Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema).



Documentos relacionados
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Problemas de Física 1 o Bachillerato

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1)

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

ENERGÍA (II) FUERZAS CONSERVATIVAS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

PROBLEMAS RESUELTOS TEMA: 3

(producto escalar, considerando una sola dirección)

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

TRABAJO Y ENERGÍA Página 1 de 13

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

1 Yoyó con cuerda despreciable 1

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

La masa es la magnitud física que mide la inercia de los cuerpos: N

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

CURSO SEGUNDO EXAMEN TIPO TEST MODELO 1

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

Práctica La Conservación de la Energía

) = cos ( 10 t + π ) = 0

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA

TRABAJO Y ENERGÍA. Campos de fuerzas

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA

Movimiento oscilatorio

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

Conservación de la Energía Mecánica NOMBRE: CURSO:

Ejercicios resueltos de cinemática

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

2. Dado el campo de fuerzas F x, Solución: W = 6 J

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: N

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

TRABAJO Y ENERGÍA - EJERCICIOS

Guía 7 4 de mayo 2006

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Aplicaciones de ED de segundo orden

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

6 Energía mecánica y trabajo

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha

Problema 1: Cinemática

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

PROBLEMAS M.A.S. Y ONDAS

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

LEYES DE LA DINÁMICA Y APLICACIONES

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS

PROBLEMAS DE EQUILIBRIO

UNIVERSIDAD TÉCNICA DE MANABÍ C.A.N.O CENTRO DE ADMISIÓN, NIVELACIÓN Y ORIENTACIÓN

Tema 4. Sistemas de partículas

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones

Capítulo 5 Oscilaciones

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

TRABAJO Y ENERGIA MECANICA

CHOQUE.(CANTIDAD DE MOVIMIENTO )

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB;

frenado?. fuerza F = xi - yj desde el punto (0,0) al

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

Ejercicios resueltos

Examen de Selectividad de Física. Septiembre Soluciones

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

APUNTES DE FÍSICA Y QUÍMICA

Funciones más usuales 1

TRABAJO Y ENERGIA: TRABAJO Y POTENCIA

Problema 1 Subidón de adrenalina bajo el puente (4 puntos)

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

Capítulo 1. Mecánica

MCBtec Mas información en

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO

MECANICA CLASICA Segundo cuatrimestre de Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

2.3. ASPECTOS ENERGÉTICOS

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre.

Transcripción:

Dinámica Examen de Física-1, 1 Ingeniería Química Segundo parcial Enero de 013 Problemas (Dos puntos por problema) Problema 1: Un resorte vertical de constante k1000 N/m sostiene un plato de M kg de masa Desde 5 m de altura respecto al plato se deja caer un cuerpo de m 4 kg que se adhiere a él Calcular la máxima compresión del resorte Nota 1: Tened en cuenta que, al poner el plato sobre el muelle, este ya se comprime una determinada longitud x 0 Nota : Tomad g 10 m/s Un resorte vertical de constant 5m de altura respecto al plato s Calcular la máxima com (Problema tomado de http://wwwscehues/sbweb/fisica/examenes/choques/choqueshtm) Primero tenemos en cuenta que, como consecuencia de colocar el plato sobre el muelle, este se comprime un longitud x 0 desde la longitud natural del muelle Podemos calcularla fácilmente, teniendo en cuenta que en equilibrio la fuerza de recuperación del muelle compensa el peso kx 0 mg x 0 mg k kg 10 m/s 1000 N/m 0, 0 m También podemos calcular fácilmente, aplicando el principio de conservación de la energía, la velocidad de la bola justo antes de chocar con la plataforma Tomamos como nivel nulo de energía potencial gravitatoria la posición de la longitud natural del muelle Entonces, la posición de la bola antes del impacto con respecto a este nivel es x 1, mientras que en el punto de contacto con el plato, la altura de la bola es x 0 En el enunciado se nos dice cuanto vale la altura de la bola con respecto al plato, es decir, x 1 ( x 0 ) x 1 + x 0 h 5 m La energía mecánica de la bola antes y justo antes del choque tiene que ser la misma, mgx 1 1 mv + mg( x 0 ) v g( x 1 + x 0 ) 10, 0 m/s 5 m 10, 0 m/s Entonces, se produce un choque inelástico entre la bola y la plataforma En este choque, se conserva el momento lineal y, tras el mismo, el sistema plato/bola se mueve con la misma velocidad, v despues http://wwwscehues/sbweb/fisica/examenes/choques/choques_18/choq

mv ( M + m)v despues v despues m ( M + m) v 4 kg 4 + ( ) kg 10 m/s 0 3 m/s Justo después del choque, la energía mecánica del sistema bola/plato/muelle es: E potencialgravitatoria ( M + m)g( x 0 ) ( 4 + ) kg 10 m/s 0, m -1,00 J, E cinetica 1 ( M + m )v despues 1 4 + ( ) kg # 0 3 m/s 133,33 J, E elastica 1 kx 0 1 1000 N/m ( 0, m) 0 J E mecanica E potencial gravitatoria + E cinetica + E potencial elastica 141,33 J En el punto de máxima compresión, x, la energía cinética se hace nula En ese momento, E potencial gravitatoria ( M + m)g( x) 6 kg 10 m/s x 60x J, E cinetica 0, E elastica 1 kx 1 1000 N/m x 500 x J E mecanica E potencial gravitatoria + E cinetica + E potencial elastica ( 500 x 60x) J Por el principio de conservación de la energía, las energías justo después del choque y en el momento de máxima compresión deben ser iguales, # 0, 59 m 500x 60x 141,33 x 0, 47 m De estas dos soluciones, solo la primera tiene sentido físico (el signo menos debido al hecho de que la posición de máxima compresión está por debajo de nuestra referencia de altura se ha tenido en cuenta directamente al calcular las energías potenciales gravitatorias Dinámica 16/01/13 09:30

Figure 109 The translation and pu Problema : Supongamos que el objeto de la Figura es una esfera sólida que rueda sin deslizar por un plano inclinado: (a) Calcular la velocidad de su centro de masas cuando llega al punto inferior (b) Determinar el módulo de la aceleración de traslación del centro de masas Nota 1: El momento de inercia de una esfera maciza con respecto a un eje que pase por el centro es I CM 5 MR Nota : En un movimiento de rodadura puro, la relación que existe entre la velocidad del centro de masas y la velocidad angular es v CM Rω h M R x Active Figure 1030 A sphere rolling down an incline Mechanical energy of the sphere incline Earth system is conserved if no slipping occurs θ v CM At the Active Figures link at http://wwwpse6com, you can roll several objects down the hill and see how the final speed depends on the type of object ω The term I CM of mass, and the were just transla kinetic energy o the center of m We can use e tion of an objec shows a sphere r incline Note th sent between th mass Despite th contact point is sphere were to lost due to the n Using the fa 108 as For the system o tional potential conservation of m 1 (a) Consideremos la esfera y la Tierra como un sistema aislado y utilizaremos el correspondiente modelo de análisis energético La energía del sistema cuando la esfera está en el extremo superior del plano inclinado es únicamente energía potencial debida a la gravedad Elegimos como valor de referencia cero para la energía potencial el correspondiente a la situación en la que la esfera ha llegado al punto inferior del plano inclinado Según esto, y debido a que la energía mecánica se conserva, obtenemos K i +U i K f +U f, 0 + Mgh 1 Mv # + 1 I CMω f + 0 Utilizando la Ecuación v CM Rω para relacionar las velocidades angular y de traslación y sustituyendo el momento de inercia para la esfera, I CM 5 MR, tenemos Mgh 1 Mv # + 1 v 5 MR R 1 Mv + 1 5 Mv 7 10 Mv

Despejando la velocidad del centro de masas, v 10 7 gh (b) Para calcular la aceleración, debemos darnos cuenta de que la fuerza de gravedad constante debería provocar una aceleración constante del centro de masas de la esfera, v v CM,i + a CM ( x x CM,i ), de donde podemos despejar la aceleración a CM v v CM,i x x CM,i ( ) 10 7 gh 0 5 h 7 gsinθ ' # sinθ Tanto la velocidad como la aceleración del centro de masas son independientes de la masas y del radio de la esfera Es decir, todas las esferas sólidas homogéneas alcanzarán la misma velocidad y aceleración en un determinado plano inclinado

Problema 3: El cilindro uniforme de radio a de la figura pesaba en un principio 80 N Después de taladrársele un agujero cilíndrico de eje paralelo al anterior su peso es de 75 N (a) Determinar el radio del agujero (b) Suponiendo que el cilindro no desliza sobre la mesa Cuál debe ser la tensión de la cuerda que le impida moverse en la situación representada? (c) Determinar el coeficiente de rozamiento mínimo para que no deslice O O 3 a T O O (a) Llamemos P y P al peso del cilindro antes y después de hacerle el agujero Llamemos r al radio del agujero, H a la altura del cilindro y ρ a su densidad Con los datos que nos dan en el enunciado podemos calcular r: P [( πa πr )Hρ]g π a Hρ g 1 r ) ( + P 1 r ) ( + ' * ' * r a 1 P P a 4 (b) Si ponemos el origen de coordenadas en O podemos calcular donde se encuentra el CM del cilindro agujereado (por simetría la coordenada y CM será nula ) El cálculo de la componente x del centro de masas puede realizarse descomponiendo el cilindro agujereado en dos elementos: un cilindro macizo (por simetría el centro de masas se encuentra en el origen), y un agujero cilíndrico (es decir, suponemos que su masa es negativa) que, por simetría, tiene como coordenada x del centro de masas /3 a a a x C M ( ) 3 a 0 P P # P # ' 45 a Aplicando las condiciones de la estática: i F i 0 τ ia 0 T a i F roz T 0 T F ( roz ' ) ( N P 0 N P ( ) + P x C M 0 T x C M - P, a T N A 1 45 N x C M P F roz (c) La fuerza de rozamiento es estática y debe ser menor que su valor máximo: F roz T F rozmáx µ N µ P # µ T P # 10