3.8. Tutorial Carretilla

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.8. Tutorial Carretilla"

Transcripción

1 3.8. Tutorial Carretilla Introducción En este tutorial se va a simular el funcionamiento de una carretilla convencional. Se simularán sus dos movimientos principales, esto es, el movimiento de desplazamiento sobre sus ruedas, y el movimiento de elevación de carga llevado a cabo por su sistema de elevación. En cuanto a la traslación, la carretilla se acelerará en un intervalo de tiempo, para a continuación frenarla y obtener la fuerza que se genere en las ruedas delanteras y en las traseras, que son datos importantes para su dimensionamineto. También se estudiará la velocidad de las ruedas a lo largo de la simulación. Figura 110. Tutorial Carretilla 1 Para la elevación, la simulación constará de un proceso de elevación de una caja hasta el tope de la carretilla (1.8 metros). También en este caso se medirá las fuerzas de reacción en las fuerzas delanteras y traseras. El ensamblaje está totalmente definido y restringido en SolidWorks, por lo que se pasará a analizar su movimiento en SolidWorks Motion.

2 SolidWorks Motion En Estudio de movimiento 1 y situarse en la pestaña Análisis de movimiento. Se va a empezar haciendo moverse a la carretilla. En primer lugar, se activará la gravedad, ya que de ello depende el movimiento de la misma. Sin más que en el menú de SolidWorks Motion escoger Gravedad, y en el menú automático seleccionar la componente Y. Figura 111. Carretilla 1 A continuación, se elegirá el motor para la carretilla. Para realizar la simulación, es necesario darles un movimiento de rotación a las ruedas, con lo que se dispondrá un motor rotatorio en las ruedas delanteras, que harán de ruedas motrices. Esta simulación durará 12 segundos, durante los cuales la carretilla debe acelerar para iniciar el movimiento además de elevar la carga mientras decelera su marcha. Se selecciona motor rotativo en el menú de SolidWorks Motion, y en los parámetros se configura como sigue: Dirección, el eje de las ruedas y moviéndose respecto al suelo. La mayor novedad viene a la hora de seleccionar el movimiento. Se escoge la opción Expresión de la velocidad, y en la ventana f(x) se escribe la fórmula que se ve en la imagen. Esta fórmula es una sencilla forma de introducirle al programa el

3 movimiento que se quiere que realice. Lo que se le está ordenando es que, entre los segundos 0 y 10, la velocidad sea de 0 a 90 grados/segundo y de 10 a 11 segundos, esta velocidad vaya en descenso desde esos 90 grados/segundo hasta 0, es decir, se desacelera la carretilla para que ésta se detenga. Figura 112. Carretilla 2 Esta forma de introducir comandos es muy útil en SolidWorks Motion y no solo se utiliza para velocidades, sino que también se puede hacer con desplazamientos y aceleraciones. La arquitectura de la expresión siempre es la misma, variando los parámetros en función de las necesidades. El siguiente paso es definir los contactos entre las ruedas de la carretilla y el suelo. Si no se hiciera esto, el programa no asociaría estos elementos y debido a la gravedad, la carretilla se hundiría. Para definir dichos contactos, en el menú SolidWorks Motion se escoge Contactar y se selecciona como componentes para la operación, las ruedas delanteras ( Wheels_2 ) y el suelo ( Ground ). Puesto que los materiales de ruedas y suelo no se encuentran entre los que hay para escoger, se deshabilita la opción Especificar material y se selecciona Fricción. En este punto, se ponen los parámetros que se ven en la imagen para realizar un contacto con características reales.

4 Figura 113. Carretilla 3 Hacer exactamente lo mismo para definir el contacto entre el suelo y las ruedas traseras. A la hora de seleccionar los componentes de la operación, se escoge en este caso las ruedas traseras ( Wheels_1 ) y el suelo ( Ground ), el resto de parámetros, los mismos. Una vez definidos los contactos entre la carretilla y el suelo, la carretilla ya podría moverse. De hecho, si se simula el modelo en este punto, se ve que la carretilla se mueve, pero debido a la gravedad, y que no hay nada que lo impida, la parte delantera de la carretilla se cae. Para evitar esto, y conseguir además que la carretilla eleve su carga, se deberán realizar dos operaciones. Por una parte, hay que definir un nuevo contacto entre la caja o carga (Crate) y la horquilla (Fork). Como ya se ha visto, se va al menú de SolidWorks Motion y se selecciona Contactar. Se eligen las partes antes citadas y se define el contacto mediante los materiales, tal y como se puede observar.

5 Figura 114. Carretilla 4 El otro paso es simular el mecanismo de elevación. Esto se va a realizar con un motor lineal o actuador, que simula el efecto que tendría un cilindro hidráulico en la realidad. En el menú, se selecciona Motor lineal, y en el campo Movimiento, se escoge Distancia, para que eleve los 1800 mm. de elevación máxima de carretilla a partir del segundo 5 y durante 5 segundos.

6 Figura 115. Carretilla 5 Una vez realizadas todas las operaciones necesarias previas al cálculo del modelo, ya se puede pasar a Calcular. La existencia de numerosos contactos 3D puede hacer que el cálculo de la simulación necesite muchos recursos y el ordenador tarde unos segundos. Para agilizar el proceso se puede bajar la precisión de la simulación en el menú de SolidWorks Motion.

7 Figura 116. Carretilla 6 Una vez simulado el mecanismo, se van a analizar los resultados obtenidos. En primer lugar, se va a estudiar si la velocidad angular de las ruedas es la adecuada, tal y como se definió en el motor mediante la expresión matemática. Para ello, en el menú de resultados se escoge la magnitud de la Velocidades angular en una de las ruedas delanteras, como se ve en la imagen.

8 Figura 117. Carretilla 7 El resultado que se obtiene es el adecuado, con una velocidad inicial de 0 º/s (carretilla parada) que aumenta asta alcanzar los 90º/s y que se mantiene constante hasta el instante t=11, en el que la velocidad comienza a disminuir hasta situarse nuevamente en 0º/s. Figura 118. Resultados 1 Si se repite el proceso para las ruedas traseras, se obtiene:

9 Figura 119. Resultados 2 El resultado para las traseras es muy similar al anterior, ya que a pesar de no tratarse de las ruedas motrices, las ruedas traseras siguen una trayectoria idéntica a las delanteras. Una vez comprobado que la expresión de la velocidad angular introducida es la correcta, se van a analizar las fuerzas que se generan en las ruedas, tanto delanteras como traseras. Para ello, en el menú de SolidWorks Motion, se pincha en Resultados y a continuación se escoge magnitud de las Fuerzas de reacción. Para seleccionar la parte que interesa en este caso, se busca en el árbol de relaciones de posición, y se selecciona Concéntrica 3, que es la relación que une eje y ruedas.

10 Figura 120. Carretilla 8 El gráfico de fuerzas resultante para las ruedas delanteras es el siguiente: Figura 121. Resultados 3 Se opera de igual forma para obtener las reacciones en las ruedas traseras, pero a la hora de seleccionar la relación de posición, se escoge en este caso Concéntrica 2, y se obtiene:

11 Figura 122. Resultados 4 Puede observarse que las fuerzas en las ruedas traseras son inferiores a las que se obtienen en las delanteras, lo cual es lógico, teniendo en cuenta que la mayor parte de la carga recae sobre las primeras al estar mucho más cerca de ellas. También se va a comprobar que el actuador eleva la carga los 1800 mm. que están estipulados. En el menú Resultados se escoge Desplazamiento lineal en el eje Y, y se selecciona LinearMotor 1. Se acepta, y el resultado que se obtiene es el siguiente: Figura 123. Resultados 5 Se observa que la carga esta inicialmente a una altura de 600 mm. sobre el suelo, y que acaba el recorrido a 2000 mm, con lo que el ascenso ha sido de aproximadamente estos 1800 mm. tal y como se buscaba.

12 Y ya por último, se va a comprobar la fuerza necesaria en el cilindro para sustentar la carga y levantarla hasta la altura antes descrita. En el menú Resultados, escogemos Fuerzas, y Fuerza aplicada, seleccionando la componente Y, ya que es la dirección en la que el cilindro realiza el esfuerzo, y además se selecciona Linear Motor 1. Se acepta y se obtiene el resultado deseado. Figura 124. Resultados 6 Se puede ver como a partir del instante en que el cilindro comienza a elevar la carga, la fuerza aumenta, llegando en sus puntos máximos a valores entorno a los 41 KN.

3.7. Tutorial Leva-Válvula.

3.7. Tutorial Leva-Válvula. 3.7. Tutorial Leva-Válvula. 3.7.1. Introducción En este tutorial se explica el funcionamiento de contactos en SolidWorks Motion mediante la utilización de contactos 3D y levas, así como el de los muelles.

Más detalles

3.5. Tutorial Perforadora

3.5. Tutorial Perforadora 3.5. Tutorial Perforadora 3.5.1. Introducción En el tutorial que a continuación se presenta se tratará de simular el funcionamiento real de una perforadora de chapa de aluminio. La perforadora estará alimentada

Más detalles

3.2. Tutorial Cuadrilátero articulado

3.2. Tutorial Cuadrilátero articulado 3.2. Tutorial Cuadrilátero articulado 3.2.1. Introducción Este tutorial explica como diseñar un mecanismo de cuadrilátero articulado utilizando SolidWorks Motion. Como se sabe, un mecanismo de cuatro barras

Más detalles

Figura 64. Tutorial Puerta

Figura 64. Tutorial Puerta 3.3. Tutorial Puerta 3.3.1. Introducción El objetivo de este tutorial es familiarizarse con el uso de muelles y resortes en el entorno de simulación SolidWorks Motion. Este ejercicio de simulación del

Más detalles

3.9. Tutorial Excavadora

3.9. Tutorial Excavadora 3.9. Tutorial Excavadora 3.9.1. Introducción En este tutorial se va a simular el funcionamiento de una retroexcavadora. Como se sabe, el movimiento de una excavadora está gobernado por unos cilindros hidráulicos,

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

2) Explique qué es una fuerza conservativa y dé por lo menos dos ejemplos.

2) Explique qué es una fuerza conservativa y dé por lo menos dos ejemplos. Problemas de repaso 1) Imagine que usted está sosteniendo sobre la palma de su mano un libro que pesa 4 N, de manera que el libro está en reposo. nalice las diferentes situaciones planteadas y complete

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (11h30-13h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (11h30-13h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

SILABO DE SOLIDWORKS 2013 NIVEL IV

SILABO DE SOLIDWORKS 2013 NIVEL IV SILABO DE SOLIDWORKS 2013 NIVEL IV I. INFORMACION GENERAL 1. Pre-requisito: Windows/Solidworks III. 2. Duración: 24 Horas Pedagógicas (50min /Hora) 3. Metodología: Teoría 10% Practica 90% II. III. OBJETIVO

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

s(t = 5) = = 65 m

s(t = 5) = = 65 m TEMA.- CINEMÁTICA.1.- ECUACIÓN DEL MOVIMIENTO..- VELOCIDAD MEDIA Y VELOCIDAD INSTANTÁNEA.3.- MOVIMIENTO RECTILÍNEO UNIFORME.4.- MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO.5.- CAÍDA LIBRE Y TIRO VERTICAL.6.-

Más detalles

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Movimiento rotacional Movimiento circular uniforme. Física 3er curso texto del estudiante.

Más detalles

Cap. 11B Rotación de cuerpo rígido JRW

Cap. 11B Rotación de cuerpo rígido JRW Cap. 11B Rotación de cuerpo rígido JRW 01 Repaso JRW 01 Objetivos: Después de completar este módulo, deberá: Definir y calcular el momento de inercia para sistemas simples.

Más detalles

Ecuación del movimiento

Ecuación del movimiento Cinemática Tema 2 Ecuación del movimiento La ecuación del movimiento nos da la posición en la que se encuentra un móvil en función del tiempo. Esto quiere decir, que dado un valor del tiempo, podemos obtener

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

5.2 ENSAMBLAJES ANIMADOS

5.2 ENSAMBLAJES ANIMADOS 5.2 ENSAMBLAJES ANIMADOS Utilizamos animaciones para aquellas situaciones en las que necesitamos movimiento para analizar el comportamiento del diseño Las animaciones más sencillas se pueden conseguir

Más detalles

CORRECCIÓN DEL EJERCICIO DE AUTOEVALUACIÓN

CORRECCIÓN DEL EJERCICIO DE AUTOEVALUACIÓN CORRECCIÓN DEL EJERCICIO DE AUTOEVALUACIÓN 1. Los datos que debería dar son: la trayectoria (forma del circuito); el punto que se toma como referencia; el criterio de signos; la posición en diferentes

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

VD - Validación del Diseño

VD - Validación del Diseño Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2018 295 - EEBE - Escuela de Ingeniería de Barcelona Este 717 - EGE - Departamento de Expresión Gráfica en la Ingeniería GRADO

Más detalles

Anexo II: Ejemplo de Simulación de un Caso Bidimensional

Anexo II: Ejemplo de Simulación de un Caso Bidimensional ANEXO II: Ejemplo de Simulación de un Caso Bidimensional (Estudio de la Corriente de Salida del Rótor y Comparación de los Resultados Obtenidos Simulando el Difusor de Forma Aislada) Para estudiar la interacción

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones.

Más detalles

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Panasonic Electric Works España Motion Control Agenda Definición de inercia y ejemplos

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica II. Pág. 1 de 7 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica II Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

Seminario. Física SÓLIDO RÍGIDO

Seminario. Física SÓLIDO RÍGIDO Seminario Física SÓLIDO RÍGIDO ENUNCIADO PROBLEMA CHOQUE MASA-VARILLA. Disponemos de una varilla que puede girar libremente en un plano vertical en torno a un eje fijo que pasa por uno de sus extremos.

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014 Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00

Más detalles

2) Una hoja de papel podrá ser retirada de debajo de un envase de leche sin tirarlo si se jala el papel con rapidez. Esto demuestra que:

2) Una hoja de papel podrá ser retirada de debajo de un envase de leche sin tirarlo si se jala el papel con rapidez. Esto demuestra que: ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS EXAMEN PRIMER PARCIAL DE FISICA CONCEPTUAL NOMBRE PARALELO.41 FECHA.06072010 Las preguntas del 1 al 24 valen 2 puntos cada una. JUSTIFIQUE

Más detalles

7. Práctica. 7.1.Estudio de Levas Introducción

7. Práctica. 7.1.Estudio de Levas Introducción 7. Práctica 7.1.Estudio de Levas 7.1.1. Introducción El principal objetivo de la práctica es observar cual es el funcionamiento de las levas y cual es la función que realizan dentro de los mecanismos en

Más detalles

y v y Trayectoria de un proyectil

y v y Trayectoria de un proyectil EXPERIMENTO 1- Lanzamiento Horizontal I OBJETIVO: Comprobar que el lanzamiento de proyectiles es la superposición de dos movimientos: un movimiento a velocidad constante en la dirección horizontal y un

Más detalles

Movimiento Rotacional

Movimiento Rotacional Movimiento Rotacional Yo-yo Diego Jimenez, Tania Castillo, Jeisson Vasco, Angie Domínguez, Fernando Urrego, Cristian Bustamante Fundamentos de Mecánica 22 de marzo de 2017 Resumen En el presente informe

Más detalles

TUTORIAL MODELADO DE PIEZA: TAPETA PEQUEÑA. CONJUNTO: REDUCTOR DE TORNILLO SINFÍN

TUTORIAL MODELADO DE PIEZA: TAPETA PEQUEÑA. CONJUNTO: REDUCTOR DE TORNILLO SINFÍN TUTORIAL MODELADO DE PIEZA: TAPETA PEQUEÑA. CONJUNTO: REDUCTOR DE TORNILLO SINFÍN GENERALIDADES: 1. Las dimensiones de la pieza fueron tomadas del plano N 2.07, perteneciente al conjunto Reductor de Tornillo

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

Capítulo V. V.1 Introducción a las levas. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capítulo V. V.1 Introducción a las levas. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capítulo V V.1 Introducción a las levas 1 Capítulo V Levas V.I Introducción a las levas. 1. Introducción. 2. Clasificación de las levas. 3. Ventajas de las levas. 4. Nomenclatura de las levas. 5. Ángulo

Más detalles

3.-VALIDACIÓN DEL PROGRAMA PFLOW (PFEM) Y DE LAS MODIFICACIONES EFECTUADAS.

3.-VALIDACIÓN DEL PROGRAMA PFLOW (PFEM) Y DE LAS MODIFICACIONES EFECTUADAS. 3.-VALIDACIÓN DEL PROGRAMA PFLOW (PFEM) Y DE LAS MODIFICACIONES EFECTUADAS. 3.1- Introducción. Este apartado sirve para validar tanto la utilidad como las mejoras aportadas al código del programa PFLOW,

Más detalles

Laboratorio de Física ii. Disco de Maxwell. 25 de noviembre de 2015

Laboratorio de Física ii. Disco de Maxwell. 25 de noviembre de 2015 Disco de Maxwell 25 de noviembre de 2015 Carlos Luis Alarcón Robledo Jonathan Estévez Fernández Universidad Complutense de Madrid Curso II del Grado en Ciencias Físicas calarc01@ucm.es jonestev@ucm.es

Más detalles

PRÁCTICA DEMOSTRATIVA N

PRÁCTICA DEMOSTRATIVA N PRÁCTICA DEMOSTRATIVA N 5 (TRABAJO Y ENERGÍA) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M. Ingeniería

Más detalles

Visual Automata Simulator

Visual Automata Simulator Visual Automata Simulator Este documento tiene como objetivo proporcionar una introducción para el uso del simulador VAS (Visual Automata Simulator). En primera instancia, se describirá el uso del simulador

Más detalles

APILADOR MANUAL LIGERO MODELO APML MANUAL DE INSTRUCCIONES

APILADOR MANUAL LIGERO MODELO APML MANUAL DE INSTRUCCIONES APILADOR MANUAL LIGERO MODELO APML MANUAL DE INSTRUCCIONES Por favor lea y guarde estas instrucciones. Léalas cuidadosamente antes de tratar de montar, instalar, operar o dar mantenimiento al producto

Más detalles

Departament d Enginyeria Mecànica i P. Company C. González Ejercicio / 1

Departament d Enginyeria Mecànica i P. Company C. González Ejercicio / 1 Departament d Enginyeria Mecànica i Construcció Ejercicio 09.01 Regleta de conexiones Pedro Company Carmen González 2013 P. Company C. González Ejercicio 09.01 / 1 La figura muestra el dibujo en explosión

Más detalles

GUIA DE FISICA I JUNIO DE 2012 ELABORADA POR: VIRGINIA VELAZQUEZ TREJO

GUIA DE FISICA I JUNIO DE 2012 ELABORADA POR: VIRGINIA VELAZQUEZ TREJO GUIA DE FISICA I JUNIO DE 2012 ELABORADA POR: VIRGINIA VELAZQUEZ TREJO 1A- REALICE LAS SIGUIENTES CONVERSIONES A) 30 m/s a km/h. C) 200 cm 2 a m 2 E) 18 m 3 a cm 3 G) 3500 pies 3 /s a l/h I) 7428 mm a

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,

Más detalles

SIMULADOR DE CARRETILLA ELEVADORA

SIMULADOR DE CARRETILLA ELEVADORA Trabajo fin de Grado SIMULADOR DE CARRETILLA ELEVADORA Autor: Javier Marcote Vázquez Tutores: Daniel Dopico Dopico Alberto Luaces Fernández Julio, 2017 LIM Índice Introducción Software empleado Dinámica

Más detalles

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº6

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº6 ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº6 FACULTAD DE INGENIERÍA 2018 1 CURSO 2018 GUIA DE PROBLEMAS Nº6 PROBLEMA Nº1 En el instante t un sistema de partículas tiene las siguientes velocidades

Más detalles

1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL

1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL UNIVERSIDAD DEL VALLE Departamento de Física Laboratorio de Física Fundamental I Profesor: Otto Vergara. Diciembre 2 de 2012 NOTAS CLASE 4 1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL Figura

Más detalles

Física y Química. 2º ESO. EL MOVIMIENTO El movimiento y las fuerzas

Física y Química. 2º ESO. EL MOVIMIENTO El movimiento y las fuerzas Qué es el movimiento? El movimiento es la acción y efecto de mover o moverse, pero sabemos en realidad si estamos en movimiento? pues no, ya que el movimiento es relativo, es decir, depende del sistema

Más detalles

Recortadores con Diodos

Recortadores con Diodos 1. RECORTADORES En este caso se simularán los diversos tipos de recortadores vistos en la parte teórica y realizados a base de las distintas formas de colocar una fuente de tensión constante y un diodo

Más detalles

Pórtico de 5 vanos y 4 alturas: Esfuerzos

Pórtico de 5 vanos y 4 alturas: Esfuerzos Nivel básico - Ejemplo 8 Pórtico de 5 vanos y 4 alturas: Esfuerzos En este primer ejemplo del nivel básico se realiza un pórtico de 5 vanos y 4 alturas definiendo primero la geometría, se introduce diferentes

Más detalles

MOMENTO DE INERCIA. Práctica de Laboratorio M7. DEPARTAMENTO de FÍSICA de la MATERIA CONDENSADA. Departamento de Física de la Materia Condensada

MOMENTO DE INERCIA. Práctica de Laboratorio M7. DEPARTAMENTO de FÍSICA de la MATERIA CONDENSADA. Departamento de Física de la Materia Condensada eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

Cercha de acero: Esfuerzos - Comprobación acero

Cercha de acero: Esfuerzos - Comprobación acero Nivel básico - Ejemplo 10 Cercha de acero: Esfuerzos - Comprobación acero El objetivo de esta práctica es definir una cercha de acero aplicándole unas cargas puntuales en nudo que simulen las correas y

Más detalles

OLIMPIADAS DE FISICA ETAPA CLASIFICATORIA

OLIMPIADAS DE FISICA ETAPA CLASIFICATORIA OLIMPIADAS DE FISICA ETAPA CLASIFICATORIA PROBLEMA 1: CINEMÁTICA El maquinista de un tren que avanza con una velocidad advierte delante de él, a una distancia, la cola de un tren de carga que se mueve

Más detalles

igrade StarFire itc Apero NS StarFire itc Máquina NS

igrade StarFire itc Apero NS StarFire itc Máquina NS reenstar 2 irade uía de referencia rápida ómo empezar onfiguración común 1. Seleccione irade... irade 2. Seleccione el Menú de configuración... J 3. Escoja... Selección de H I Tipo de control VM1 4. Seleccione

Más detalles

1.2 Modelos Paramétricos

1.2 Modelos Paramétricos 1.2 Modelos Paramétricos Una necesidad frecuente en el proceso de modelado CAD es vincular ciertas medidas mediante criterios de diseño Se pueden crear modelos más versátiles vinculando dinámicamente los

Más detalles

MOVIMIENTO CIRCULAR. Departamento de Física Laboratorio de Electricidad y Magnetismo. 1. Objetivos. 2. Fundamentos teóricos. d dt.

MOVIMIENTO CIRCULAR. Departamento de Física Laboratorio de Electricidad y Magnetismo. 1. Objetivos. 2. Fundamentos teóricos. d dt. Departamento de Física Laboratorio de Electricidad y Magnetismo MOVIMIENTO CIRCULAR 1. Objetivos El objetivo de la práctica es el estudio de los movimientos circular uniforme y circular uniformemente acelerado.

Más detalles

analizar y estudiar las herramientas que MatLab ofrece para realizar la simulación del

analizar y estudiar las herramientas que MatLab ofrece para realizar la simulación del CAPÍTULO 4 Herramientas de MatLab Una vez que se ha estudiado y se conocen tanto las características del robot, como la teoría de los sistemas de control así como la teoría de la lógica difusa, es momento

Más detalles

CARRETILLAS INDUSTRIALES

CARRETILLAS INDUSTRIALES Departamento de Ingeniería Mecánica Universidad Carlos III de Madrid TRANSPORTES INTRODUCCIÓN Utilizadas para mover material sobre caminos variables sin restricción de área. Pueden proporcionar movimientos

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

Repaso General: La Mecánica

Repaso General: La Mecánica DEPARTAMENTO DE EDUCACIÓN ESCUELA ESPECIALIZADA EN CIENCIAS Y MATEMÁTICAS UNIVERSITY GARDENS SAN JUAN I FACULTAD DE CIENCIA Repaso General: La Mecánica I. Conceptos que se evaluarán en el examen: a. Mecánica

Más detalles

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos)

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) Para poder definir el movimiento, se necesitan tres factores: - El SISTEMA DE REFERENCIA es el punto

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS CURSO DE NIVELACIÓN DE CARRERA 1S-2016

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS CURSO DE NIVELACIÓN DE CARRERA 1S-2016 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS CURSO DE NIVELACIÓN DE CARRERA 1S-2016 EVALUACIÓN DE RECUPERACIÓN DE FÍSICA PARA INGENIERÍAS GUAYAQUIL, 15 DE SEPTIEMBRE

Más detalles

PRÁCTICA: ESTADÍSTICA DESCRIPTIVA CON SPSS 1

PRÁCTICA: ESTADÍSTICA DESCRIPTIVA CON SPSS 1 ESTADÍSTICA CURSO 2012/2013 GRADO EN BIOLOGÍA PRÁCTICA: ESTADÍSTICA DESCRIPTIVA CON SPSS 1 1. Introducción El programa estadístico SPSS está organizado en dos bloques: el editor de datos y el visor de

Más detalles

FUNCIONES ELEMENTALES 2ª

FUNCIONES ELEMENTALES 2ª 8 FUNCIONES ELEMENTALES 2ª Parte FUNCIONES ELEMENTALES INTRODUCCIÓN Continuamos en esta segunda parte estudiando las funciones elementales, comenzamos con algunas funciones predefinidas que son de utilidad

Más detalles

Súper L versión 3 2 CONTENIDO. Instalación Activación del programa Definiendo una lotería Nombre de la Lotería:...

Súper L versión 3 2 CONTENIDO. Instalación Activación del programa Definiendo una lotería Nombre de la Lotería:... Súper L versión 3 Súper L versión 3 2 CONTENIDO Instalación... 3 Activación del programa... 4 TUTORIAL y MANUAL DE USO... 5 Definiendo una lotería... 5 Nombre de la Lotería:... 5 Total de Números:... 5

Más detalles

Para comenzar a ejecutar la interfaz se escribirá lo siguiente en la pantalla principal de Matlab: >>proyecto

Para comenzar a ejecutar la interfaz se escribirá lo siguiente en la pantalla principal de Matlab: >>proyecto Capítulo 4. Manual de usuario. En este apartado del proyecto se va a realizar una guía para facilitar el uso del programa, así como dar a conocer sus diferentes opciones y posibilidades. La interfaz se

Más detalles

Robótica Dr. José Antonio Garrido Natarén INGENIERÍA MECATRÓNICA. Unidad 1.- Morfología del robot. 1.2 Estructura mecánica de los robots.

Robótica Dr. José Antonio Garrido Natarén INGENIERÍA MECATRÓNICA. Unidad 1.- Morfología del robot. 1.2 Estructura mecánica de los robots. SECRETARÍA DE EDUCACIÓN PÚBLICA TECNOLÓGICA NACIONAL DE MÉXICO INSTITUTIO TECNOLÓGICO DE VERACRUZ Robótica Dr. José Antonio Garrido Natarén INGENIERÍA MECATRÓNICA Unidad 1.- Morfología del robot 1.2 Estructura

Más detalles

GRADO 10 CREANDO UN MECANISMO DE ROTACIÓN JULIO ESTUPIÑAN ÚME

GRADO 10 CREANDO UN MECANISMO DE ROTACIÓN JULIO ESTUPIÑAN ÚME CREANDO UN MECANISMO DE ROTACIÓN JULIO ESTUPIÑAN GRADO 10 ÚME La guía pretende generar movimientos rotacionales en un mecanismo, adecuando los conceptos de CINEMATICA ROTACIONAL tales como FRECUENCIA,

Más detalles

TEMA 8. EL MOVIMIENTO

TEMA 8. EL MOVIMIENTO - QUÉ CARACTERÍSTICAS DEBEMOS CONOCER PARA ENTENDER UN MOVIMIENTO? TEMA 8. EL MOVIMIENTO - QUÉ TRAYECTORIAS PUEDEN SEGUIR LOS MOVIMIENTOS? - QUÉ SON Y QUÉ DIFERENCIA HAY ENTRE VELOCIDAD Y ACELERACIÓN?

Más detalles

Fuentes Dependientes

Fuentes Dependientes 1. FUENTE TENSIÓN-TENSIÓN 1.1. Circuito La Figura 1 muestra el circuito que se simulará. Consta de una fuente de tensión E1 dependiente de la tensión y de una fuente de tensión constante V1 que será la

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

Tutorial LT-Spice EEST Nro 2 Prof. Milano. Análisis de Barrido en Corriente Directa (CD)

Tutorial LT-Spice EEST Nro 2 Prof. Milano. Análisis de Barrido en Corriente Directa (CD) Análisis de Barrido en Corriente Directa (CD) En entradas anteriores aprendimos a calcular con LTSpice el punto de polarización de un circuito. El resultado de dicho análisis es una impresión de los voltajes

Más detalles

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA Taller de Física Grado: 10º PROFESOR: ELVER RIVAS MOVIMIENTO CIRCULAR

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA Taller de Física Grado: 10º PROFESOR: ELVER RIVAS MOVIMIENTO CIRCULAR INSIUCIÓN EDUCAIVA PEDRO ESRADA aller de Física Grado: 10º PROFESOR: ELVER RIVAS MOVIMIENO CIRCULAR El movimiento circular es un caso particular del movimiento en el plano. La figura 1 muestra una partícula

Más detalles

Las Leyes de Newton. 1. El principio de la inercia. 2. Proporcionalidad entre la fuerza ejercida sobre un cuerpo y la aceleración resultante.

Las Leyes de Newton. 1. El principio de la inercia. 2. Proporcionalidad entre la fuerza ejercida sobre un cuerpo y la aceleración resultante. COMPLEJO EDUCATIVO SAN FRANCISCO Profesor: José Miguel Molina Morales Primer Periodo GUIA DE CIENCIAS FISICAS Segundo Año General Las Leyes de Newton El trabajo teórico de Isaac Newton diferencia dos etapas

Más detalles

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta?

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta? 1. Una persona de masa 70 kg se encuentra sobre una báscula en el interior de un ascensor soportado por un cable. Cuál de las siguientes indicaciones de la báscula es correcta?. a) La indicación es independiente

Más detalles

0RGHODGR\DQiOLVLVSRUHOHPHQWRVILQLWRVGHXQHMHIHUURYLDULRKXHFRXVDQGR Pro-(1*,1((5 De esta manera, la carga total en cada extremo es de: F 18 t 2 9 {t 90 kn{ 90000 N - 90000 Ilustración 84: Características

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto es una medida de su inercia. Se le llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad.

Más detalles

Tema 5: Ensamblajes Simples piezas individuales

Tema 5: Ensamblajes Simples piezas individuales Tema 5: Ensamblajes Simples En los temas anteriores nos concentramos en el dibujo de piezas individuales. En este tema empezaremos a ver como ensamblar un conjunto de piezas, indicar sus posiciones y simular

Más detalles

Introducción a la Meteorología (Licenciatura en Geografía) PRACTICO 4

Introducción a la Meteorología (Licenciatura en Geografía) PRACTICO 4 Introducción a la Meteorología - 2018 (Licenciatura en Geografía) PRACTICO 4 Movimiento circular Ejercicio 1: Encuentre la velocidad angular en radianes por segundo de un disco (LP) de 33 rpm. Cual es

Más detalles

4h tgθ D. Fórmulas especiales para el movimiento compuesto: Movimiento compuesto. * Cuando g =10 m/s 2 y v o = o:

4h tgθ D. Fórmulas especiales para el movimiento compuesto: Movimiento compuesto. * Cuando g =10 m/s 2 y v o = o: CURSO: FISICA SEMANA 4 TEMA: CINEMATICA II Movimiento compuesto Se denomina así a la combinación o superposición de dos o más movimientos simples. Para nuestro caso: x se utilizará la fórmula e=v.t para

Más detalles

VALORES MAXIMOS ADMISIBLES DE LA LONGITUD DE CALCULO AL PANDEO Lf (mm)

VALORES MAXIMOS ADMISIBLES DE LA LONGITUD DE CALCULO AL PANDEO Lf (mm) VALORES MAXIMOS ADMISIBLES DE LA LONGITUD DE CALCULO AL PANDEO Lf (mm) 16 FUERZA 22 28 36 40 45 56 70 80 90 100 110 125 140 160 180 200 220 250 280 320 360 250 800 500 550 1080 750 440 860 1440 1000 370

Más detalles

RESUMEN DE FÍSICA TEMA 3: DINÁMICA. Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad.

RESUMEN DE FÍSICA TEMA 3: DINÁMICA. Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad. TEMA 3: DINÁMICA FUERZA: Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad. Unidades: Newton (N). Nota: Hay otra unidad de fuerza llamada kilopondio=9.8n

Más detalles

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante Física Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

MOMENTO DE INERCIA RUEDA DE MAXWELL. Determinación del momento de inercia de una rueda, que rota y se traslada.

MOMENTO DE INERCIA RUEDA DE MAXWELL. Determinación del momento de inercia de una rueda, que rota y se traslada. MOMENTO DE INERCIA RUEDA DE MAXWELL 1. OBJETIVO Determinación del momento de inercia de una rueda, que rota y se traslada..- FUNDAMENTO TEÓRICO La energía total de una rueda de masa "m" y momento de inercia

Más detalles

Análisis de deformación y dimensionado de un grupo de pilotes

Análisis de deformación y dimensionado de un grupo de pilotes Manual de Ingeniería No. 18 Actualización: 06/2016 Análisis de deformación y dimensionado de un grupo de pilotes Programa: Grupo de pilotes Archivo: Demo_manual_18.gsp El objetivo de este capítulo es explicar

Más detalles

Manual de Uso Java Applet Demostración de Sistemas Caóticos

Manual de Uso Java Applet Demostración de Sistemas Caóticos Manual de Uso Java Applet Demostración de Sistemas Caóticos Se dice que los sistemas presentados en el Applet anterior, shift ([0,1], S) y tienda de campaña ([0,1], T) son caóticos. La demostración de

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

Movimiento I. Objetivos. Con esta unidad se pretende realizar una introducción vectorial al estudio de los movimientos.

Movimiento I. Objetivos. Con esta unidad se pretende realizar una introducción vectorial al estudio de los movimientos. Movimiento I Objetivos Con esta unidad se pretende realizar una introducción vectorial al estudio de los movimientos. Se repasan los conceptos de: Sistema de Referencia, vectores posición y desplazamiento,

Más detalles

Interfaz: Motor de corriente continua

Interfaz: Motor de corriente continua Interfaz: Motor de corriente continua INTRODUCCIÓN En este documento se describe el entorno desarrollado con Ejs. La aplicación tiene dos partes bien diferenciadas (ver Figura 1). En la parte de la izquierda

Más detalles

1. Estudiamos el movimiento de una bolsa de plástico debido al viento y obtenemos la siguiente ecuación de movimiento:

1. Estudiamos el movimiento de una bolsa de plástico debido al viento y obtenemos la siguiente ecuación de movimiento: EXAMEN TIPO CONEMATICA 1º BACHILLERATO 1. Estudiamos el movimiento de una bolsa de plástico debido al viento y obtenemos la siguiente ecuación de movimiento: Calcular: a) Desplazamiento en los tres primeros

Más detalles

AJUSTES AJUSTES. Contenido

AJUSTES AJUSTES. Contenido Contenido AJUSTES Suspensión de la cabina - Si tiene... E-3 Descripción... E-3 Presión de aire... E-3 Calibraciones... E-4 Pantalla de calibración... E-4 Palanca de velocidad de desplazamiento... E-5 Ángulo

Más detalles

Informe técnico 6.2 Simulación de ensamblaje mano

Informe técnico 6.2 Simulación de ensamblaje mano Informe técnico 6.2 Simulación de ensamblaje mano Fecha: martes, 20 de enero de 2015 Diseñador: Nombre de estudio: Análisis de esfuerzos, desplazamientos y factor de seguridad para prótesis de mano derecha

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas El problema de la velocidad. Derivada de una función. Ejemplos de derivadas Un problema relativo a velocidad Sea un proyectil lanzado verticalmente desde el suelo a una velocidad de 45 metros por segundo.

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 18 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles