2 M de NaCl. Esta tendencia se mantuvo con el incremento de la concentración salina en la solución nutritiva (Figura 1 B). De este modo, la actividad de la SOD en plantas crecidas soluciones conteniendo,4 M de NaCl fue 147 % superior que en el testigo. El aumento en la actividad de esta enzima permite detoxificar el radical superóxido, producido por el estrés, y constituye una importante estrategia para disminuir los efectos nocivos del estrés oxidativo. Una respuesta similar ha sido oservada en cultivares de algodón tolerantes a la salinidad (Meloni et al., 3). Molassiotis et al. (6) demostraron un aumento en la actividad SOD en hojas de manzano sometido a estrés salino, y detectaron nuevas isoformas que no estaan presentes en el testigo. Pese a que la SOD actúa como la primera enzima de defensa contra la oxidación producida por las ROS, su actividad genera la acumulación de H 2 O 2, un producto tóxico para las plantas (Mittler, 2). Por este motivo, vinal deería contar con un mecanismo que le permita transformar el H 2 O 2 en una sustancia inocua. El estrés tamién produjo un incremento en la actividad de la enzima POD, a partir de concentraciones de NaCl de,2 mol L -1 (Figura 1C). En las plantas que crecieron en soluciones suplementadas con,4 mol L -1 de NaCl, la actividad POD se duplicó con respecto al testigo. La POD descompone al H 2 O 2 mediante la oxidación de diversos sustratos, por lo que su actividad se complementa con la de la SOD, eliminando el producto tóxico producido por ésta. La concentración de polifenoles fue más sensile al estrés que la actividad enzimática, incrementándose incluso en el menor nivel de salinidad. Las plantas cultivadas en presencia de,1 M de NaCl mostraron un aumento significativo del 18% en relación al testigo, alcanzándose la máxima concentración a partir de,2 mol L -1 de NaCl. Aunque los polifenoles son comunes en los vegetales, y actúan como antioxidantes, su importancia en plantas sometidas a estrés aiótico, ha reciido poca atención. Su actividad antioxidante se dee a las propiedades redox, que juegan un rol fundamental en la adsorción y neutralización de ROS y la descomposición de peróxidos (Rice-Evans et al., 1997). El incremento de la concentración de polifenoles, no sólo contriuye a la tolerancia del vinal al estrés oxidativo generado por la salinidad, sino que tamién tendría un impacto relevante sore las propiedades de esta especie. La incorporación de fenoles a la alimentación humana correlaciona con una aja tasa de mortalidad y previene ciertas enfermedades. Tamién

3 Revista de Ciencias Forestales Queracho N 15 Junio 8 presentan propiedades terapéuticas, actuando como antihistamínicos, antiinflamatarios, antimicroianos, antitromóticos, cardioprotectivos y vasodilatadores (Balasundram et al., 6). En la actualidad hay una gran demanda mundial de antioxidantes naturales, para su uso en la industria de alimentos, y en medicina preventiva, en reemplazo do los antioxidantes sintéticos que son cancerígenos (Hu et al., ). De este modo, las plantas sometidas a estrés salino pueden tener gran importancia económica, por su elevada producción de fenoles. Sin emargo, el estrés tienen dos efectos opuestos: aumenta la producción de polifenoles, pero inhie el crecimiento. En caso de vinal, los resultados muestran una significativo incremento en la concentración de fenoles en niveles de salinidad que no inhiieron su crecimiento (González et al., 6). MDA (nmol g -1 PS) 3 1 A a a a a a,1,2,3,4 Actividad Peroxidasa (unidades mg -1 proteína) 3 1 C c c a a,1,2,3,4 Actividad SOD (Unidades mḡ 1 proteína) 8 6 B d c a a,1,2,3,4 Polifenoles (mg GAE ḡ 1 PS) 8 6 D c c c a,1,2,3,4 Figura 1. Concentraciones de malondialdhído -MDA- (A), actividad superóxido dismutasa -SOD- (B), actividad peroxidasa (C), y concentración de polifenoles (D) en hojas de plántulas de vinal incuadas en soluciones de NaCl. Letras diferentes indican diferencias significativas al 5% por el Test de Duncan. 4. CONCLUSIONES Los resultados otenidos confirman la hipótesis propuesta. En presencia de altas concentraciones NaCl, vinal incrementa la actividad de enzimas antioxidantes y sintetiza polifenoles en hojas, para contrarrestar los efectos negativos del estrés oxidativo.

Meloni et al.: El estrés salino incrementa la actividad de enzimas antioxidantes... 31 5. BIBLIOGRAFÍA Balasundram, K.; K. Sundram and S. Sammam. 6. Phenolic compounds in plants and agriindustrial y-products: antioxidant activity, occurrence, and potencial uses. Food Chem., 99: 191-3. Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and applicale to acrylamide gels. Anal. Biolchem., 44: 276-287. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye inding. Anal. Biochem., 72: 248-254. Dewanto, V.; X. Wu; K. K. Adom and R. H. Liu. 2. Thermal processing enhances the nutritional value of tomatoes y increasing total antioxidant activity. J. Agric. Foof Chem., 5: 31-314. Giménez, A. M. y J. G. Moglia. 3. Ároles del Chaco Argentino. Guía para el reconocimiento dendrológico. Editorial El Lieral, Argentina. 37 p. González, D; M. Acosta; M. Pece; D. Meloni. 6. El NaCl induce la acumulación de solutos osmocompatiles en plántulas de Vinal (Prosopis ruscifolia G.). III Congreso Ieroamericano de Amiente y Calidad de Vida. Catamarca, Argentina, 27 al 29 de septiemre de 6. Gossett, D. R.; E. P. Millhollon and M. C. Lucas. 1994. Changes in antioxidant levels in response to NaCl treatment in salt tolerant and sensitive cultivars of cotton, Gossypium hirsutum L. Crop. Sci., 34: 76-714. Hendry, G. A. F.; P. C. Thorpe and M. N. Merzlyak. 1993. Stress indicators- lipid peroxidation. In: Hendry, G.A.F., Grime, J.P. (Eds.), Methods in Comparative Plant Ecol., pp. 154-156. Chapman and Hall, London, UK. Hu, C.; Y. Zhang and D. Kitts.. Evaluation of antioxidant and prooxidant activities of amoo Phyllostachys nigra var. Henonis leaf extract in vitro. J. Agric. Food. Chem, 48:317-3176. Leonardis, R. 1949. Ároles de la Argentina y aplicaciones de su madera. Editorial Suelo Argentino. Buenos Aires, 277 p. Maehly, P. C. and M. Chance. 1954. The assay of catalase and peroxidases. In: Gluck, D. (ed.) Methods of Biochemical Analysis.Pp. 357-424. Interscience Pulishers, New York. Meloni, D. A.; M. R. Gulotta and C. A. Martínez. 4. The effects of salt stress on growth, nitrate reduction and proline and glycineetaine accumulation in Prosopis ala. Braz. J. Plant Physiol., 16: 39-46. Meloni, D. A.; M. A. Oliva; C. A. Martinez and J. Camraia. 3. Photosynthesis and activity of stress-related enzymes in cotton under salt stress. Env. Exp. Bot., 49: 69-76 Meloni, D. A.; M. A. Oliva; H. A. Ruiz and C. A. Martinez. 1. Contriution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr., 24: 599-612. Mittler, R. 2. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 5-41. Molassiotis, A. N.; T. Sotiropoulos; G. Tanou; G. Kofidis; D. Diamantidis and I. Therios. 6. Antioxidant and anatomical responses in shoot culture of apple rootstock MM 16 treated with NaCl, KCl, mannitol or soritol. Biol. Plantarum, 5: 61-68. Rice-Evans, C. A.; N. J. Miller and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci., 2:152-159. Zhu, J. K. 1. Plant salt tolerance. Trens Plant Sci., 6: 66-71.