GUÍA DE EJERCICIOS MÉTODOS GRAVIMÉTRICOS

Documentos relacionados
Análisis Gravimétrico

Problemas del Tema 1. Estequiometria

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

TEMA 3. EQUILIBRIOS DE PRECIPITACIÓN (2) Métodos gravimétricos de análisis

PROBLEMAS DE ESTEQUIOMETRÍA DE 1º DE BACHILLERATO

Física y Química 1ºBachillerato Ejemplo Examen. Formulación. (1 puntos) Formula correctamente los siguientes compuestos: Ioduro de Calcio:

GUÍA DE EJERCICIOS FÓRMULA EMPÍRICA Y MOLÉCULAR

EJERCICIOS DE DISOLUCIONES Y ESTEQUIOMETRÍA

Materia: FÍSICA Y QUÍMICA Curso

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES

ANÁLISIS GRAVIMÉTRICO. Química Analítica I Prof. Tatiana Garrido Reyes

GUÍA DE EJERCICIOS GASES

ESTEQUIOMETRIA. H 2 SO Na Na 2 SO 4 + H 2 Acido sulfúrico Sodio Sulfato de sodio Hidrógeno

REACCIONES DE TRANSFERENCIA DE ELECTRONES, AJUSTE Y ESTEQUIOMETRÍA. 1-Nombra tres sustancias que sean oxidantes enérgicos Por qué?

Seminarios de Química 1

TEMA 2 CONCEPTOS BÁSICOS Cálculos estequiométricos

TEMA I: REACCIONES Y ESTEQUIOMETRIA

CAPITULO 6 : Soluciones

Estequiometria estequio metría

CONCEPTOS DE GRAVIMETRÍA Capítulo 27 Harris Capítulo 12 Skoog CAPÍTULO 7 Y 11 HAGE & CARR. Quim 3025 Rolando Oyola 15 1.

Bioquímica Tema 2: Soluciones. Unidades Año: 2013

Contenidos. Relación Masa-Número de Unidades. Determinación de fórmula Empírica y Molecular. Ecuación Química. Balance de Ecuaciones Químicas

Materiales recopilados por la Ponencia Provincial de Química para Selectividad TEMA 1: QUÍMICA DESCRIPTIVA EJERCICIOS DE SELECTIVIDAD 96/97

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

1. Se dispone de una disolución acuosa de ácido sulfúrico del 98% de riqueza en masa y densidad 1,84 g/ml.

5/15/2013. TEMA 6: Estequiometría. Tecnicatura en Minería H 2 O. ecuaciones químicas. Representadas por

Cálculos de Estequiometría

EJERCICIOS RESUELTOS DE QUÍMICA BÁSICA

ESTEQUIOMETRÍA. cobre(ii) y se descompone, cuántas moles de dióxido de nitrógeno se formarán? A moles B moles C moles D. 0.

Las sustancias reaccionan entre sí. REACCIÓN QUÍMICA: proceso en el cual una o varias sustancias cambian para formar sustancias nuevas

VÍDEOS EJERCICIOS OXIDACIÓN-REDUCCIÓN RESUELTOS: ENUNCIADOS

CAMBIOS QUÍMICOS ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1

DETERMINACIÓN PORCENTUAL DE NaHCO 3 EN TABLETAS EFERVESCENTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

Un equilibrio heterogéneo muy especial: Equilibrio de Precipitación

Nombre: País Código. 1.- Calcula el contenido de cada metal en la escobilla expresado en % en masa.

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

QUÍMICA de 2º de BACHILLERATO EL EQUILIBRIO QUÍMICO

TEMA 5.- Cinética química. Equilibrio químico

OBTENCIÓN DE NaHCO 3 (P 4)

Acuerdo 286. Química. Disoluciones. Recopiló: M.C. Macaria Hernández Chávez

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

DETERMINACIÓN DE LA ESTEQUIOMETRÍA DE UNA REACCIÓN QUÍMICA POR ANÁLISIS GRAVIMÉTRICO

FORMAS MÁS COMUNES DE EXPRESAR LA CONCENTRACIÓN:

Problemas de Estequiometría (ampliación) Pág. Nº 1

ACTIVIDADES DE QUÍMICA. TERCERA EVALUACIÓN 1º BACHILLERATO

ESTEQUIOMETRÍA II. 2 MgO. En el ejemplo, una molécula monoatómica de magnesio, reacciona con una molécula de oxígeno, formando óxido de magnesio.

REACCIONES QUÍMICAS. Cómo se simbolizan las reacciones químicas

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D.

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades

CLASE Nº 2 ESTEQUIOMETRÍA

Disoluciones. AUTHOR: VICENTE GUZMÁN BROTÓNS

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre Fase específica OPCIÓN A

LECTURA DIFERENCIA ENTRE METALES Y NO METALES POR SU COMPORTAMIENTO FRENTE AL OXÍGENO.

CÁLCULOS SOBRE PREPARACIÓN DE SOLUCIONES Y EXPRESIÓN DE RESULTADOS

LAS REACCIONES QUÍMICAS.

Química. Equilibrio ácido-base Nombre:

SEGUNDA PRACTICA DE QUÍMICA

DISOLUCIONES Y ESTEQUIOMETRÍA

Teoría Disoluciones Fórmula empírica y molecular Física y Química. 1º bachiller DISOLUCIONES

TEMA 0: QUÍMICA DESCRIPTIVA EJERCICIOS DE SELECTIVIDAD 96/97

6. Reacciones de precipitación

Valor 3 puntos. 42. a. Diferenciación. b. Mutaciones. c. Recombinación. d. Herencia.

Relaciones de masa en las reacciones químicas

CONTENIDO T1 EL ÁTOMO Y EL SISTEMA PERIÓDICO...3 T2 EL ENLACE QUÍMICO...7 T3 FORMULACIÓN Y NOMENCLATURA INORGÁNICA...13

2.- A la temperatura de 400 º C y 710 mm de Hg de presión, el amoniaco se encuentra disociado en un 40 % según la ecuación: 2 NH 3 (g)

Ca (OH) HNO 2 Ca (NO 2 ) H 2 O

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

4.4. MOLES Y MOLÉCULAS.

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Estequiometría (II)

El hidróxido de magnesio es una sustancia ligeramente soluble en agua. El ph de una disolución saturada de dicho hidróxido es de 10,38.

5. Cuánto pesan 1,025 moles de amoníaco más 6, átomos de plata? Expresa el resultado en gramos. Dato: 1 u = 1, g Sol: 125,295 g

3. Calcula la cantidad estequiométrica de hidrógeno molecular, en moles, necesaria para reaccionar con 5 moles de oxígeno en la síntesis del agua.

UD 0. Cálculos en química

Tecnólogo en Minería. Equilibrio Químico. Química I

2x = x = M. 100 = α = % NOCl eq K C =

Balance de Ecuaciones Químicas

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre 2006 PRIMERA PARTE

Los tipos de reacciones inorgánicas son: Ácido-base (Neutralización), combustión, solubilización, reacciones redox y precipitación.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

Equilibrio Químico. CI4102 Ingeniería Ambiental Profesor Marcelo Olivares A.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 7: REACCIONES REDOX

ASPECTOS CUANTITATIVOS EN QUÍMICA

Física y Química 4 ESO REACCIONES QUÍMICAS Pág. 1

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

Problemas resueltos de disoluciones y sus diferentes medidas de concentración.

Modelo Pregunta 2B.- El yoduro de bismuto (III) es una sal muy poco soluble en agua.

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1)

REACCIONES DE OXIDACIÓN-REDUCCIÓN

Reacciones de precipitación

RepublicofEcuador EDICTOFGOVERNMENT±

TEMA 6 La reacción química

CLASIFICACIÓN DE LA MATERIA

GUIA DE ESTUDIO Nº 7: Equilibrio Químico

La uma, por ser una unidad de masa, tiene su equivalencia en gramos:

Problemas disoluciones

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

Transcripción:

GUÍA DE EJERCICIOS MÉTODOS GRAVIMÉTRICOS Área Química Resultados de aprendizaje Identifica, analiza e interpreta conceptos básicos sobre los diferentes métodos gravimétricos, para la resolución de ejercicios, desarrollando pensamiento lógico y sistemático. Contenidos 1. Gravimetría de precipitación 1.1 Propiedad de los precipitados 1.2 Formación de los precipitados 1.3 Tamaño de partícula 1.4 Sobresaturación relativa 2. Gravimetría de volatilización 3. Electrogravimetría Debo saber Antes de empezar a realizar estos ejercicios es importante que recordemos algunos conceptos: Métodos gravimétricos: Son métodos cuantitativos que consisten en la determinación de la masa de un analito, presente en una muestra. Gravimetría de Precipitación: El analito se separa de la disolución de la muestra mediante la adición de un agente gravimétrico precipitante que reacciona de manera específica y selectivamente con el analito, para la formación de un precipitado insoluble de composición conocida. Este precipitado se filtra, se lava para garantizar la eliminación de impurezas solubles y por lo general se somete a tratamiento térmico adecuado para eliminar el solvente y otras especies químicas volátiles presentes. Posteriormente se pesa el producto final Figura 1: Esquema de procedimiento en una gravimetría por precipitación Primera Edición - 2016 1

Propiedades de los precipitados: El producto formado debe cumplir con las siguientes propiedades. a) Fácil de filtrar y lavar para eliminar contaminantes. b) Baja solubilidad para evitar la pérdida de analito durante la filtración y el lavado c) Inerte, es decir, estable en la atmosfera (no reaccionar) d) Composición conocida Formación de los precipitados: Los precipitados se pueden formar mediante dos procesos, nucleación y crecimiento de partícula. Nucleación: Es un proceso por el cual un número mínimo de átomos, iones o moléculas (a lo sumo 4 o 5), se juntan para formar un sólido estable. Crecimiento de partícula: Este método implica una competencia entre la nucleación adicional y el crecimiento de núcleos ya existentes. Cabe aclarar que luego de iniciada la nucleación puede comenzar el crecimiento de partículas. En general, si en la precipitación predomina el proceso de la nucleación, se obtiene un gran número de partículas con diámetros pequeños y si la precipitación se da por el mecanismo de crecimiento de partícula se espera obtener particularmente, diámetros mayores, pero en menor cantidad. Tamaño de partícula: El tamaño de partícula de los productos de reacción de precipitación se ven influenciados por las siguientes variables: a) Solubilidad del precipitado b) Temperatura c) Concentraciones de los reactivos d) Velocidad de mezclado de reactivos Lo que conlleva a la formación de sólidos que varían drásticamente en su tamaño de partícula como: Suspensiones coloidales y precipitados cristalinos. Suspensiones coloidales: Partículas de naturaleza cristalina o no, cuyos diámetros oscilan entre 10-7 a 10-4 cm. Las partículas coloidales permanecen indefinidamente en suspensión y son difíciles de filtrar. Por lo tanto, es indispensable coagular o aglomerar las partículas individuales de la mayoría de los coloides para producir una masa amorfa, filtrable que se sedimenta en la disolución. Precipitados cristalinos: Partículas con dimensiones alrededor de décimas de milímetro o mayores. Las suspensiones cristalinas en la fase líquida, tienden a sedimentarse espontáneamente y son fáciles de filtrar y purificar. Sobresaturación relativa: La sobresaturación relativa se define como: Sobresaturación relativa = Q S S Donde Q es la concentración del soluto en cualquier momento y S su solubilidad en el equilibrio. La sobresaturación relativa es una propiedad del sistema y varía inversamente con el tamaño de partícula. Por ende, cuando Q S S es grande, la precipitación tiende a ser coloidal y se obtienen Primera Edición - 2016 2

sólidos pequeños y difíciles de separar y cuando Q S S es pequeña, es más probable la formación de un sólido cristalino, con partículas grandes y fáciles de separar. Importancia del secado y calcinación de precipitados: Después de filtrar un precipitado gravimétrico, este debe ser sometido a un tratamiento térmico para eliminar el solvente y otras especies químicas volátiles, aún presentes en el precipitado. El calentamiento se debe efectuar hasta que la masa del analito sea constante (Ver figura 2). En algunas ocasiones se calienta el sólido precipitado obtenido inicialmente para descomponerlo y así formar un compuesto de composición conocida comúnmente llamado forma de pesada. Termobalanza automática: Permite registrar la masa de una sustancia conforme aumenta su temperatura a una velocidad constante. Figura 2: Pérdida de masa en función de la temperatura del óxido de aluminio (Al 2 O 3.xH 2 O): Temperatura de formación de precipitado anhídrico 1000 C. Gravimetría de Volatilización: El analito es convertido en un gas de composición química conocida para separarlo de los otros componentes de la muestra. La masa del gas sirve como medida de la concentración del analito Este método es ampliamente utilizado para determinar el contenido de agua (H 2 O) y dióxido de carbono (CO 2 ) en muestras. Un ejemplo práctico es la determinación de bicarbonato de sodio (NaHCO 3 ) en tabletas de un antiácido, mediante la obtención de la cantidad de CO 2 formado como producto de reacción entre el NaHCO 3 y ácido sulfúrico (H 2 SO 4 ). NaHCO 3 (ac) + H 2 SO 4 (ac) CO 2 (g) + H 2 O(l) + NaHSO 4 (ac) 2NaOH + CO 2 Na 2 CO 3 + H 2 O En la figura 3 se muestra el esquema del proceso gravimétrico de volatilización de CO 2 para la determinación de bicarbonato de sodio (NaHCO 3 ). Primera Edición - 2016 3

Figura 3: Gravimetría de volatilización para la determinación de NaHCO 3 por Electrogravimetría: Por medio de una corriente eléctrica permite separar el analito, al depositarse en un electrodo. Por lo tanto, la masa de este producto proporciona una medida de la concentración del analito. Esta técnica se utiliza idealmente en metales, de modo que al ser depositado electrolíticamente, el metal sea muy adherente, denso y blando para que pueda ser lavado, secado y pesado sin pérdida mecánica o sin reacción con la atmósfera (figura 4). Se espera que los mejores depósitos sean granos finos y con brillo metálico, ya que los precipitados esponjosos, pulverizados o en forma de escamas suelen ser menos puros y menos adherentes. Ejercicio 1: Se pesó 0,6223 g de una muestra de mineral. Posterior a un pre-tratamiento se precipitó en CdSO 4 (MM=208,47 g/mol). El precipitado se lavó, secó y se encontró que pesaba 0,5320 g. Calcular el porcentaje de cadmio en la muestra. El enunciado nos proporciona los siguientes datos: Masa mineral = 0,6223 g Masa CdSO 4 = 0,5320 g Figura 4: Celda para la electrodeposición de metales Para calcular el porcentaje % de cadmio (Cd) en la muestra, inicialmente se debe calcular el número de moles de Cd producido (CdSO 4 ). Primera Edición - 2016 4

moles (n) CdSO 4 = 0,5020 g CdSO 4 1 mol CdSO 4 208,47 g n CdSO 4 = 2,408 x 10 3 mol Sabemos, que el número de moles de Cd en la muestra es igual al número de moles de CdSO 4, es decir: moles (n)cd = 2,408 x 10 3 1 mol Cd mol CdSO 4 1 mol CdSO 4 n Cd = 2,408 x 10 3 mol masa (g)cd = 2,408 x 10 3 mol Cd 112,411 g 1 mol Cd g Cd = 0,2706 g Teniendo la masa Cd, el porcentaje se puede expresar de la siguiente manera: Porcentaje (%) Cd = Porcentaje (%) Cd = masa (g)cd masa de la muestra de mineral 100 0,2706 g Cd 0,6223 g mineral 100 Porcentaje (%) Cd = 43 % El porcentaje de Cd en la muestra mineral es de 43%. Ejercicio 2: El hidróxido de magnesio Mg(OH) 2 se puede obtener mediante la siguiente reacción: Mg 2+ + 2 HCO 3 - + 2 Ca(OH) 2 2 CaCO 3 - + Mg(OH) 2 + 2 H 2 O Una muestra de 300 ml de agua mineral se le determino el contenido de magnesio mediante la precipitación del catión como Mg(OH) 2. El precipitado se filtró, se lavó y se calcinó en un crisol, obteniendo como producto MgO. Mg(OH) 2 Δ MgO La masa del crisol sin muestra fue de 25,9004 g y posterior a la calcinación la masa del crisol más MgO fue de 26,0320 g. Calcular la concentración de magnesio (Mg) en la muestra de agua mineral, expresada en unidades de gramos por 100 ml de H 2 O. Inicialmente se debe establecer la cantidad de MgO que se formó, sabemos: masa (g)mgo = (masa del crisol + muestra) (Masa crisol vacio) masa (g)mgo = 26,0320 g 25,9004 g masa (g)mgo = 0,1316 g El número de moles de Mg en la muestra de agua mineral es igual al número de moles de MgO, es decir: moles (n) MgO = 0,1316 g Mg 1 mol MgO 40,3044 g Primera Edición - 2016 5

n MgO = 3,265 x 10 3 mol moles (n)mg = 3,265 x 10 3 1 mol Mg mol MgO 1 mol MgO moles (n)mg = 3,265 x 10 3 mol g Mg 300 ml = 3,265 x 10 3 mol Mg 24,305 g 1 mol g Mg 300 ml = 0,07936 g/300 ml Debo saber que, los gramos de magnesio determinados (0,07936 g), corresponden a la cantidad de analito presentes en 300 ml de agua mineral. Como nos piden expresar la concentración en gramos/100 ml, tenemos: Por regla de tres simple: Concentración Mg = gramos Mg 100 ml Si, 0,07936 g 300 ml x 100 ml x = Concentración Mg g 100 ml = 0,02645 g/100 ml Ejercicio 3: Qué masa de Mg(IO 3 ) 2 puede ser formada a partir de 0,520 g de MgSO 4 x 5H 2 O Inicialmente debemos establecer la relación molar que existe entre el MgSO 4 x 5H 2 O y Mg(IO 3 ) 2. Para ello escribimos la ecuación balanceada del producto de precipitación. La relación molar es: MgSO 4 x 5H 2 O + 2KIO 3 Mg(IO 3 ) 2 + 5H 2 O + K 2 SO 4 MgSO 4 x 5H 2 O Mg(IO 3 ) 2 1 1 Sabemos, por la estequiometría que el número de moles de MgSO 4 x 5H 2 O es igual al número de moles de Mg(IO 3 ) 2. Así que a partir de la masa inicial de MgSO 4 x 5H 2 O se calcularan las moles. moles (n) MgSO 4 x 5H 2 O = 0,520 g MgSO 4 x 5H 2 O 1 mol MgSO 4 x 5H 2 O 210,37 g n MgSO 4 x 5H 2 O = 2,472 x 10 3 mol moles (n) Mg(IO 3 ) 2 = 2,472 x 10 3 1 mol Mg(IO 3 ) 2 mol MgSO 4 x 5H 2 O 1 mol MgSO 4 x 5H 2 O moles (n)mg(io 3 ) 2 = 2,472 x 10 3 mol Primera Edición - 2016 6

Por lo tanto, teniendo las moles de Mg(IO 3 ) 2 y con la masa molar (M.M=374,08 g/mol) podremos determinar la cantidad de compuesto que se formará. masa (g) Mg(IO 3 ) 2 = 2,472 x 10 3 374,08 g mol Mg(IO 3 ) 2 1 mol Mg(IO 3 ) 2 masa (g) Mg(IO 3 ) 2 = 0,9246 g Debo saber que, la relación molar la establecemos de la ecuación balanceada. Ejemplo: 2 NaOH + 1 CO 2 1 Na 2 CO 3 + 1 H 2 O Relación Molar de los reactivos es: NaOH : CO 2 2 : 1 Ejercicio 4: 0,2107 g de muestra que contiene nitrógeno amoniacal se le realizó un tratamiento con ácido cloroplatínico; como producto de reacción se obtuvo el cloroplatinato de amonio, según la siguiente reacción: H 2 PtCl 6 + 2NH 4 + (NH 4 ) 2 PtCl 6 + 2H + El precipitado se descompone por calcinación, produciendo platino metálico y productos gaseosos: (NH 4 ) 2 PtCl 6 Pt(s) + 2Cl 2 (g) + 2NH 3 (g) + 2HCl(g) Calcular el porcentaje de amoníaco si se produjo 0.5679 g de platino. Inicialmente debemos establecer la relación molar que existe entre el platino (Pt) y el amoniaco (NH) 3. La relación molar es: Pt NH 3 1 2 Así que, para determinar el porcentaje % de amoníaco (NH 3 ), primero debemos calcular el número de moles de Pt en la muestra y posteriormente con la relación estequiométrica calcular las moles de NH 3. 1 mol Pt moles (n) Pt = 0,5679 g Pt 195,08 g n Pt = 2,91 x 10 3 mol Sabiendo que la relación molar Pt : NH 3 es 1:2 respectivamente tenemos: moles (n) NH 3 = 2,91 x 10 3 mol Pt 2 mol NH 3 1 mol Pt Primera Edición - 2016 7

moles (n) NH 3 = 5,820 x 10 3 mol NH 3 Por lo tanto, teniendo las moles de NH 3 y con la masa molar (M.M = 17,023 g/mol) determinamos la cantidad de compuesto que se formó. masa (g) NH 3 = 5,820 x 10 3 mol NH 3 17,023 g 1 mol NH 3 masa (g) NH 3 = 9,910 x 10 2 g Finalmente, teniendo la masa NH 3, el porcentaje se puede expresar de la siguiente manera: Porcentaje (%)NH 3 = masa (g) NH 3 masa de la muestra 100 Porcentaje (%) NH 3 = 0,0991 g NH 3 0,2107 g muestra 100 Porcentaje (%) NH 3 = 47 % Ejercicio 5: Qué masa de KIO 3 se necesita para convertir el CuSO 4 x 5H 2 O en 0.289 g de Cu(IO 3 ) 2? Inicialmente debemos establecer la relación molar que existe entre el CuSO 4 x 5H2O, KIO 3 y Cu(IO 3 ) 2. Para ello escribimos la ecuación balanceada del producto de precipitación. La relación molar es: CuSO 4 x 5H 2 O + 2KIO 3 Cu(IO 3 ) 2 + 5H 2 O + K 2 SO 4 CuSO 4 x 5H 2 O Cu(IO 3 ) 2 1 1 Cu(IO 3 ) 2 : KIO 3 1 2 Así que, para determinar la cantidad de KIO 3 que se necesita para producir 0,289 g de Cu(IO 3 ) 2, debemos calcular el número de moles de Cu(IO 3 ) 2 producidos y posteriormente con la relación estequiometrica calcular las moles de KIO 3 moles (n)cu(io 3 ) 2 = 0,289 g Cu(IO 3 ) 2 1 mol Cu(IO 3) 2 413,32 g n Cu(IO 3 ) 2 = 6,99 x 10 4 mol Sabiendo que la relación molar KIO 3 : Cu(IO 3 ) 2 es 2:1 respectivamente tenemos: moles (n) KIO 3 = 6,99 x 10 4 2 mol KIO 3 mol Cu(IO 3 ) 2 1 mol Cu(IO 3 ) 2 moles (n) KIO 3 = 13,98 x 10 4 mol Primera Edición - 2016 8

Finalmente, teniendo las moles de KIO 3 y con la masa molar (M.M =214,001 g/mol) determinamos la cantidad de agente precipitante que debemos agregar para formar los 0,289 g de Cu(IO 3 ) 2. masa (g) KIO 3 = 13,98 x 10 4 mol KIO 3 214,0 g 1 mol KIO 3 masa (g) Mg(IO 3 ) 2 = 0,299 g Se debe agregar 0,299 g de KIO 3 Ejercicio 6: Una muestra de 2,56 g que contiene yodo y otros haluros fue tratada con un exceso de bromo (Br 2 ) para convertir el yodo en yodato (IO 3 - ). 3H 2 O + 3Br 2 + I - 6Br 2 + IO 3 - + 6H + El exceso de bromo (Br 2 ) se eliminó por ebullición y después se agregó un exceso de iones bario (Ba 2+ ) para precipitar IO 3 - y se obtuvo 0,0895 g de yodato de bario Ba(IO 3 ) 2 Ba2+ + 2IO 3 - Ba(IO 3 ) 2 Expresar los resultados de este análisis como porcentaje de yoduro de sodio (NaI) Lo primero que debemos hacer, es establecer la relación molar que existe entre el yodato de bario Ba(IO 3 ) 2, el yodato (IO 3 - ) y el yoduro (I - ). La relación molar es: Ba(IO 3 ) 2 : IO 3-1 : 2 IO 3 - : I - 1 : 1 Por lo tanto, para determinar el porcentaje % de amoníaco (NaI), primero debemos calcular el número de moles de Ba(IO 3 ) 2 en la muestra y posteriormente con la relación estequiométrica calcular las moles de IO 3 - y I -. moles Ba(IO 3 ) 2 (n) = 0,0895 g Ba(IO 3 ) 2 1 mol Ba(IO 3) 2 487,07 g n Ba(IO 3 ) 2 = 18,37x10 5 mol Sabiendo que la relación molar Ba(IO 3 ) 2 : IO 3 - es 1:2 respectivamente tenemos: moles (n) IO 3 = 18,37 x 10 5 2 mol IO 3 mol Ba(IO 3 ) 2 1 mol Ba(IO 3 ) 2 moles (n) IO 3 = 36,75 x 10 5 mol IO 3 Primera Edición - 2016 9

Así mismo, tenemos que el número de moles de IO 3 - es igual al número de moles de I -, es decir: moles (n) I = 36,75 x 10 5 mol IO 1 mol I 3 1 mol IO 3 moles (n) I = 36,75 x 10 5 mol I Por lo tanto, la masa del yoduro de sodio la podemos determinar con las moles de I - (moles de I - =NaI) y la masa molar de NaI (M.M= 149,88 g/mol). masa (g) NaI = 36,75 x 10 5 mol NaI 149,88 g 1 mol NaI masa (g) NaI = 55,08 x 10 3 g Finalmente, teniendo la masa NaI, el porcentaje se puede expresar de la siguiente manera: Porcentaje (%)NaI = Porcentaje (%) NaI = masa (g) NaI masa de la muestra 100 0,05508 g 2,56 g mineral 100 Porcentaje (%) NaI = 2,15 % Ejercicio 7: El mineral Bauxita es una de las fuentes más importantes para la obtención aluminio (Al). Una muestra de 1,350 g de mineral se trituró y se lavó con una solución caliente de hidróxido de sodio (NaOH), en este primer proceso de digestión el NaOH disuelve los minerales de aluminio tal como se muestra en la reacción. AlO(OH) + OH - + H 2 O + Na + Al(OH) 4 - + Na + Posteriormente la solución de Al(OH) 4 -, se precipitó de forma controlada para formar hidróxido de aluminio Al(OH) 3 puro. El precipitado fue filtrado y calcinado a 1050 ºC para producir Al 2 O 3 anhidro, el cual pesó 0.3007 g. 2 Al(OH) 3 Δ Al 2 O 3 + 3 H 2 O Exprese el resultado de este análisis en términos de % Al El enunciado nos proporciona los siguientes datos: Masa mineral = 1,350 g Masa Al 2 O 3 = 0,3007 g A) Para calcular el porcentaje % de Aluminio (Al) en el mineral, inicialmente se debe calcular el número de moles de Al producido (Al 2 O 3 ). moles Al 2 O 3 (n) = 0,3007 g Al 2 O 3 1 mol Al 2O 3 101,96 g Primera Edición - 2016 10

Sabemos, por la relación estequiométrica que: n Al 2 O 3 = 29,49 x 10 4 mol Al 2 O 3 : Al Así que el número de moles de Al en la muestra es: 1 : 2 moles (n)al = 29,49 x 10 4 2 mol Al mol Al 2 O 3 1 mol Al 2 O 3 n Al = 58,98 x 10 4 mol Por lo tanto, la masa del aluminio (Al) en la muestra la podemos determinar con las moles de Al determinadas con anterioridad y la masa molar (M.M= 26,98 g/mol) masa (g) Al = 0,005898 mol Al 26,98 g 1 mol Al masa (g) AI = 0,1591 g Finalmente, teniendo la masa del Al, el porcentaje se puede expresar de la siguiente manera: Porcentaje (%)Al = Porcentaje (%) Al = masa (g) Al masa del mineral Bauxita 100 0,1591 g 1,350 g mineral 100 Porcentaje (%) Al = 11,79% El porcentaje de Al en la muestra mineral Bauxita es de 11,79 %. Primera Edición - 2016 11

Responsables académicos Comité Editorial PAIEP. Si encuentra algún error favor comunicarse a ciencia.paiep@usach.cl Referencias y fuentes utilizadas Douglas A. Skoog (2015); Fundamentos Learning. de Química Analítica (9a. ed), México, D.F. Cengage Primera Edición - 2016 12