Variable Compleja. Artemio González López



Documentos relacionados
(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

Ejemplos y problemas resueltos de análisis complejo ( )

Introducción al Análisis Complejo

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

1. Producto escalar, métrica y norma asociada

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos ( )

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

Parte I. Iniciación a los Espacios Normados

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

Variedades Diferenciables. Extremos Condicionados

1. Ecuaciones no lineales

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Aplicaciones Lineales y Multilineales Continuas

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

1. Derivadas parciales

Funciones de varias variables

Apuntes de Matemática Discreta 9. Funciones

3. Operaciones con funciones.

Funciones de varias variables reales

(x + y) + z = x + (y + z), x, y, z R N.

Funciones analíticas CAPÍTULO INTRODUCCIÓN

1. Dominio, simetría, puntos de corte y periodicidad

Tema 2. Espacios Vectoriales Introducción

Análisis III. Joaquín M. Ortega Aramburu

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 2. Función compleja de una variable compleja

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Anexo 1: Demostraciones

1. Definición 2. Operaciones con funciones

Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

SEMANAS 07 Y 08 CLASES 05 Y 06 VIERNES 25/05/12 Y 01/06/12

Tema 3. Problemas de valores iniciales Teoremas de existencia y unicidad

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Subconjuntos destacados en la

Polinomios de Taylor.

CAPÍTULO III. FUNCIONES

FAMILIAS NORMALES VARIABLE COMPLEJA #6

Métodos Matemáticos I

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Tema 10: Límites y continuidad de funciones de varias variables

LÍMITES Y CONTINUIDAD DE FUNCIONES

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

Anexo 2: Demostraciones

Aplicaciones lineales continuas

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Transformaciones canónicas

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

1.4.- D E S I G U A L D A D E S

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

Tema 3. Espacios vectoriales

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

EJERCICIOS DE FUNCIONES REALES

Semana 08 [1/15] Axioma del Supremo. April 18, Axioma del Supremo

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Números y desigualdades

Tema 2 Límites de Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

FUNCIONES CUADRÁTICAS Y RACIONALES

PROBLEMA [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

2.2 Transformada de Laplace y Transformada Definiciones Transformada de Laplace

1. Números Reales 1.1 Clasificación y propiedades

Departamento de Matemáticas

3.1 DEFINICIÓN. Figura Nº 1. Vector

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA

9.1 Primeras definiciones

2.1.5 Teoremas sobre derivadas

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

Números Reales. MathCon c

VII. Estructuras Algebraicas

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Dominios de factorización única

Límite y continuidad de funciones de varias variables

Tema 5.2: Comportamiento local de una función holomorfa. Teoremas de la aplicación abierta y de la función inversa

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

1. El teorema de la función implícita para dos y tres variables.

Funciones, x, y, gráficos

Tema 7. Límites y continuidad de funciones

2. Vector tangente y gráficas en coordenadas polares.

Aproximación local. Plano tangente. Derivadas parciales.

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Introducción 1

Estructuras algebraicas

Tema 8.3: Teorema de Riemann (fundamental) de la Representación Conforme. Clasi cación de los abiertos simplemente conexos del plano

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

1-Comportamiento de una función alrededor de un punto:

3. Funciones reales de una variable real. Límites. Continuidad 1

C 4 C 3 C 1. V n dσ = C i. i=1

Teorema de Green Curvas de Jordan

1. Teorema del Valor Medio

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 2 Límites de Funciones

Transcripción:

Variable Compleja Artemio González López Madrid, septiembre de 2003

Índice general 1. Funciones analíticas 1 1.1. Definición y propiedades algebraicas de los números complejos.............................. 1 1.2. Módulo y argumento. Fórmula de de Moivre. Raíces. Conjugación.............................. 3 1.2.1. Argumento.............................. 4 1.2.2. Fórmula de de Moivre........................ 6 1.2.3. Raíces n-ésimas............................ 6 1.3. La función exponencial, funciones trigonométricas e hiperbólicas, logaritmos y potencias................................ 7 1.3.1. Función exponencial......................... 7 1.3.2. Funciones trigonométricas e hiperbólicas.............. 8 1.3.3. Logaritmos.............................. 9 1.3.4. Potencias complejas......................... 11 1.4. Límites y continuidad............................ 11 1.4.1. Límites................................ 12 1.4.2. Continuidad.............................. 12 1.5. Derivabilidad................................. 13 1.5.1. Ecuaciones de Cauchy Riemann.................. 13 1.5.2. Regla de la cadena.......................... 15 1.5.3. Teorema de la función inversa.................... 16 1.5.4. Transformaciones conformes..................... 17 1.5.5. Funciones armónicas......................... 17 2. El teorema de Cauchy 20 2.1. Integración sobre arcos: definición y propiedades elementales........................... 20 2.2. Teorema de Cauchy Goursat. Homotopía. Antiderivadas................................. 24 2.2.1. Homotopía. Teorema de Cauchy.................. 26 2.3. Índice. Fórmula integral de Cauchy y sus consecuencias.............................. 27 2.3.1. Índice................................. 27 2.3.2. Fórmula integral de Cauchy..................... 27 2.3.3. Fórmula integral de Cauchy para las derivadas.......... 28 2.3.4. Desigualdades de Cauchy...................... 30 2.3.5. Teorema de Liouville......................... 30 2.3.6. Teorema de Morera......................... 30 i

ÍNDICE GENERAL ii 2.3.7. Teorema fundamental del Álgebra................. 31 2.4. Principio del módulo máximo. Propiedad del valor medio........ 31 2.4.1. Propiedad del valor medio...................... 31 2.4.2. Principio del módulo máximo.................... 32 2.4.3. Principio del módulo máximo global................ 33 3. Representación de funciones analíticas mediante series 34 3.1. Convergencia de sucesiones y series de funciones................................... 34 3.1.1. Sucesiones y series de números complejos............. 34 3.1.2. Sucesiones y series de funciones. Convergencia uniforme................................ 35 3.2. Convergencia de series de potencias. Teoremas de Taylor y Laurent........................ 37 3.2.1. Series de potencias.......................... 37 3.2.2. Teorema de Taylor.......................... 39 3.2.3. Teorema de Laurent......................... 41 3.2.4. Clasificación de singularidades aisladas............... 42 4. Cálculo de residuos 45 4.1. Métodos para el cálculo de residuos..................... 45 4.2. Teorema de los residuos........................... 46 4.3. Cálculo de integrales definidas........................ 47 4.3.1. f(x)dx.............................. 47 4.3.2. Integrales trigonométricas: 4.3.3. Transformadas de Fourier: 4.3.4. Transformadas de Mellin: 2π 0 0 R(cos θ,sen θ)dθ......... 49 e iωx f(x)dx............ 49 x a 1 f(x)dx, a / Z........ 51 4.4. Valor principal de Cauchy.......................... 53 4.4.1. 0 f(x)log xdx, f real y par................... 57

Capítulo 1 Funciones analíticas 1.1. Definición y propiedades algebraicas de los números complejos Definición 1.1. C = { R 2,+, }, con la suma y el producto definidos por Justificación: (x 1,y 1 ) + (x 2,y 2 ) = (x 1 + x 2,y 1 + y 2 ) (x 1,y 1 ) (x 2,y 2 ) = (x 1 x 2 y 1 y 2,x 1 y 2 + x 2 y 1 ). La suma y la multiplicación de los pares de la forma (x,0) C coinciden con la de los números reales x R = (x,0) x R = R = {(x,0) : x R} C i = (0,1) = i 2 = i i = (0,1) (0,1) = ( 1,0) = 1. (x,y) = (x,0) + (0,y) = (x,0) + (0,1)(y,0) = x + iy = (x 1 + iy 1 )(x 2 + iy 2 ) = (x 1 x 2 y 1 y 2 ) + i(x 1 y 2 + x 2 y 1 ) es la fórmula tradicional para multiplicar los números complejos x 1 + iy 1 y x 2 + iy 2. z = x + iy = x = Re z, y = Im z. Al ser C = R 2 (como conjuntos), la igualdad en C se define mediante z = x + iy = w = u + iv x = u,y = v En particular, z = x + iy = 0 x = y = 0. Proposición 1.2. C es un cuerpo: para todo z,w,s C se cumple z + w = w + z z w = w z z + (w + s) = (z + w) + s z (w s) = (z w)s z + 0 = z 1z = z z C t.q. z + ( z) = 0 z 0 = z 1 C t.q. z z 1 = 1 z(w + s) = z w + z s. 1

CAPÍTULO 1. FUNCIONES ANALÍTICAS 2 Demostración. Obviamente, z = x + iy = z = x iy. La existencia de inverso resp. del producto para todo z = x + iy 0 se deduce del siguiente cálculo: Notación: z 1 = u + iv = z z 1 = (xu y v) + i(xv + y u) = 1 { xu y v = 1 y u + xv = 0 x u = x 2 + y 2, v = y x 2 + y 2 (z 0 x 2 + y 2 0) z 1 x = x 2 + y 2 i y x 2 + y 2. z w = z w 1, z n = z z z } {{ } n veces C no es un cuerpo ordenado: si lo fuera, (n N). i 2 = i i = 1 0. Raíces cuadradas (método algebraico): Si z = x + iy, queremos hallar todos los w = u + iv C tales que w 2 = z: w 2 = z u 2 v 2 + 2iuv = x + iy { u 2 v 2 = x 2uv = y = x 2 + y 2 = (u 2 + v 2 ) 2 = u 2 + v 2 = x 2 + y 2 = u 2 = 1 2 (x + x 2 + y 2 ), v 2 = 1 2 ( x + x 2 + y 2 ) ( ) x+ x ± 2 +y 2 x+ x 2 + i sig y 2 +y 2 2, y 0 = w = ± x, y = 0, x 0 ±i x, y = 0, x < 0. Las raíces cuadradas de un número complejo z 0 son dos números complejos distintos (de signos opuestos). Las raíces cuadradas de z son reales si y sólo si z R + {0}, e imaginarias puras si y sólo si z R. Ejemplo 1.3. Las raíces cuadradas de 3 4i son ( ) 8 2 ± 2 i = ±(2 i). 2 Los siguientes resultados, bien conocidos en el campo real, son consecuencia inmediata de la estructura de cuerpo que posee C: Las ecuaciones cuadráticas con coeficientes complejos se pueden resolver utilizando la fórmula usual: az 2 + bz + c = 0 z = 1 ( b ± ) b 2a 2 4ac a,b,c C.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 3 El teorema del binomio de Newton es válido en el campo complejo: (a + b) n = n i=0 ( ) n a i b n i, a,b C, n N. i 1.2. Módulo y argumento. Fórmula de de Moivre. Raíces. Conjugación. Geométricamente, los números complejos se pueden identificar con los puntos del plano haciendo corresponder al complejo z = x + iy el punto (x,y). De ahí que el conjunto C reciba el nombre de plano complejo. Es también corriente cuando se utiliza esta representación geométrica de C denominar eje real al eje horizontal y eje imaginario al vertical (fig. 1.1). y z x z Figura 1.1: Plano complejo. Si z = x + i y C, se definen el módulo y el complejo conjugado de z respectivamente como sigue: z = x 2 + y 2 z = x iy = Rez = 1 2 (z + z), Im z = 1 2i (z z) Propiedades: i) z = z ii) z + w = z + w iii) z w = z w = 1/z = 1/z iv) z = z z 0 z 1 = z v) zz = z 2 = z 2 z = 1 z = z 1 (distancia al origen) (reflexión respecto del eje real)

CAPÍTULO 1. FUNCIONES ANALÍTICAS 4 vi) z w = z w (elevar al cuadrado) = z 1 = z 1 vii) w 0 = z/w = z/w, z/w = z / w (consecuencia de iii) y vi)) viii) Rez z, Im z z ( z Rez,Im z z ) Desigualdad triangular: z + w z + w z + w 2 = (z + w)(z + w) = z 2 + w 2 + (zw + zw) = z 2 + w 2 + 2Re(zw) Consecuencias: z 2 + w 2 + 2 zw = z 2 + w 2 + 2 z w = ( z + w ) 2. i) z w z w z = (z w) + w z w + w = z w z w ; cambiando z por w se obtiene w z z w. ii) z > w = 1 z w 1 z w 1.2.1. Argumento z θ Dado 0 z C, existe θ R t.q. Figura 1.2: Definición de argumento. z = z (cos θ + i sen θ) (fig. 1.2). El número θ está definido módulo un múltiplo entero de 2π. Por ejemplo, z = 1 = θ {0, ±2π, ±4π,... } = {2k π : k Z}. Definición 1.4. arg z (argumento de z): cualquier θ t.q. z = z (cos θ +i sen θ). = arg no es una función. arg z = cualquiera de los ángulos orientados formados por el vector z con el eje real positivo. Ejemplos: arg i {π/2 + 2k π : k Z} arg( 1 i) {5π/4 + 2k π : k Z} = { 3π/4 + 2k π : k Z}.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 5 Para que θ sea único, basta imponerle la condición adicional de que pertenezca a un cierto intervalo semiabierto I de longitud 2π (como [0,2π), ( π,π], etc.) Escoger este intervalo I se conoce como tomar una determinación del argumento = arg I : C {0} I arg I (z) = único valor de arg z que pertenece a I Ejemplo: arg [0,2π) ( 1 i) = 5π/4, arg ( π,π] ( 1 i) = 3π/4. Determinación principal del argumento: Arg = arg ( π,π] Ejemplo: 1 i 1 1 i i 1 i Arg 0 π/2 π 3π/4 π/2 π/4 Claramente, Arg : C {0} ( π,π] es discontinua en R {0}. Análogamente, arg [0,2π) es discontinua en R + {0}. En general, arg [θ0,θ 0 +2π) (ó arg (θ0,θ 0 +2π]) es discontinua en la semirrecta cerrada que forma un ángulo θ 0 con el semieje real positivo. Forma trigonométrica ó polar de los números complejos: z 0 = z = r(cos θ + i sen θ), r = z, θ = arg z. z,w 0; z = w ( z = w, arg z = arg w mod 2π ). Interpretación geométrica del producto en C: z 1 z 2 = r 1 (cos θ 1 + i sen θ 1 )r 2 (cos θ 2 + i sen θ 2 ) = r 1 r 2 [(cos θ 1 cos θ 2 senθ 1 sen θ 2 ) + i(cos θ 1 sen θ 2 + sen θ 1 cos θ 2 )] = r 1 r 2 [cos(θ 1 + θ 2 ) + i sen(θ 1 + θ 2 )] De este cálculo se sigue que z 1 z 2 = z 1 z 2 y arg(z 1 z 2 ) = arg z 1 + arg z 2 mod 2π. (1.1) Arg(z 1 z 2 ) Arg z 1 + Arg z 2. Por ej., Arg( i) = π/2 Arg( 1) + Arg i = 3π/2. Consecuencias: (zz 1 = 1 ) arg(z 1 ) = arg z mod 2π (zz = z 2 0 ) arg(z) = arg z mod 2π (w 0 z/w w = z ) arg(z/w) = arg z arg w mod 2π.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 6 1.2.2. Fórmula de de Moivre A partir de (1.1) se demuestra por inducción la fórmula de de Moivre: z = r(cos θ + i sen θ) = z n = r n[ cos(nθ) + i sen(nθ) ], n N. z 1 = r 1[ cos( θ) + isen( θ) ] = la fórmula vale para todo n Z. Ejemplo: (cos θ + i sen θ) 3 = cos(3θ) + i sen(3θ) 1.2.3. Raíces n-ésimas = (cos 3 θ 3cos θ sen 2 θ) + i(3cos 2 θ sen θ sen 3 θ) cos(3θ) = cos 3 θ 3cos θ sen 2 θ = sen(3θ) = 3cos 2 θ sen θ sen 3 θ. Si z = r(cos θ + i sen θ) 0, hallemos todas las soluciones w C de la ecuación w n = z (n N): w 0 = w = ρ(cos ϕ + i sen ϕ) w n = ρ n[ cos(nϕ) + i sen(nϕ) ] = r(cos θ + i sen θ) ρ n = r ρ = n r r 1/n nϕ = θ + 2kπ, k Z [ ( w = n θ r cos n + 2kπ ) ( θ + i sen n n + 2kπ )], k = 0,1,...,n 1. n = un número complejo no nulo tiene n raíces n-ésimas distintas. Ejemplo: ( π w 3 = i w = cos 6 + 2kπ ) ( π + i sen 3 6 + 2kπ ), k = 0,1,2 3 w = 1 2 ( 1 3 + i), 2 ( 3 + i), i. En particular, las n raíces n-ésimas de la unidad (z = 1) son los números ( ) ( ) 2kπ 2kπ ɛ k = cos + i sen, k = 0,1,...,n 1 n n (vértices de un polígono regular de n lados inscrito en la circunferencia unidad). Nótese que ɛ k = ɛ k, siendo ɛ = ɛ 1 = cos ( ) ( 2π n + i sen 2π ) n. Ejemplo: las raíces sextas de la unidad son [ ( π ( π )] k 1 cos + i sen = 3) 3 2 k (1 + i 3) k, k = 0,1,...,5 1 = 1, 2 (1 + i 1 3), 2 ( 1 + i 3), 1, 1 2 (1 + i 3), 1 2 (1 i 3).

CAPÍTULO 1. FUNCIONES ANALÍTICAS 7 Ejercicio. Probar que las n raíces n-ésimas de z 0 están dadas por donde n z denota cualquier raíz n-ésima de z. n z ɛ k, k = 0, 1,...,n 1, 1.3. La función exponencial, funciones trigonométricas e hiperbólicas, logaritmos y potencias 1.3.1. Función exponencial Si t R, e t = cos t = sen t = k=0 k=0 t k k! ( 1) k t2k (2k)! ( 1) k t 2k+1 (2k + 1)!. k=0 Sea z = x + iy C; la propiedad e t 1+t 2 = e t 1 e t 2 sugiere definir e z = e x e iy. A su vez, procediendo formalmente se obtiene e iy = n=0 i nyn n! = k=0 2k y2k i (2k)! + i k=0 i 2k y 2k+1 (2k + 1)! = cos y + isen y (ya que i 2k = (i 2 ) k = ( 1) k ). Definición 1.5. Para todo z = x + iy C (x,y R), definimos e z = e x (cos y + i sen y). Nota: Si z R, la exponencial compleja se reduce a la exponencial real. Valores particulares: e 0 = 1, e iπ/2 = i, e iπ = 1, e 3πi/2 = i, e 2πi = 1. Propiedades: Para todo z,w C se tiene i) e z+w = e z e w. ii) e z 0, para todo z C. iii) e z = e Re z, arg(e z ) = Imz mod 2π. iv) e z = 1 z = 2kπi, con k Z. v) e z es una función periódica, cuyos períodos son los números 2kπi con k Z. Demostración:

CAPÍTULO 1. FUNCIONES ANALÍTICAS 8 i) z = x + iy, w = u + iv = e z e w = e x (cos y + isen y)e u (cos v + isen v) = e x+u [cos y cos v sen y sen v + i(sen y cos v + cos y sen v)] = e x+u [cos(y + v) + i sen(y + v)] = e z+w. ii) e 0 = 1 = e z e z = 1 = (e z ) 1 = e z. iii) Obvio. iv) e z = e x (cos y + isen y) = 1 e x = 1, y = 0 mod 2π x = 0, y = 2kπ (k Z). v) e z = e z+w e w = 1 w = 2kπi (k Z). z = z e i arg z ; e z = e z. 1.3.2. Funciones trigonométricas e hiperbólicas Si y es real entonces e iy = cos y + i sen y, e iy = cos y i sen y = cos y = 1 2 Definición 1.6. Para todo z C se define cos z = 1 2 ( e iz + e iz), sen z = 1 2i ( e iy + e iy), sen y = 1 2i ( e iz e iz). ( e iy e iy). (De nuevo, si z es real cos z y sen z se reducen a las correspondientes funciones reales.) Propiedades: para todo z,w C se tiene i) cos( z) = cos(z), sen( z) = senz. ii) cos(z + w) = cos z cos w sen z sen w, sen(z + w) = sen z cos w + cos z sen w. iii) cos z = sen ( π 2 z) = sen ( π 2 + z). iv) cos 2 z + sen 2 z = 1. v) cos z = cos(z), sen z = sen(z). vi) sen z = 0 z = kπ (k Z). vii) cos z y sen z son funciones periódicas de período 2kπ, con k Z. Demostración: i) Trivial.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 9 ii) Por ejemplo cos z cos w sen z sen w = 1 4 iii) Caso particular de las fórmulas anteriores ( e iz + e iz) ( e iw + e iw) + 1 4 = 1 2 (eiz e iw + e iz e iw ) = cos(z + w). iv) Hacer w = z en la fórmula para cos(z + w). v) Consecuencia de e w = e w. vi) sen z = 0 e iz e iz = 0 e 2iz = 1 2iz = 2kπi (k Z) z = kπ (k Z). ( e iz e iz)( e iw e iw) vii) Por el apartado iii), basta probar la afirmación para la función sen. La igualdad sen(z + w) = sen z es equivalente a (e i(2z+w) 1)(e iw 1) = 0. Para que esta igualdad se cumpla para todo z C para un w fijo es necesario y suficiente que e iw 1 = 0, es decir que iw sea un múltiplo entero de 2πi. tan z = sen z/cos z, sec z = 1/cos z (z π/2 + kπ, k Z); cot z = cos z/sen z = 1/tan z, csc z = 1/sen z (z kπ, k Z). Funciones hiperbólicas: para todo z C se define cosh z = cos(iz), cosh z = 1 2 ( e z + e z), senhz = 1 2 senh z = isen(iz) ( e z e z). De aquí se deducen las propiedades de las funciones hiperbólicas. Por ejemplo: cosh 2 z senh 2 z = 1. sen z = sen(x + iy) = sen xcos(iy) + cos xsen(iy) = sen xcosh y + i cos xsenh y. tanh z = senhz/cosh z = itan(iz) (z iπ/2 + kπi, k Z). 1.3.3. Logaritmos En R, exp : R R + (exp(t) = e t ) es una aplicación biyectiva. Su inversa es la función log : R + R. Por definición, log x = y x = e y (= x > 0). En C, exp no es invertible al no ser inyectiva (por ser periódica). De hecho, se tiene: e w = z = z 0; w = u + iv = e u (cos v + isen v) = z 0 { e u = z u = log z v = arg z mod 2π w = log z + i arg z mod 2πi.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 10 Si z 0, la ecuación e w = z tiene infinitas soluciones, que difieren entre sí en múltiplos enteros de 2πi. Si I es un intervalo semiabierto de longitud 2π, podemos escribir z 0, e w = z w = log z + i arg I z + 2kπi, k Z. A cada uno de estos (infinitos) w se les denomina logaritmos de z 0. Ejemplo: e w = 2i w = log 2 iπ 2 + 2kπi (k Z). Definición 1.7. Se define la determinación I del logaritmo mediante log I z = log z + iarg I z, z 0. Nótese que log I : C {0} {s C : Im s I} es una función. La determinación principal del logaritmo se define por Log = log ( π,π]. Ejemplo: Log( 2i) = log 2 iπ 2, Log( 1) = iπ, Log(1 i) = 1 2 log 2 iπ 4. Propiedades: i) Para todo z 0, e log I z = z. ii) log I (e w ) = w mod 2πi. En particular, log I (e w ) = w Imw I. iii) log I : C {0} {s C : Im s I} es biyectiva. iv) z,w 0 = log I (z w) = log I z + log I w mod 2πi. Demostración: i) z 0 = e log I z = e log z +i arg I z = e log z e i arg I z = z e i arg I z = z. ii) w = u + iv = log I (e w ) = log(e u ) + iarg I (e w ) = u + iv mod 2πi, ya que arg I (e w ) = Im w mod 2πi. log I (e w ) = w = Imw I porque Im(log I z) I para todo z 0. Recíprocamente, si Im w I entonces log I (e w ) = w porque ambos miembros son iguales módulo 2πi y sus partes imaginarias pertenecen a I. iii) Hay que probar que para todo w con Im w I existe un único z C {0} tal que log I z = w. Esto es cierto por los apartados anteriores, siendo z = e w. iv) Las exponenciales de ambos miembros coinciden; por tanto, esta propiedad se sigue de la prop. ii). Otra forma de deducir esta propiedad es observando que log I (zw) = log zw + iarg I (zw) = log( z w ) + i(arg I z + arg I w) mod 2πi = log z + log w + i(arg I z + arg I w) mod 2πi = (log z + iarg I z) + (log w + iarg I w) mod 2πi = log I z + log I w mod 2πi. Nota: En general, Log(zw) Log z + Log w. Por ejemplo, Log( i) = πi 2 Log( 1) + Log i = iπ + iπ 2 = 3πi 2.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 11 1.3.4. Potencias complejas Si a,b C y a 0,e, definimos a b = e b log a donde log a = log I a + 2kπi, k Z. Por tanto, en general a b denota un conjunto de números complejos: Más concretamente, se tiene: a b = e 2kbπi e b log I a, k Z. i) b Z = a b tiene un valor único ( = } a a {{ a} ). b veces ii) Si b = p/q Q, con p Z y 1 < q N primos entre sí, entonces a b = a p/q toma exactamente q valores (las q raíces q-ésimas de a p ). iii) En los demás casos (b C Q), a b tiene infinitos valores que difieren entre sí en un factor de la forma e 2kbπi, con k Z. Ejemplo: ( 1 + i) i = e i[log( 1+i)+2kπi] = e 2kπ e i( 1 2 = e 5π 4 +2nπ e i 2 log 2 (n Z). log 2+3πi 4 ) (k Z) Si a 0, cada determinación de log define una función a z ( = e z log I a ). Ejercicio: dados a,b C con a 0, estudiar si se cumple la igualdad 1.4. Límites y continuidad Algunos conceptos topológicos: a b+c = a b a c. i) Disco abierto de centro a C y radio r > 0 (entorno): D(a;r) = {z C : z a < r}. ii) Entorno perforado de a C D(a;r) {a} = {z C : 0 < z a < r}. iii) A C es abierto si contiene un entorno de cada uno de sus puntos: iv) A C cerrado C A es abierto. a A, r > 0 t.q. D(a;r) A. v) A C es compacto A es cerrado y acotado ( R > 0 t.q. A D(0;R)). vi) A C abierto es conexo si para todo par de puntos z,w A hay una curva continua : [0,1] A t.q. (0) = z, (1) = w. vii) Una región ó dominio es un subconjunto abierto conexo y no vacío de C.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 12 1.4.1. Límites Notación: En lo que sigue, A y B denotan conjuntos abiertos, f : A C z = x + iy f(z) = u(x,y) + iv(x,y). u : A R 2 R y v : A R 2 R (la parte real e imaginaria de f, resp.) son funciones escalares reales. Si f : A C está definida en A {a} y l C, lím z a f(z) = l Propiedades de los límites: ɛ > 0 δ > 0 t.q. z A y 0 < z a < δ = f(z) l < ɛ. i) Si existe (es un número complejo) lím z a f(z), dicho límite es único. ii) lím z a f(z) = l lím u(x,y) = Rel y lím (x,y) a iii) lím z a [f(z) + g(z)] = lím z a f(z) + lím z a g(z). iv) lím z a [f(z)g(z)] = lím z a f(z) lím z a g(z). 1 v) lím g(z) 0 = lím z a z a g(z) = 1 lím g(z). z a v(x,y) = Iml. (x,y) a Nota: En iii) y iv), la existencia del MD implica la del MI, pero no nec. viceversa. Demostración: i) iii) son propiedades conocidas de los límites de funciones R 2 R 2 iv) v) se demuestran como en el caso real (reemplazando el valor absoluto por el módulo). 1.4.2. Continuidad f : A C definida en A es continua en a A si lím z a f(z) = f(a). En particular, f continua en a = f definida en un entorno de a. f : A C continua en A si y sólo si f es continua en todos los puntos de A. Propiedades: i) f y g continuas en a = f + g y fg continuas en a. ii) Si, además, g(a) 0, entonces f/g es continua en a. iii) f : A C continua en a y h : B C continua en f(a) B = h f continua en a. Ejemplo: los polinomios y las funciones racionales son continuos en todos los puntos de su dominio.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 13 1.5. Derivabilidad f : A C definida en A es derivable (en sentido complejo) en a A si existe f(z) f(a) lím f (a). z a z a f : A C es analítica (ó holomorfa) en A si es derivable en todos los puntos de A. f es analítica en C (conjunto arbitrario) si es analítica en un abierto A C f es analítica en un entorno de cada punto de C. En particular, f es analítica en a si es derivable en un entorno de a. (Nótese que f analítica en a es más fuerte que f derivable en a.) f : A C derivable en a A = f continua en a: [ ] f(z) f(a) f(z) f(a) lím [f(z) f(a)] = lím (z a) = lím lím(z a) z a z a z a z a z a z a Propiedades algebraicas: = f (a) 0 = 0. Si f : A C y g : A C son derivables en z A, y a,b C, se tiene: i) af + bg es derivable en z, siendo (af + bg) (z) = af (z) + bg (z). ii) fg es derivable en z, siendo (fg) (z) = f (z)g(z) + f(z)g (z). iii) Si g(z) 0, f/g es derivable en z y Ejemplo: polinomios y funciones racionales. (f/g) (z) = g(z)f (z) f(z)g (z) g(z) 2. 1.5.1. Ecuaciones de Cauchy Riemann Sea a = a 1 + ia 2 C, y sea M a : C R 2 C R 2 la aplicación lineal definida por M a ( z = az, z ) C. Entonces la matriz de M a (en la base canónica {1,i} de R 2 a1 a ) es 2. a 2 a 1 f : A C definida en el abierto A es diferenciable (en sentido real) en z 0 A si existe una aplicación lineal Df(z 0 ) : R 2 C R 2 C tal que f(z) f(z 0 ) Df(z 0 ) (z z 0 ) lím = 0. z z 0 z z 0 (Nótese que el módulo de z = x+iy es la norma del vector (x,y).) A la aplicación Df(z 0 ) se le denomina derivada (en sentido real) de f en z 0.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 14 Teorema 1.8. Sea f = u+iv : A C definida en el abierto A, y sea z 0 = x 0 +iy 0 A. Entonces f es derivable en sentido complejo en z 0 si y sólo si se cumple: i) f es diferenciable en sentido real en (x 0,y 0 ). ii) Se satisfacen las ecuaciones de Cauchy Riemann u x (x 0,y 0 ) = v y (x 0,y 0 ), u y (x 0,y 0 ) = v x (x 0,y 0 ). Demostración. = ) f es diferenciable (en sentido real) en z 0 = (x 0,y 0 ) con derivada Df(z 0 ) = M f (z 0 ), ya que f(z) f(z 0 ) f (z 0 )(z z 0 ) lím = lím f(z) f(z 0 ) f (z 0 )(z z 0 ) z z 0 z z 0 z z0 z z 0 = lím f(z) f(z 0 ) z z0 f (z 0 ) z z 0 = 0. Sea u x = u x (x 0,y 0 ), y análogamente u y,v x,v y. Igualando la matriz de Df(z 0 ) en la base canónica de R 2 (matriz jacobiana) con la de M f (z 0 ) se obtiene ( ) ux u y = v x v y ( Re f (z 0 ) Im f ) (z 0 ) Imf (z 0 ) Ref, (z 0 ) de donde se obtienen las ecs. de Cauchy Riemann, junto con las relaciones f (z 0 ) = u x + iv x = v y iu y. =) Por las ecs. de Cauchy Riemann, la matriz jacobiana de f en z 0 es ( ) ux v x = M c, v x u x siendo c = u x + iv x. De esto se sigue que Df(z 0 ) (z z 0 ) = c(z z 0 ), y por tanto f(z) f(z 0 ) c(z z 0 ) 0 = lím = lím f(z) f(z 0 ) z z0 z z 0 z z0 c z z 0 f (z 0 ) = c u x + iv x = v y iu y. De la demostración del teorema se sigue que si f = u + iv es derivable en sentido complejo en z 0 = x 0 + iy 0 entonces f (z 0 ) = u x (x 0,y 0 ) + iv x (x 0,y 0 ) f x (z 0) = v y (x 0,y 0 ) iu y (x 0,y 0 ) 1 i f y (z 0). El teorema anterior puede formularse también de la siguiente forma alternativa:

CAPÍTULO 1. FUNCIONES ANALÍTICAS 15 Teorema 1.9. Sea f : A C definida en un abierto A, y sea z 0 = x 0 + iy 0 A. Entonces f es derivable en sentido complejo en z 0 si y sólo si se cumplen las siguientes condiciones: i) f es diferenciable en sentido real en (x 0,y 0 ) ii) Existe c C tal que Df(x 0,y 0 ) = M c. Además, si f es derivable en z 0 entonces c = f (z 0 ). f : A C analítica en una región A y f = 0 en A = f constante en A. En efecto, f derivable en sentido complejo en a implica que f es derivable en sentido real en dicho punto, siendo Df(a) = M f (a) = 0. El resultado anterior se sigue entonces del resultado análogo para funciones R n R m. 1.5.2. Regla de la cadena Si f : A C es derivable en z y g : B C es derivable en f(z) B, entonces g f es derivable en z, y se tiene (g f) (z) = g ( f(z) ) f (z). (1.2) En efecto, f y g son derivables en sentido real en z y f(z), resp., siendo Df(z) = M f (z) y Dg ( f(z) ) = M g (f(z)). Por la regla de la cadena para funciones de R n en R m, g f es derivable en sentido real en z, y se tiene: D(g f)(z) = Dg ( f(z) ) Df(z) = M g (f(z)) M f (z) = M g (f(z))f (z), que implica (1.2) por el Teorema 1.9. Derivabilidad de las funciones exponenciales y trigonométricas: f(z) = e z = u(x,y) = e x cos y, v(x,y) = e x sen y = u y v derivables (de clase C ) en R 2. Además, u x = e x cos y = v y, u y = e x sen y = v x. Por tanto, e z es derivable (en sentido complejo) en C, siendo (e z ) = u x + iv x = e x cos y + ie x sen y = e z, z C. De las propiedades de la derivada compleja (linealidad y regla de la cadena) se sigue que sen y cos son derivables en C, siendo (sen z) = ieiz + ie iz 2i = cos z, (cos z) = 1 2 (ieiz ie iz ) = sen z. De estas fórmulas se deduce la derivabilidad de las restantes funciones trigonométricas en todos los puntos de sus dominios. Por ejemplo, (tan z) = cos2 z + sen 2 z cos 2 z = sec 2 z, z π + k π (k Z). 2

CAPÍTULO 1. FUNCIONES ANALÍTICAS 16 1.5.3. Teorema de la función inversa Teorema 1.10. Sea f : A C analítica en el abierto A (con f continua en A). Si a A y f (a) 0, existen sendos abiertos U a y V f(a) tales que f no se anula en U y f : U A V es biyectiva. Además, f 1 : V U es analítica en V, siendo (f 1 ) (w) = 1 f ( ), f 1 w V. (w) Demostración. f es derivable en sentido real en todo z A, y su matriz jacobiana ( ) ux (z) v x (z) v x (z) u x (z) tiene determinante u 2 x(z) + v 2 x(z) = f (z) 2 0. Por el teorema de la función inversa para funciones R 2 R 2 (nótese que la continuidad de f implica la continuidad de las derivadas parciales de u y v), hay sendos abiertos U a y V f(a) tales que f : U A V es biyectiva, Df es invertible en U y f 1 : V U es diferenciable en sentido real en V, con D(f 1 )(w) = [ Df ( f 1 (w) )] 1, w V. Llamando z = f 1 (w) se tiene, por el Teorema 1.9: D(f 1 )(w) = [Df(z)] 1 = M 1 f (z) = M 1/f (z). (Nótese que f no se anula en U A, al ser f (z) 2 = detdf(z).) De nuevo por el Teorema 1.9, de esto se deduce que f 1 es derivable en sentido complejo en w, con derivada 1/f (z). Derivabilidad de log: Log : C {0} {z C : π < Im z π} es discontinua en R {0} (por la discontinuidad de Arg). Sin embargo, Log es derivable en el abierto B = C (R {0}). En efecto, Log es la inversa global de exp : A = {z C : π < Imz < π} B, y exp satisface las condiciones del teorema de la función inversa en todo punto de A (exp = exp no se anula y es continua en A). Si z A y w = e z B, hay dos abiertos U z y V w tales que exp : U A V es invertible en U, y (exp 1 ) (w) = Al ser U A se tiene exp 1 = Log, y por tanto 1 exp (z) = 1 e z = 1 w. (Log w) = 1 w, w C (R {0}). Del mismo modo se prueba la derivabilidad de log I (I = [y 0,y 0 +2π) ó (y 0,y 0 +2π]) en el abierto C ({w : arg w = y 0 mod 2π} {0}), siendo log I (w) = 1/w.

CAPÍTULO 1. FUNCIONES ANALÍTICAS 17 1.5.4. Transformaciones conformes Una curva en el plano complejo es una aplicación : [a,b] C. Se dirá que es una curva diferenciable si Re,Im : [a,b] R son derivables en [a,b]. Si = 1 + i 2 es derivable en [a,b], se define su derivada (t) mediante (t) = 1 (t) + i 2 (t). Geométricamente, (t) representa el vector tangente a en el punto (t). Si f : A C es analítica en el abierto A C y : [a,b] A es una curva diferenciable, entonces f es una curva diferenciable, y se tiene (f ) (t) = f ( (t) ) (t), t [a,b]. En efecto, (f ) (t) = Df ( (t) ) (t) = M f ((t)) (t) = f ( (t) ) (t). Definición 1.11. Sea z 0 A, con A abierto y f : A C definida en A. Se dirá que f es conforme en z 0 si existen θ [0,2π) y r > 0 tales que, para toda curva : [ 1,1] C diferenciable en t = 0 con (0) = z 0 y (0) 0, la curva σ = f es diferenciable en 0, y se cumple σ (0) = r (0), arg σ (0) = arg (0) + θ mod 2π. Si f es conforme en todos los puntos de A, diremos que f es conforme en A. Las transformaciones conformes preservan los ángulos entre pares de curvas (definidos como los ángulos formados por los vectores tangentes a las curvas en el punto de intersección). Proposición 1.12. Si f : A C definida en el abierto A es derivable en z 0 A, y f (z 0 ) 0, entonces f es conforme en z 0. Demostración. Utilizando la misma notación que en la Definición 1.11 se tiene (dado que f (z 0 ) 0): σ (0) = f ( (0) ) (0) = f (z 0 ) (0) = σ (0) = f (z 0 ) (0), arg σ (0) = arg (0) + arg f (z 0 ) mod 2π. Se cumple la condición de la Definición 1.11, siendo 1.5.5. Funciones armónicas r = f (z 0 ) > 0, θ = arg[0,2π) f (z 0 ). Definición 1.13. Una función u : A R 2 R es armónica en el abierto A si u C 2 (A), y se cumple 2 u 2 u x 2 + 2 u = 0 en A. y2 Si f : A C es analítica en el abierto A entonces u = Re f y v = Imf son armónicas en A. (Se dice que u y v son funciones armónicas conjugadas).

CAPÍTULO 1. FUNCIONES ANALÍTICAS 18 En efecto, veremos más adelante que f analítica en A = u,v C (A). De las ecuaciones de Cauchy Riemann se sigue que u xx = v y x = v yx = v xy = u y y = u yy, y análogamente para v. (Nótese que v xy = v yx por ser v de clase C 2 (A).) Si f = u + iv : A C es analítica en el abierto A y f no se anula en A, las dos familias de curvas planas u(x,y) = c 1 y v(x,y) = c 2 son ortogonales. En efecto, las dos familias de curvas son regulares, ya que de las ecs. de Cauchy Riemann se sigue que u = 0 u x = u y = 0 = v x = v y = 0 = f = 0, y análogamente para v. Los vectores normales a las curvas u(x,y) = c 1 y v(x,y) = c 2 en un punto de intersección (x 0,y 0 ) son ortogonales, ya que u(x 0,y 0 ) v(x 0,y 0 ) = u x (x 0,y 0 )v x (x 0,y 0 ) + u y (x 0,y 0 )v y (x 0,y 0 ) = u x (x 0,y 0 )u y (x 0,y 0 ) + u y (x 0,y 0 )u x (x 0,y 0 ) = 0, por las ecuaciones de Cauchy Riemann. Nota: Otra forma de probar el resultado anterior es observar que si z 0 = x 0 + iy 0 A y f(z 0 ) = c 1 + ic 2, la imagen bajo f de la curva {z : u(x,y) = c 1 } A está contenida en la recta vertical {w : Re w = c 1 }. Análogamente, la imagen de la curva {v(x,y) = c 2 } A es un subconjunto de la recta horizontal {w : Imw = c 2 }. Como las rectas Rew = c 1 y Im w = c 2 se cortan ortogonalmente en c 1 + ic 2, y f es conforme en A (ya que es analítica y su derivada no se anula en dicho conjunto), lo mismo ocurrirá con las curvas u(x,y) = c 1 y v(x,y) = c 2. Si u : A R 2 C R es armónica en A, z 0 A y U A es un entorno de z 0, hay una función f : U C analítica en U tal que Re f = u. En efecto, si z = x + iy U entonces v = Im f debería cumplir: v y = u x = v(x,y) = y y y 0 u x (x,t)dt + h(x); y v x = u xx (x,t)dt + h (x) = u yy (x,t)dt + h (x) y 0 y 0 = u y (x,y) + u y (x,y 0 ) + h (x) = u y h (x) = u y (x,y 0 ) = h(x) = = v = y x x 0 u y (t,y 0 )dt + c y 0 u x (x,t)dt x x 0 u y (t,y 0 )dt + c. Si v está dada por la fórmula anterior f = u+iv es diferenciable (al ser u de clase C 2 ) y cumple las ecuaciones de Cauchy Riemann en U = f es analítica en U, y Re f = u. Alternativamente, la forma diferencial ω = u y dx + u x dy es cerrada en U (al ser u armónica) = v : U R (de clase C 2 (U)) tal que dv = ω. Esto implica que v x = u y, v y = u x, por lo que f = u + iv es analítica en U.