todos los objetos que nos rodean. Con un solo ojo esto no se puede apreciar.

Documentos relacionados
Fundamentos de POV-Ray. Computación Geométrica 2010/2011 Jorge Calvo Zaragoza

SEMEJANZA SEMEJANZA. APM Página 1

INTRODUCCIÓN A POV-RAY GUIA SESIÓN 3

ILUSIONES VISUALES TALLERES: EXPERIENCIAS ESTEREOSCÓPICAS

Reporte de Sismo. Sismo del día 21 de Enero de 2016, Jalisco (M 6.5)

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo:

TEMA 2 EL OJO TEÓRICO

GEOMETRÍA DESCRIPTIVA: LOS SISTEMAS DE REPRESENTACIÓN.

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial

TIC: Algunas ideas sobre la función cuadrática y calculadora

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar

La luz es una radiación electromagnética que se comporta como onda y como partícula. La luz tiene un amplio espectro, pero el ojo humano solo puede

Reporte de Sismos Grupo de Trabajo del SSN Sismo (M4.8) del 11 de mayo de 2016, al norte de Guadalajara, Jalisco

Práctica de Óptica Geométrica

Bolilla 12: Óptica Geométrica

TEMA 2 EL OJO TEÓRICO

DECONVOLUCIÓN criterio de Nyquist

TEOREMA DE PITÁGORAS

APUNTES CARTOGRÁFICOS. Sistemas de coordenadas: Universal Transversal Mercator y Gauss-Krüger

Física II- Curso de Verano. Clase 7

USO DE LA REALIDAD VIRTUAL APLICADA A SISTEMAS DE INFORMACIÒN GEOGRÀFICA

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

n = 7, s 1 λ = c ν = , = 4, m

Tema 7: Derivada de una función

Imagen 1: Bobina o solenoide del cañón.

ACTIVIDAD 2: La distribución Normal

NORMALES. Computación Gráfica

1. Si 10 m están representados en un mapa por 10 cm, 50 m, por cuántos cm estarán representados?

Actividad: Qué proporción del área terrestre de Puerto Rico está urbanizada?

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

TEMA 4: OPTICA. Ojo normal! 4.4 El ojo como sistema óptico Características del ojo normal (emétrope): Córnea: parte protuberante del ojo

TEMA 4: ACOMODACIÓN Y PRESBICIA

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

LENTES Y ÓPTICA DEL OJO

Actividad I Leyes de la reflexión y de la refracción

Distribuciones de frecuencia

EL MODELO GEOMÉTRICO DE LA VISIÓN

Tema 6: Trigonometría.

Departamento de Física y Química

6.1 Una primera aplicación de los cuaternios: rotación de un cuerpo rígido

3.8. Tutorial Carretilla

ANA BALLESTER DIBUJO TÉCNICO 1º BACH 1

Reporte de Sismo. Sismo del día 15 de abril de 2016, Chiapas (M 6.1)

ÓPTICA GEOMÉTRICA MODELO 2016

Dr. Lorenzo Olguín R. Universidad de Sonora. DF-UNISON Hermosillo, Sonora

Comportamiento del péndulo cicloidal en relación con un péndulo simple Universidad Favaloro: Facultad de ingeniería- Julio 2001.

El pipeline de visualización es el conjunto de

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

La Ecuación de la Recta Jorge Barco Albar

Los Gráficos de Control de Shewart

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales.

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola.

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

INTERPRETACIÓN GEOMÉTRICA DE LAS DERIVADAS DIRECCIONALES DE FUNCIONES REALES DE DOS VARIABLES MEDIANTE EL USO DEL PROGRAMA DPGRAPH

2. Polis y urbe: la ciudad como teatro de un mundo civilizado La ciudad como escenario; escenas de la ciudad

IE DIVERSIFICADO CHIA TRABAJO GEOMETRIA

EVOCO (Evaluador de la Visión en Ojos con Córnea Operada) *

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Parábola e Hipérbola

Este pequeño dossier de 8 páginas es parte del taller completo que puedes encontrar en:

Medición del módulo de elasticidad de una barra de acero

Sistemas polinomiales

Información de la práctica

CAPÍTULO 4 LOS MEGAPIXELS

Reflexión de la luz MATERIALES MONTAJE

Procesamiento Digital de Imágenes

INTRODUCCIÓN A LA PERSPECTIVA CÓNICA OBLICUA

Palabras clave: computación gráfica, formatos 3D, POV Ray, X3D, análisis sintáctico, generación de imágenes.

TEMA 8. GEOMETRÍA ANALÍTICA.

El segundo panel está compuesto por casillas, igual que si fuese una actividad con casillas y pueden contener textos, imágenes,sonidos...

LABORATORIO DE FÍSICA FUNDAMENTAL

TEMA 3: IMÁGENES FORMADAS POR EL OJO

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados

7. Práctica. 7.1.Estudio de Levas Introducción


ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

Estéreo dinámico. Estéreo dinámico

Departamento de Física y Química

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

Técnicas de inteligencia artificial. Visión Artificial Visión 3D

Capítulo 3 WINDELSOL 1.0 COMO HERRAMIENTA DE TRABAJO

Programa de la asignatura Curso: 2006 / 2007 TOPOGRAFÍA Y FOTOGRAMETRÍA (2781)

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Diseño de sistemas de puesta a tierra basado en el entorno MATLAB

Tema 3. Magnitudes escalares y vectoriales

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1

Instituto de Geofísica Servicio Sismológico Nacional

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Presentación de tarea

Representación y aplicaciones de las funciones tipo

Recomendaciones para la instalación e-netcamanpr

Transcripción:

SIMULACION DE LA VISION ESTEREOSCOPICA PARTE II: SIMULACION MEDIANTE UN TRAZADOR DE RAYOS Antonio Fernández Caballero Gabriel Sebastián Rivera Edwin Paredes Calizaya Antonio Fernández Caballero es profesor del Departamento de Informática, Escuela Politécnica Superior de Albacete, Universidad de Castilla-La Mancha Gabriel Sebastián Rivera y Edwin Paredes Calizaya son colaboradores en proyectos de investigación RESUMEN Este artículo presenta la segunda parte de un trabajo sobre simulación de la visión estereoscópica mediante un trazador de rayos En la primera entrega se ofrecían los aspectos físicos básicos de la visión humana, para pasar seguidamente a introducir las nociones relacionadas con la estereoscopía, haciendo un especial hincapié en la idea de disparidad Este segundo artículo comenta los pasos concretos a seguir para conseguir simular esta visión estereoscópica merced al uso de un trazador de rayos 1 INTRODUCCION La estereopsis es un fenómeno óptico que nos permite apreciar la profundidad de los objetos que estamos observando, al igual que la distancia a la que se encuentra dicho objeto Los estudios realizados sobre nuestra visión normal han llegado a determinar que el hecho de que tengamos dos ojos nos ayuda a poder calcular las distancias a las que se encuentran todos los objetos que nos rodean Con un solo ojo esto no se puede apreciar 1

Tomando como base los estudios de la fisiología del ojo humano, el funcionamiento de la reproducción del mundo que nos rodea a través de nuestros ojos y las propiedades físicas de la óptica, nos hemos planteado simular la visión humana a partir de elementos artificiales En concreto hemos usado aplicaciones informáticas y funciones de procesamiento de la señal, que nos han servido de material para poder construir unos ojos artificiales con los cuales poder ver objetos artificiales dentro de un mundo tridimensional artificial Se van a ir exponiendo las operaciones a medida en que avancemos en la simulación En primer lugar haremos una breve descripción de la visión artificial que deseamos generar, después haremos una descripción completa de los medios que se han utilizado para el planteamiento de la simulación Posteriormente haremos una demostración de cómo se genera movimiento y de la simulación de la visión estereoscópica 2 DESCRIPCIÓN DE LA VISIÓN ARTIFICIAL QUE SE DESEA GENERAR La visión artificial que deseamos generar estará compuesta por elementos artificiales dentro de un mundo tridimensional, cuyo sistema de coordenadas podemos observar en la figura 1 Como el objetivo de nuestro estudio es la simulación de la estereopsis, ubicaremos nuestros ojos en el semieje z a una distancia l del origen como puede apreciarse en la figura 2 La separación entre los ojos será aproximadamente de d = 5 cm y la distancia l se estudiará con una variación entre 1 m y 5 m del origen El movimiento de los objetos dentro de nuestro mundo artificial se hará a lo largo del eje x, permitiendo poder establecer unas bases para los cálculos posteriores y su generalización si así procede 2

Figura 1 Sistema de coordenadas propuesto Figura 2 Situación de nuestros ojos dentro del eje de coordenadas planteado 3 DESCRIPCIÓN DE LOS MEDIOS QUE SE VAN A UTILIZAR Los medios que se han utilizado para la realización de la simulación son los siguientes: - un ordenador personal - el programa trazador de rayos POV-Ray Pasamos a exponer la sintaxis del objeto Cámara de POV-Ray, que será sin lugar a dudas el centro de nuestra simulación (ver descripción 1) 3

camera { <VECTOR> //lugar donde se ubica la cámara look_at <VECTOR> //lugar a donde de enfoca right <VECTOR> //ancho horizontal del plano de la imágen up <VECTOR> //ancho vetical del plano de la imágen direction <VECTOR> //longitud focal Descripción 1 Sintaxis y parámetros del objeto cámara De entre todos los parámetros disponibles para el objeto Cámara hemos destacado aquellos que realmente nos interesan para nuestra simulación: <vector> : Es el lugar de ubicación de la cámara dentro de la escena tridimensional look_at <vector> : Es el lugar dentro del mundo artificial al que se está mirando direction <vector> : Es la distancia a la que se encuentra el plano de la imagen calculada desde la cámara up <vector> : Se refiere a la altura del plano de la imagen que se está interpretando right <vector> : Se refiere al ancho del plano de la imagen que se está interpretando En la figura 3 se muestran estos parámetros como función de la cámara Figura 3 Parámetros de la cámara artificial 4

Existe una diferencia básica entre el ojo real y la cámara en cuanto al plano donde se representa la imagen El ojo lo hace en la zona amarilla y de manera inversa al objeto que está observando, mientras que la cámara lo hace en la parte anterior entre el punto donde se encuentra localizada la cámara y el objeto a observar Para poder relacionar este comportamiento hemos igualado la distancia en el ojo desde la córnea hasta la zona amarilla con la distancia focal Así pues: distancia focal = direction También hay que tener en cuenta que nuestra cámara es una cámara ideal y que no tiene ningún índice de refracción, por lo que hemos incorporado unos elementos translúcidos con un índice de refracción igual a los que se tiene en el ojo Sin embargo, POV-Ray no puede procesar todos los medios del ojo humano con todos sus índices de refracción Por ello, solamente hemos considerado los siguientes datos: Humor acuoso con Cristalino con Humor vítreo IOR=133 IOR=145 IOR=134 Figura 4 Diferencia entre la visión con y sin el IOR de la cámara 5

interprete Vamos ahora a incorporar la descripción del ojo artificial para que POV-Ray lo /* Esta es una descripción de nuestro ojo artificial mirando hacia una esfera con sus índices de refracción coorrespondientes para que se note la diferencia entre la escena sin los índices de refracción solo hemos cubierto la zona izquierda de la cámara con los medios, por lo que resaltará la diferencia */ #include "colorsinc" #include "skiesinc" #declare Punto_focal=<0,0,0> #declare Distancia_origen=100 //distancia en centímetros sky_sphere // fondo de la escena { pigment { gradient y color_map { [001 color White][03 color Gray05] camera{ //nuestro ojo z*-distancia_origen up y*5 right x*5 direction z*15 box {<-4,-3,-983><0,3,-967> //humor vitreo pigment {White filter 1 finish {refraction 1 ior 13 box {<-4,-3,-967><0,3,-936> //Cristalino pigment {White filter 1 finish {refraction 1 ior 145 box {<-4,-3,-936><0,3,-959> //humor acuoso pigment {White filter 1 finish {refraction 1 ior 133 light_source{<0,10,-15>color White sphere {<0,0,0>,5 pigment {color White Descripción 2 El ojo artificial 4 GENERACIÓN DE ESCENAS TRIDIMENSIONALES EN MOVIMIENTO Las escenas en movimiento que se van a generar se corresponden con una secuencia de fotogramas obtenidas a razón de 30 fotogramas por segundo Este número de fotogramas simula una continuidad en las escenas de movimiento Como ejemplo de movimiento generado por POV-Ray, vamos a presentar una escena consistente en un movimiento de traslación de una esfera a lo largo del eje x Para que POV- Ray genere movimiento, se usa la palabra clave clock 6

Figura 5 Secuencia de movimiento de una esfera a lo largo del eje x 7

/* Este pequeño fragmento de programa genera una escena de una esfera efectuando una traslación en el eje de la X */ #include "colorsinc" camera { <0,0,-20> look_at 0 object { sphere {0, 1 pigment {color Blue translate x*-10 translate x*20*clock //efecto de movimiento horizontal light_source { <0, 20, -100> color White Descripción 3 Objeto trasladándose a lo largo del eje x La figura 5 muestra el objeto en movimiento en diferentes instantes de tiempo 5 SIMULACIÓN DE LA VISIÓN ESTEREOSCÓPICA La simulación de la visión estereoscópica consistirá en colocar dos ojos a una distancia entre sí de 5 centímetros y a una distancia de 1 metro del origen de coordenadas y estudiar la escena desde estos dos ojos #declare Sep_ojos=5 #declare Dist_origen=100 //Ojo Izquierdo //Fin de la declaración sphere {<0,0,-30>,5 pigment {color White //Ojo Derecho //Fin de la declaración sphere {<-10,0,0>,5 pigment {color White Descripción 4 Declaración de los dos ojos 8

6 PROPOSICIÓN PARA EL CÁLCULO DE LA DISTANCIA Y LA PROFUNDIDAD DE UN OBJETO Una vez visto todo el planteamiento y la descripción del funcionamiento de las cámaras u ojos, haremos tres proposiciones para el cálculo de la distancia y profundidad de un objeto Este objeto estará en un punto fijo dentro del mundo artificial, para que a la hora de realizar los cálculos se puedan comparar los resultados obtenidos Para nuestras proposiciones utilizaremos una figura de geometría básica para poder facilitar los cálculos, a saber una esfera Estas tres proposiciones son las siguientes: a) Ojos enfocando hacia un punto fijo en el infinito b) Ojos enfocando a un punto fijo cercano c) Ojos enfocando al objeto a) Ojos enfocando hacia un punto fijo en el infinito En este caso, las cámaras estarán en el sistema de coordenadas propuesto, el punto focal será el infinito (teóricamente, ya que dentro de nuestro mundo artificial no podemos definir el infinito) 9

#declare Punto_focal=z*1000000 // infinito =10 Km #declare Sep_ojos=5 //separación de los ojos en centímetros #declare Dist_origen=100 //distancia al origen en centímetros #declare esfera=sphere{<0,0,0>,5 pigment{color White //Declaración del ojo izquierdo //Declaración del ojo derecho Descripción 4 Vista de una esfera a una distancia de un metro del origen fijando la vista en el infinito //Declaración del ojo izquierdo //Declaración del ojo derecho Descripción 5 Vista de una esfera a una distancia de cinco metros del origen fijando la vista en el infinito 10

b) Ojos enfocando hacia un punto fijo cercano En este caso seguimos manteniendo las cámaras en el mismo sistemas de coordenadas, pero enfocando a un punto cercano de nuestro sistema de coordenadas En concreto, tomamos como punto focal el eje de coordenadas <0,0,0> //Declaración del ojo izquierdo //Declaración del ojo derecho Descripción 6 Vista de una esfera a una distancia de un metro del origen fijando la vista en el centro de coordenadas //Declaración del ojo izquierdo //Declaración del ojo derecho Descripción 5 Vista de una esfera a una distancia de cinco metros del origen fijando la vista en el centro de coordenadas 11

c) Ojos enfocando al objeto En este caso planteamos que nuestras cámaras miren o enfoquen al objeto que se desea estudiar, manteniendo la posición de las cámaras Aparece aquí la palabra clave look_at //Declaración del ojo izquierdo //Declaración del ojo derecho Descripción 8 Vista de una esfera a una distancia de un metro del origen fijando la vista en la esfera //Declaración del ojo izquierdo //Declaración del ojo derecho Descripción 9 Vista de una esfera a una distancia de cinco metros del origen fijando la vista en la esfera 12

BIBLIOGRAFIA SD BARNARD & MA FISCHLER (1990) Computational and Biological Models of Stereo Vision Proceedings, Image Understanding Workshop Morgan-Kaufman A ENZMANN (1994) Ray Tracing Worlds with Pov-Ray R FAUCHER (1967) Physique Classe de Première Sections C, D et E Librairie A Hatier Paris AS GLASSNER (1986) An Introduction to Ray Tracing Andrew S Glassner, ed AC GUYTON (1988) Tratado de fisiología médica 6ª edición Interamericana/McGraw- Hill Madrid D MARR (1985) La visión Alianza Psicología,12 Alianza Editorial, Madrid C YOUNG & D WELLS (1994) Ray Tracing Creations: Generate 3D Photorealistic Images on the PC 13