Máquinas sincrónicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Máquinas sincrónicas"

Transcripción

1 Máquinas sincrónicas Supongamos que tenemos un motor de inducción convencional (un motor asincrónico), con un estator y un rotor de jaula de ardilla (pudiera ser también un rotor embobinado). Alimentamos las tres bobinas del estator, dispuestas a 120 grados entre sí, con un sistema de corrientes trifásicas y balanceadas. Lo que ocurre a continuación es algo que suponemos ha sido estudiado anteriormente, se produce un campo rotatorio equivalente en el entrehierro que induce corrientes en el rotor y estas, a su vez, interactuan con el mismo campo que las produce, obteniéndose como resultado la aceleración del rotor y aumento de su velocidad hasta que se estabiliza en una velocidad cercana a la sincrónica. Este fenómeno se reproduce a diario en millones y millones de motores de inducción del mundo actual. Decidimos ahora experimentar un poco y le extraemos el rotor al motor de inducción para sustituirlo por un imán permanente. Es decir, intercambiamos la jaula de ardilla por un imán, tal cual se muestra aquí: La primera observación que surge es que en este caso, la existencia de corrientes o de un campo magnético en el rotor no depende del efecto inductivo ni de la influencia del campo existente en el estator. El rotor no tiene corrientes inducidas y tenemos un campo magnético constante que puede girar libre en el espacio anteriormente ocupado por el rotor del motor de inducción. Si las bobinas del estator están energizadas entonces sabemos que existe un campo rotatorio equivalente en el entrehierro. Si el imán es también un campo magnético, las leyes de la física nos explican que se produce un torque entre los dos vectores de campo que hace que estos tiendan a alinearse. Si el estator está fijo y el imán puede girar libremente, lo que ocurrirá será que este último comenzará a moverse en la misma dirección del campo de estator, siguiéndolo en su recorrido. Esta respuesta parece lógica, sólo que existe una limitante relacionada con la característica inercial del rotor que no le permitiría comenzar a girar instantáneamente, a menos que su masa fuese cero, o que la velocidad de rotación del campo fuera suficientemente lenta, digamos de una revolución por segundo, lograda sólo si alimentáramos el estator con corrientes de frecuencia 1Hz, muy lejos de los 60Hz que ya tenemos en el país. Más adelante comentaremos este singular detalle operacional. Tenemos que ahora el movimiento del rotor depende exclusivamente de la alineación entre ambos campos magnéticos, el del estator y el del rotor. Si inyectamos corrientes trifásicas en el estator, al igual que en un motor de inducción se producirá un campo rotatorio equivalente que en este nuevo arreglo arrastrará al campo del imán permanente del rotor. Un motor cuyo rotor gira a la misma velocidad del campo del estator (un motor sincrónico) porque no tiene el deslizamiento (s) del motor de inducción, donde la energía que recibe el rotor desde el estator tiene que alcanzar para la rotación y para cubrir sus pérdidas internas. Si ahora, en lugar de alimentar al estator lo desconectamos y hacemos que el rotor gire accionándolo externamente, como por ejemplo conectando su eje a una turbina de agua, el movimiento giratorio hará

2 que un campo magnético fijo pase por cada una de las bobinas del estator y provoque una variación de flujo, por lo tanto, se inducirá un voltaje en cada bobina (por cierto, algo muy similar a lo que ocurre en la periferia del rotor de un motor de inducción). Si las bobinas están separadas 120 grados entre sí, el voltaje inducido en cada una de ellas tendrá los 120 grados de diferencia que, en conjunto, conforman un sistema trifásico balanceado (suponiendo que las bobinas son iguales). Tendremos entonces un generador sincrónico. Según utilicemos una máquina sincrónica como motor o como generador, el campo magnético que arrastra será el que proviene desde el elemento por donde entra la energía: si es un motor, la energía (eléctrica) entra por el estator y su campo magnético arrastra al del rotor (demanda-mecánica). Por el contrario, si se utiliza como generador, la energía (mecánica) entra por el rotor y este campo magnético arrastra la carga eléctrica conectada al estator (demanda-eléctrica). Gráficamente es algo así: El ángulo delta, llamado también ángulo de carga, es la separación angular entre el campo que arrastra y el campo arrastrado. Su valor dependerá de la fortaleza en la atracción magnética entre los dos campos y, claramente, se puede estirar, tal cual lo haría una goma elástica con la que se arrastre una carga. La goma se estiraría hasta equilibrar el roce con la fuerza de arrastre. En un caso lineal, como el de la figura anterior, una goma utilizada para arrastrar la carga podría estirarse hasta reventar. En el caso rotatorio, el ángulo delta puede crecer sólo hasta los 90 grados por razones obvias: al pasar de 90 grados, la polaridad magnética se invierte. La denominada estabilidad de una máquina sincrónica dependerá en parte de que su ángulo de carga crítico no se exceda cuando se produzca un desequilibrio en el balance, entre la energía que entra y la energía que sale de la máquina. La diferencia entre las dos se acumula o se pierde en la máquina y

3 esto se traduce en variaciones de su velocidad y frecuencia que ocasionan condiciones operativas insostenibles. Hay muchos estudios al respecto que deben ser consultados para profundizar sobre el tema 1, ya que constituyen la base de la operación segura en un sistema de potencia eléctrica. Controlando el módulo del voltaje generado en una MS Un elemento adicional para el sistema funcional de una máquina sincrónica consiste en sustituir el imán permanente del análisis anterior por un electroimán (una bobina eléctrica, alimentada con corriente continua). La ventaja que se obtiene se deriva de la posibilidad de controlar la intensidad del campo magnético del rotor controlando su corriente y, de este modo, su interacción con el campo del estator. La variación del flujo con la que se inducen los voltajes en las bobinas del estator depende de dos factores: Єa= Δφ en la intensidad del campo = Variaciones Δt Variacionesen la velocidad de giro Si se varía la intensidad de la corriente continua que fluye por los arrollados del electroimán del rotor, se varía la intensidad del campo magnético que produce el flujo: Δφ = ΔB * Area ΔB: variación de campo magnético inducido por el electroimán Area : equivalente de la bobina Nota: el rotor gira y la bobina recibe un efecto que varía en función de la posición relativa entre la bobina y el rotor (ángulo). La figura muestra lo que percibiría la bobina, en el punto fijo (ojo amarillo): Es así como variando la corriente hacia el rotor (excitatriz), se puede variar el módulo del voltaje inducido. Este es el principio de funcionamiento del regulador automático de voltaje (AVR por sus siglas en inglés), que adecúa la corriente de la excitatriz para controlar el voltaje en los bornes del generador. 1 Ver por ejemplo Análisis de Sistemas de Potencia - Stevenson

4 Controlando la frecuencia del voltaje generado en una MS Otro parámetro que se puede controlar (en efecto, se hace), es la velocidad de giro del rotor de la máquina. Cuando se habla de sincronismo se refiere a que la velocidad de giro del rotor depende exclusivamente de la frecuencia de las corrientes en el estator, así como la frecuencia de los voltajes inducidos en el estator dependerán exclusivamente de la velocidad de giro del rotor. Es decir, la relación entre ambas es constante y fija en las máquinas sincrónicas, aunque esta pueda girar a cualquier velocidad. Lo importante es que siempre se mantendrá esa relación, opere como motor o generador. Sin embargo, debido a que la aplicación típica de las máquinas sincrónicas es utilizarlas como generadores, se hace entonces necesario que la velocidad de giro sea controlada, para que de este modo la frecuencia del voltaje que se genera, también sea controlada. Si se pretende conectar una máquina sincrónica a una red alterna, las frecuencias en ambas deben ser iguales. Cuando una máquina entra a formar parte de un sistema (conectándola a la red eléctrica como motor o como generador), para mantener la velocidad, el equilibrio de potencias, entrando y saliendo (mecánica y eléctrica), se debe mantener del mismo modo en el que se debería balancear la entrada y la salida con una máquina única. En un sistema hay restriccionea adicionales. Este pequeño detalle operativo determina que la velocidad de giro de todas las máquinas conectadas a una red eléctrica común deban quedar automáticamente fijas también en una referencia común. En Venezuela, la frecuencia de referencia es 60Hz. Al producirse una variación en la carga (algo que ocurre constantemente, cada vez que se prende o se apaga un bombillo, por ejemplo), el equilibrio entrada-salida de todo el conjunto se altera y esto se refleja en una variación de la frecuencia, alejándola del valor de referencia. Para corregir las desviaciones se hace necesario corregir la diferencia entre la entrada y la salida de potencia, de modo de recuperar el balance y la velocidad de giro original. Si la demanda de potencia eléctrica aumenta (se conectan cargas adicionales) es necesario aumentar la entrada de potencia mecánica hasta igualarla al nuevo requerimiento. Si, por el contrario, la demanda se reduce (se desconecta carga), entonces hay que reducir la entrada de potencia mecánica. En su esencia, el control de la velocidad de giro de las máquinas (frecuencia) se basa en mantener el equilibrio de potencias que entran y salen del conversor de energía (máquina). Utilizando una válvula para controlar el paso (caudal) del fluido de trabajo hacia una turbina es como se procuran mantener en un valor fijo la velocidad de giro y la frecuencia de la máquina sincrónica. Este es el principio de funcionamiento del control automático de generación (AGC por sus siglas en inglés) que adecúa la velocidad de giro y la frecuencia de los voltajes controlando la entrada de potencia mecánica, a través del eje de rotación del generador (máquina sincrónica). El proceso se muestra en la gráfica siguiente:

5 Variando el torque en el eje mecánico se mantiene la máquina girando a su velocidad nominal, de forma constante (un cambio en la carga, o aumento de potencia, se traduce en un cambio en el torque, ya que Potencia = Torque * Velocidad Angular). En el eje que une a la turbina con el generador se contrarrestan el torque mecánico y el torque eléctrico. Si el torque neto es cero, la velocidad de rotación se mantiene fija en el valor de referencia. Potencia = Torque * Velocidad angular = voltaje * corriente La potencia mecánica de entrada se procura mantener en equilibrio con la potencia eléctrica de salida. Ya sabemos que cualquier desbalance hará que la velocidad de giro del sistema mecánico cambie, provocando variaciones en la frecuencia de las tensiones inducidas y la reacción del sistema de control. Cómo arrancar una máquina sincrónica Al principio se habló de inyectar un juego de corrientes trifásicas a los arrollados de un estator mientras colocábamos un imán permanente en el lugar del rotor. Se dijo que el imán iba a comenzar a rotar y tendríamos así un motor sincrónico. Pues la cosa no es tan sencilla: gira, pero no arranca. Echar a andar (girar) el rotor de una máquina sincrónica significa llevarla desde cero RPM a 3600 RPM, en un instante de tiempo (suponiendo que tiene un par de polos), mientras pasa el vector rotatorio por el entrehierro y arrastra al imán. Tremenda fantasía; a menos que la masa del electroimán fuera cero, no es posible semejante variación de velocidad en ese instante. Posiblemente el rotor comience a vibrar, pero no logra arrancar. Un procedimiento de arranque puede consistir en conectar un motor de inducción al eje de la máquina sincrónica, para que éste arranque el rotor y lo lleve hasta una velocidad cercana a la sincrónica (un pequeño deslizamiento). Luego, el rotor se energiza (la excitatriz) y se completa el emparejamiento de la velocidad. Por supuesto que esta maniobra no es sencilla ni barata, el motor de inducción es parte del conjunto y sigue dando vueltas, arrastrado por el motor. Por esta razón, los motores sincrónicos no son muy comunes, al menos en aplicaciones en las que tiene que arrancar y detenerse como parte del ciclo de trabajo. Cuando se trata de un generador la cuestión es mucho más sencilla. Considerando que la energía en este caso entra en forma mecánica por el rotor y sale en forma eléctrica por el estator, lo que hay que hacer es arrancar el eje motriz del generador (motor de combustión, turbina de agua, vapor o gas, etc.), hasta que el conjunto alcance la velocidad sincrónica (frecuencia eléctrica igual a la de la red). En este momento, igualdad de frecuencias y de voltajes, se realiza la maniobra conocida como sincronización : se conectan los bornes de la máquina a la red.

Elementos Rotativos. Máquinas Asincrónicas (inducción)

Elementos Rotativos. Máquinas Asincrónicas (inducción) Elementos Rotativos Máquinas Asincrónicas (inducción) En una máquina, el campo magnético en el entrehierro es el resultado de la suma de los campos magnéticos producidos individualmente por cada uno de

Más detalles

EL 4001 Conversión de la Energía y Sistemas Eléctricos

EL 4001 Conversión de la Energía y Sistemas Eléctricos EL 4001 Conversión de la Energía y Sistemas Eléctricos Clase 17: Máquinas Sincrónicas 1 AREA DE ENERGIA DEPARTAMENTO DE INGENIERIA ELECTRICA Temas Introducción Estructura General Características Constructivas

Más detalles

ELECTROMAGNETISMO ELECTROIMANES.

ELECTROMAGNETISMO ELECTROIMANES. ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.3.

Más detalles

Bloque II: 5- Motores de corriente alterna (Motores trifásicos)

Bloque II: 5- Motores de corriente alterna (Motores trifásicos) Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección

Más detalles

CONCEPTOS BÁSICOS GENERADORES

CONCEPTOS BÁSICOS GENERADORES CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una

Más detalles

MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma:

MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma: MOTORES DE CORRIENTE ALTERNA Los motores de corriente alterna se clasifican de la siguiente forma: Trifásicos: formados por tres bobinas iguales; son los más habituales Bifásicos: formados por dos bobinas

Más detalles

CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos

CARACTERISTICAS Y SELECCIÓN MOTORES ELECTRICOS. Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CARACTERISTICAS Y SELECCIÓN DE MOTORES ELECTRICOS Profesor: Francisco Valdebenito A. CLASIFICACIÓN

Más detalles

2012 Arrancador con anillos rozantes

2012 Arrancador con anillos rozantes Nombre: Geraldo Antonio Apellido: Donayre Correa 2012 Arrancador con anillos rozantes Universidad: san Luis Gonzaga de Ica Docente: Ing. Wilder Enrique Román Munive Materia: dibujo electrónico Geraldo

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 10 - Motores de Inducción - Principio de funcionamiento y modelo

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 10 - Motores de Inducción - Principio de funcionamiento y modelo Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 10 - Motores de Inducción - Principio de funcionamiento y modelo Curso 2018 Contenido de la presentación Bibliografía de referencia

Más detalles

Existen dos tipos principales de máquinas síncronas que pueden actuar como motores y como generadores:

Existen dos tipos principales de máquinas síncronas que pueden actuar como motores y como generadores: Máquinas síncronas Una máquina síncrona es una máquina AC en cuyo rotor existe un mecanismo capaz de producir un campo magnético de amplitud constante e independiente del campo magnético que pueda ser

Más detalles

CAPITULO 1. Métodos para controlar la velocidad de un motor de inducción. El desarrollo de sistemas para controlar la velocidad en motores de

CAPITULO 1. Métodos para controlar la velocidad de un motor de inducción. El desarrollo de sistemas para controlar la velocidad en motores de CAPITULO 1 Métodos para controlar la velocidad de un motor de inducción El desarrollo de sistemas para controlar la velocidad en motores de inducción se ha venido dando desde hace muchos años. Se da una

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 6

MÁQUINAS ELÉCTRICAS LABORATORIO No. 6 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

donde f es la frecuencia de la red y p el numero de polos del conductor.

donde f es la frecuencia de la red y p el numero de polos del conductor. Introducción: Estos motores se denominan sincrónicos, porque la velocidad de giro depende únicamente de la frecuencia de la corriente de alimentación y del numero de polos, siendo independiente de la carga

Más detalles

Angelica Solano Garces Camilo Urbano Burbano Eliana Andrea A. Cruz Camilo Castillon. Motores eléctricos de corriente alterna (asíncronos y síncronos)

Angelica Solano Garces Camilo Urbano Burbano Eliana Andrea A. Cruz Camilo Castillon. Motores eléctricos de corriente alterna (asíncronos y síncronos) Angelica Solano Garces Camilo Urbano Burbano Eliana Andrea A. Cruz Camilo Castillon Motores eléctricos de corriente alterna (asíncronos y síncronos) historia de la corriente alterna Nikola Tesla, un inventor

Más detalles

MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES

MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES FUNDAMENTO DE LAS MÁQUINAS ELÉCTRICAS (MOTORES) En una espira cuando pasa a través de ella una corriente eléctrica, se crea en cada una de sus

Más detalles

Curso de Capacitación: Electricistas Categoría III. para la Ley de Seguridad Eléctrica de la Provincia de Córdoba

Curso de Capacitación: Electricistas Categoría III. para la Ley de Seguridad Eléctrica de la Provincia de Córdoba Curso de Capacitación: Electricistas Categoría III para la Ley de Seguridad Eléctrica de la Provincia de Córdoba MÓDULO III TEMA III.3 Máquinas Eléctricas Manual del Instalador Electricista Cat.III Pag.228

Más detalles

EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS

EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS 1 Mikel Toledano Yániz 900042 ÍNDICE Introducción...3 Tensión de bornes en función de la frecuencia de giro del rotor...4 Tensión de bornes en función de espiras

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquinas Eléctricas I - G862 Tema 3. Máquinas Asíncronas o de Inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

Motores de corriente directa (DC) Motores de corriente alterna (AC):

Motores de corriente directa (DC) Motores de corriente alterna (AC): De acuerdo a la fuente de tensión n que alimente al motor, podemos realizar la siguiente clasificación: Motores de corriente directa (DC) Motores de corriente alterna (AC): El Motor Asíncrono o de Inducción

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA 1. La característica de magnetización de un generador de corriente continua operando a una velocidad de 1500 [rpm] es: I f [A] 0 0,5 1 2 3 4 5 V rot [V] 10 40 80

Más detalles

Ing. Greivin Barahona

Ing. Greivin Barahona INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTROMECÁNICA CURSO: MÁQUINAS ELÉCTRICAS PARA MECATRÓNICA PROFESOR: IN GREIVIN BARAHONA GUZMÁN Máquinas Asincrónicas: Motor Inducción Monofásico

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

VARIADORES DE FRECUENCIA]

VARIADORES DE FRECUENCIA] VARIADORES DE FRECUENCIA] Variador De Frecuencia Micromaster Siemens Cuando los motores Eléctricos no eran capaces de alcanzar un elevado potencial Eléctrico a reducidas y a grandes velocidades a la vez,

Más detalles

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC 1.- Concepto y principal clasificación de las máquinas eléctricas Una máquina eléctrica es un dispositivo capaz de generar, aprovechar o transformar la energía

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Contenidos. Objetivos Específicos Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Fundamentos de motores síncronos Contenidos Operación de un motor a tensión nominal y en vacío.

Más detalles

4.1.1)Introducción. Fig.4.1.: Partes básicas de una máquina rotatoria. Fig.4.3.: Campo magnético en el entrehierro de una máquina.

4.1.1)Introducción. Fig.4.1.: Partes básicas de una máquina rotatoria. Fig.4.3.: Campo magnético en el entrehierro de una máquina. CAPÍTULO 4 4.1)CAMPOS MAGNÉTICOS PRODUCIDOS EN LAS MÁQUINAS ROTATORIAS. 4.1.1)Introducción. Fig.4.1.: Partes básicas de una máquina rotatoria. Fig.4.2.: Componentes básicas de una máquina rotatoria. Fig.4.3.:

Más detalles

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA.

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. 1. INTRODUCCION Haciendo girar una espira en un campo magnético se produce una f.e.m. inducida en sus conductores. La tensión obtenida

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS.- CARACTERÍSTICAS DE LA MÁQUINA ASÍNCRONA O DE INDUCCIÓN Las principales características de estas máquinas son:

Más detalles

3.1.1)Sistemas traslacionales:

3.1.1)Sistemas traslacionales: CAPÍTULO 3 3.1)SISTEMAS MECÁNICOS. 3.1.1)Sistemas traslacionales: x Energía eléctrica Transductor electromecánico F el D M F ext K Fig.3.1.: Sistema electromecánico completo. Donde: x: posición. M: masa

Más detalles

Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica.

Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica. Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica. Motor eléctrico: Lo más común es la máquina rotatoria Motor eléctrico: Pero existen otros sistemas que también son Motores. Motor

Más detalles

7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116

7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 CAPÍTULO 7 7.1)ASPECTOS CONSTRUCTIVOS Y PRINCIPIO DE FUNCIONAMIENTO. 7.1.1)Introducción. Fig.7.1.: Aspecto externo de un motor de inducción típico. SISTEMAS ELECTROMECÁNICOS Pág 116 Fig.7.2.: Partes componentes

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 2001 1. a) Explique cualitativamente el funcionamiento de un transformador eléctrico. b) Qué ocurre si el primario del transformador está conectado a una pila? Razone la respuesta.

Más detalles

Sistema Integrador Ciencia y tecnología ACTUADORES

Sistema Integrador Ciencia y tecnología ACTUADORES Sistema Integrador Ciencia y tecnología ACTUADORES ACTUADORES Se denominan actuadores a aquellos elementos que pueden provocar un efecto sobre un proceso automatizado, modificando los estados de un sistema.

Más detalles

Ley de Ampere. Campo magnético producido por la corriente que circula en un arreglo de conductores

Ley de Ampere. Campo magnético producido por la corriente que circula en un arreglo de conductores Ley de Ampere Campo magnético producido por la corriente que circula en un arreglo de conductores En cualquier instante, la integral de línea de la intensidad de campo magnético (H) a lo largo de cualquier

Más detalles

MOTORES ELECTRICOS. Motores de Corriente Directa (DC)

MOTORES ELECTRICOS. Motores de Corriente Directa (DC) MOTORES ELECTRICOS Los motores eléctricos son máquinas utilizadas en transformar energía eléctrica en mecánica. Son los motores utilizados en la industria, pues combinan las ventajas del uso de la energía

Más detalles

SISTEMAS DE ARRANQUE DE LOS MOTORES ASÍNCRONOS TRIFÁSICOS DE ROTOR EN CORTOCIRCUITO O JAULA DE ARDILLA.

SISTEMAS DE ARRANQUE DE LOS MOTORES ASÍNCRONOS TRIFÁSICOS DE ROTOR EN CORTOCIRCUITO O JAULA DE ARDILLA. SISTEMAS DE ARRANQUE DE LOS MOTORES ASÍNCRONOS TRIFÁSICOS DE ROTOR EN CORTOCIRCUITO O JAULA DE ARDILLA. Cuando se conecta un motor de estas características directamente a la red, éste absorbe una intensidad

Más detalles

SERVOMOTORES. AADECA - Asociación Argentina de Control Automático JORNADA SOBRE CONTROL DE MOVIMIENTOS

SERVOMOTORES. AADECA - Asociación Argentina de Control Automático JORNADA SOBRE CONTROL DE MOVIMIENTOS SERVOMOTORES 1 Contenido 1. Tipos de motores. 2. Motores asincrónicos y sincrónicos 3. Servomotores 4. Sistemas de realimentación. 2 1. Tipos de Motores Motor Con escobilla Sin Escobilla Motor DC sincrónico

Más detalles

Sea un motor de inducción con las siguientes indicaciones en su placa de características:

Sea un motor de inducción con las siguientes indicaciones en su placa de características: Examen de Máquinas Eléctricas I. 3 de febrero de 2004. Ingeniería Técnica Industrial. Universidad de La Laguna. Sea un motor de inducción con las siguientes indicaciones en su placa de características:

Más detalles

Tecnologías de actuadores

Tecnologías de actuadores C.U. UAEM Valle de Teotihuacán Licenciatura en Ingeniería en Computación Tecnologías de actuadores Unidad de Aprendizaje: Fundamentos de robótica Unidad de competencia III Elaborado por: M. en I. José

Más detalles

1.- De qué expresión matemática depend la velocidad de giro de un motor trifásico de corriente alterna?

1.- De qué expresión matemática depend la velocidad de giro de un motor trifásico de corriente alterna? Curso: 1 - Prueba: 1 - Fecha 15/2/2010 Cuestionario 6 Pag 1 de 22 1.- De qué expresión matemática depend la velocidad de giro de un motor trifásico de corriente alterna? RESPUESTA: N- Velocidad en revoluciones

Más detalles

Capítulo 4: DEVANADOS

Capítulo 4: DEVANADOS Capítulo 4: DEVANADOS Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos J. Pontt O. Felipe Leiva Cruz 4.1 Campo magnético producido en máquinas rotatorias 4.1.1 Estructura de las

Más detalles

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ

DEP.TECNOLOGÍA / PROF. MARÍA JOSÉ GONZÁLEZ CONSTITUCIÓN : MOTOR ASÍNCRONO TRIFÁSICO Estator : parte fija. Formada por la carcasa. Posee una corona de chapas de acero provistas de ranuras donde se colocan las 3 bobinas inductoras, cuyos extremos

Más detalles

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades

Clase VI. Máquinas de Corriente Directa: Generadores de Corriente Directa. Generalidades Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electromecánica Curso: Máquinas Eléctricas para Mecatrónica Profesor: Ing. Greivin Barahona Guzmán Clase VI Máquinas de Corriente Directa: Generadores

Más detalles

Conversión Electromecánica de Energía - III. Curso Máquinas Eléctricas

Conversión Electromecánica de Energía - III. Curso Máquinas Eléctricas Conversión Electromecánica de Energía - III Curso Máquinas Eléctricas Bibliografía 1- Apuntes del curso de Máquinas Eléctricas (ediciones anteriores) https://eva.fing.edu.uy/pluginfile.php/98578/mod_folder/con

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR LA MAQUINA ASINCRONICA. DESCRIPCION Hoja Nº II-001 Tanto en el número, como en el volumen de ventas, la máquina asincrónica supera a todas las demás máquinas eléctricas. Las máquinas asincrónicas encuentran

Más detalles

La curva de magnetización de un motor de corriente continua con excitación en paralelo es la siguiente, a 2000 r.p.m:

La curva de magnetización de un motor de corriente continua con excitación en paralelo es la siguiente, a 2000 r.p.m: Examen de Máquinas Eléctricas I. 5 de febrero de 2002. Ingeniería Técnica Industrial. Universidad de La Laguna. Problema 1 (1.5 puntos) La curva de magnetización de un motor de corriente continua con excitación

Más detalles

1. Si k 1 y k 2 son 2 constantes y f la frecuencia del campo magnético en un material dado Cuál de las siguientes afirmaciones es cierta?

1. Si k 1 y k 2 son 2 constantes y f la frecuencia del campo magnético en un material dado Cuál de las siguientes afirmaciones es cierta? Examen Máquinas Eléctricas I. Teoría. 5 de febrero de 2002. Universidad de La Laguna. Ingeniería Técnica Industrial. Profesor: Fernando Gago Rodríguez. 1. Si k 1 y k 2 son 2 constantes y f la frecuencia

Más detalles

Introducción a los principios de las máquinas

Introducción a los principios de las máquinas CONTENIDO Prefacio Capítulo 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Introducción a los principios de las máquinas Las máquinas eléctricas, los transformadores y la vida diaria Nota referente a las unidades

Más detalles

Ley de Ampere. Campo magnético producido por la corriente que circula en un arreglo de conductores

Ley de Ampere. Campo magnético producido por la corriente que circula en un arreglo de conductores Ley de Ampere Campo magnético producido por la corriente que circula en un arreglo de conductores En cualquier instante, la integral de línea de la intensidad de campo magnético (H) a lo largo de cualquier

Más detalles

Modelado en Elemento Finito de un Motor de Inducción Trifásico de Jaula de Ardilla Utilizando Multiplicadores de Lagrange

Modelado en Elemento Finito de un Motor de Inducción Trifásico de Jaula de Ardilla Utilizando Multiplicadores de Lagrange Modelado en Elemento Finito de un Motor de Inducción Trifásico de Jaula de Ardilla Utilizando Multiplicadores de Lagrange Ing. Alejandro Jiménez Silva Dr. José M. Cañedo PLANTEAMIENTO DEL PROBLEMA Un mallado

Más detalles

El deslizamiento no es constante sino que depende de la potencia que tiene que entregar el Motor:

El deslizamiento no es constante sino que depende de la potencia que tiene que entregar el Motor: MOTOR ASINCRONO P: Número de pares de Polos Ns: Velocidad del Campo en el Estator Nr: Velocidad del Rotor S%: Deslizamiento El deslizamiento no es constante sino que depende de la potencia que tiene

Más detalles

EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA

EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA EJERCICIOS DE MÁQUINAS DE CORRIENTE CONTINUA 1.- Un motor de c.c. con excitación serie tiene las siguientes características: V nom. = 200V ; R a = 0,1Ω ; R s = 1Ω ; p M af = 0,8 H Suponiendo nulas las

Más detalles

LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte

LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte ELECTRICIDAD IMANES LA ELECTRICIDAD Y LOS IMANES Tema 3 2ª Parte CORRIENTE ELÉCTRICA MAGNETISMO ELECTROMAGNETISMO Magnetismo Consiste en atraer objetos de hierro, cobalto o níquel Imán es el cuerpo que

Más detalles

MOTORES ASINCRONOS ESTATOR

MOTORES ASINCRONOS ESTATOR MOTORES ASINCRONOS ESTATOR Parte fija del motor formada por paquetes de chapa magnética que alojan en ranuras a las bobinas que van a crear el campo magnético giratorio. Estas bobinas pueden estar conectadas

Más detalles

RINCON DEL TECNICO

RINCON DEL TECNICO RINCON DEL TECNICO http://www.postventa.webcindario.com Motor Síncrono de imanes permanentes Tutorial básico para entender el funcionamiento y constitución de este tipo de motores de corriente alterna.

Más detalles

TEMA 9: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA

TEMA 9: MÁQUINAS ELÉCTRICAS. MOTORES DE CORRIENTE CONTINUA TEMA 9: MÁQNAS ELÉCTRCAS. MOTORES DE CORRENTE CONTNA 1.- Clasificación de las máquinas eléctricas Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

SECCIÓN 3: ACCIONAMIENTO DE BOMBAS

SECCIÓN 3: ACCIONAMIENTO DE BOMBAS SECCÓN 3: ACCONAMENTO DE BOMBAS NTRODUCCÓN as bombas centrífugas pueden accionarse mediante motores eléctricos, turbinas o motores de combustión interna. Salvo en el caso de dificultades en el suministro

Más detalles

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control para el funcionamiento de un motor rotor devanado. II.

I. RESULTADOS DE APRENDIZAJE. Implementar un circuito de control para el funcionamiento de un motor rotor devanado. II. UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA CICLO II-15 CONTROL DE MOTORES ELÉCTRICOS GUÍA DE LABORATORIO # 4 NOMBRE DE LA PRÁCTICA: ARRANQUE DE MOTORES

Más detalles

EL 57A SISTEMAS ELECTRICOS DE POTENCIA

EL 57A SISTEMAS ELECTRICOS DE POTENCIA EL 57A SISTEMAS ELECTRICOS DE POTECIA Clase 5: Componentes de Sistemas de Potencia Luis Vargas AREA DE EERIA DEPARTAMETO DE IEIERIA ELECTRICA Contenido (III) 3. Las componentes de los sistemas eléctricos

Más detalles

Máquinas Sincrónicas. EL Conversión de la Energía y Sistemas Eléctricos

Máquinas Sincrónicas. EL Conversión de la Energía y Sistemas Eléctricos Máquinas incrónicas Temas - Generalidades - Tipos de máquinas sincrónicas - Modelo de la máquina sincrónica (conectada a la red) - Modos de operación - Carta de operación - Problema : Auxiliar 9 (5/06/010)

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 10: Máquinas de corriente continua PUNTOS OBJETO

Más detalles

Ing. JAVIER HUMBERTO OLIVEROS DONOHUE Consultora OCI

Ing. JAVIER HUMBERTO OLIVEROS DONOHUE Consultora OCI DESCRIPCION FENOMENOLOGICA DEL FUNCIONAMIENTO DEL GENERADOR EOLICO IEC 61400-2 CLASE IVB DE 10,000 VATIOS PARA VELOCIDAD PROMEDIO ANNUAL DE VIENTO DE 6.0 METROS POR SEGUNDO CON MAQUINA ELECTRICA DE IMANES

Más detalles

Tema 13: Motores eléctricos de corriente continua.

Tema 13: Motores eléctricos de corriente continua. 1. Principio básico de funcionamiento. 2. Partes básicas de una máquina de CC. 3. Funcionamiento en vacío carga y cortocircuito. 4. Tipos de excitación magnética. 4.1 Independiente. 4.2 Autoexcitados:

Más detalles

Tema 4. Máquinas rotativas de corriente alterna

Tema 4. Máquinas rotativas de corriente alterna Tema 4. Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a estudiar las

Más detalles

Máquinas Asincrónicas (Parte 2.1)

Máquinas Asincrónicas (Parte 2.1) UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (342) Curso: Ingeniería Mecánica Máquinas Asincrónicas (Parte 2.1) Prof. Justo José Roberts Introducción Parte 1 Principio de funcionamiento de

Más detalles

MOTORES SINCRÓNICOS DE POTENCIA FRACCIONARIA

MOTORES SINCRÓNICOS DE POTENCIA FRACCIONARIA UTN FRMza. (Ing. Electrónica) MÁQUINAS E INSTALACIONES ELÉCTRICAS Hoja: 1 de 7 UNIDAD Nº 5 Motores de Reluctancia. Motores de Histéresis. Motores de Inductor. Distintos tipos. MOTORES SINCRÓNICOS DE POTENCIA

Más detalles

Motor de corriente continua

Motor de corriente continua Máquinas de corriente continua. 1 Motor de corriente continua El motor de corriente continua es una máquina que convierte la energía eléctrica en mecánica. Esta máquina de corriente continua es una de

Más detalles

MÁQUINAS ELÉCTRICAS MONOFÁSICAS

MÁQUINAS ELÉCTRICAS MONOFÁSICAS MÁQUINAS ELÉCTRICAS MONOFÁSICAS ML 244 Gregorio Aguilar Robles 5 de diciembre de 2014 INTRODUCCIÓN La mayoría de los hogares y pequeños negocios no tienen energía trifásica disponible. Para tales lugares,

Más detalles

EL MOTOR ELÉCTRICO (I)

EL MOTOR ELÉCTRICO (I) 1 EL MOTOR ELÉCTRICO (I) Contenidos 1. El motor trifásico. Fundamentos 2. Constitución del motor trifásico 3. Par motor y par resistente. Velocidad 4. Intensidades de corriente de un motor trifásico 5.

Más detalles

ESTUDIO DE LAS PRINCIPALES CARACTERISTICAS DE LOS GENERADORES DE CORRIENTE ALTERNA.

ESTUDIO DE LAS PRINCIPALES CARACTERISTICAS DE LOS GENERADORES DE CORRIENTE ALTERNA. ESTUDIO DE LAS PRINCIPALES CARACTERISTICAS DE LOS GENERADORES DE CORRIENTE ALTERNA. Fernando Arévalo Salamea. farevalos@est.ups.edu.ec Jorge Escobar Hinojosa. jescobarg@est.ups.edu.ec Juan Pesantez Gómez

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

Examen Febrero Electrotécnica 2 30 de Enero de 2017 IIE - Facultad de Ingeniería - Universidad de la República

Examen Febrero Electrotécnica 2 30 de Enero de 2017 IIE - Facultad de Ingeniería - Universidad de la República Examen Febrero 2017 - Electrotécnica 2 30 de Enero de 2017 IIE - Facultad de Ingeniería - Universidad de la República Poner nombre y cédula en todas la hojas. Utilizar hojas separadas para cada ejercicio

Más detalles

1. Relación entre fasores espaciales y fasores temporales. Sus fasores espaciales asociados son vectores que apuntan a la posición angular del

1. Relación entre fasores espaciales y fasores temporales. Sus fasores espaciales asociados son vectores que apuntan a la posición angular del Máuina de Polos Salientes en Régimen Lineal. 1. Relación entre fasores espaciales y fasores temporales. Dados: ε s = 3 4 2 π (K b s n s )I s 2cos(ωt θ φ) ε r = 4 π (K b r n r )I r cos(ωt θ + α 0 ) Sus

Más detalles

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL.

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. Fuerza sobre el conductor. r r r df = IΛ B dl F = I. B.L Tensión inducida en el conductor. dφ dφ e =, pero dados los sentidos normales se cumple que :

Más detalles

Variadores de velocidad

Variadores de velocidad Variadores de velocidad El Variador de Velocidad (VSD, por sus siglas en inglés Variable Speed Drive) es en un sentido amplio un dispositivo o conjunto de dispositivos mecánicos, hidráulicos, eléctricos

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

Resumen máquina de inducción. Autor: Fernando Gago Rodríguez Ingeniero Industrial Universidad de La Laguna Tenerife España

Resumen máquina de inducción. Autor: Fernando Gago Rodríguez Ingeniero Industrial Universidad de La Laguna Tenerife España Resumen máquina de inducción Autor: Fernando Gago Rodríguez Ingeniero Industrial Universidad de La Laguna Tenerife España www.ull.es Esquema del bobinado del estator: 3 bobinas, una por fase, desplazadas

Más detalles

III Examen Parcial Máquinas Eléctricas I (06/07/04)

III Examen Parcial Máquinas Eléctricas I (06/07/04) III Examen Parcial Máquinas Eléctricas I (06/07/04) A una máquina de inducción se le realizan las siguientes pruebas: Vacío Vo = 416 V Io = 38 A Po = 800 W Cortocircuito Vcc = 170 V Icc = 188 A Pcc = 32000

Más detalles

Máquinas eléctricas. Temario

Máquinas eléctricas. Temario TECSUP cchilet@energiaingenierosol.com 1 Temario Introducción. Motores asíncronos trifásicos. Motores monofásicos. Motores DC. Máquina síncrona. 2 1 1. Introducción. 3 Importancia El motor es un elemento

Más detalles

AUIN 1314 motor G13. En nuestro caso, estamos hablando de motores eléctricos, es decir, que utilizan energía eléctrica, para generar energía mecánica.

AUIN 1314 motor G13. En nuestro caso, estamos hablando de motores eléctricos, es decir, que utilizan energía eléctrica, para generar energía mecánica. Contingut AUIN 1314 motor G13 1 MOTORES ELÉCTRICOS DE CORRIENTE ALTERNA (AC) 1.1 MONOFÁSICOS 1.1.1 Universal 1.1.2 Aplicaciones 1.2 TRIFÁSICOS 1.2.1 Síncronos 1.2.1.1 Aplicaciones 1.2.1.2 Métodos de arranque

Más detalles

MAQUINAS ELECTRICAS Trabajo Práctico Nº 8 ENSAYOS DE MOTOR ASÍNCRONO

MAQUINAS ELECTRICAS Trabajo Práctico Nº 8 ENSAYOS DE MOTOR ASÍNCRONO Hoja N. Objetivos: -Realizar los ensayos característicos de un motor asincrónico trifásico, vacío y cortocircuito a fin de obtener los parámetros del circuito equivalente.-. Generalidades Generalmente

Más detalles

CIRCUITOS TRIFASICOS MAQUINAS ELECTRICAS

CIRCUITOS TRIFASICOS MAQUINAS ELECTRICAS Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CIRCUITOS TRIFASICOS Y MAQUINAS ELECTRICAS Profesor: Francisco Valdebenito A. SISTEMA ELECTRICO GENERACIÓN

Más detalles

RESPONSABLE Ingeniero Mecánico Electricista

RESPONSABLE Ingeniero Mecánico Electricista UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICO PROFESIONAL DE INGENIE ELECTRÓNICA ETEMA :MOTORES CON ANILLOS ROZANTES CURSO :DIBUJO ELECTRÓNICO

Más detalles

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina 220 3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE ARDILLA 3.2.1 Descripción del problema. Un motor de inducción tiene físicamente el mismo estator de una máquina sincrónica con diferente construcción

Más detalles

MOTORES PASO A PASO. Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica.

MOTORES PASO A PASO. Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica. MOTORES PASO A PASO 1. INTRODUCCIÓN Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica. ENERGÍA ELÉCTRICA ENERGÍA MECÁNICA Figura

Más detalles

Máquinas asincrónicas

Máquinas asincrónicas Máquinas asincrónicas Comenzaremos por describir las partes de lo que se llama una máquina de inducción trifásica para luego detallar el fenómeno de interacciones electromagnéticas. Un motor trifásico

Más detalles

CIRCUITOS TRIFASICOS MAQUINAS ELECTRICAS

CIRCUITOS TRIFASICOS MAQUINAS ELECTRICAS Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos CIRCUITOS TRIFASICOS Y MAQUINAS ELECTRICAS Profesor: Francisco Valdebenito A. Circuitos Trifásicos

Más detalles

Práctico 6 - Int. a la Electrotécnica

Práctico 6 - Int. a la Electrotécnica Práctico 6 - Int. a la Electrotécnica Máquina de inducción Problema 1 Para determinar los parámetros del circuito equivalente del motor de inducción MI (trifásico 50 Hz) se realizan los siguientes ensayos:

Más detalles

Universidad del Turabo

Universidad del Turabo Universidad del Turabo School of Engineering ETRE 175 CRN : 20074 T-R 10:30am 11:59am Salón EDI 244 Ing. Egberto Hernández E-mail: prof.ehernandez@hotmail.com Website: www.tuprofehernandez.weebly.com Los

Más detalles

UNIDAD 4. CAMPO MAGNÉTICO

UNIDAD 4. CAMPO MAGNÉTICO UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad

Más detalles

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos.

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos. IMANES Un imán es toda sustancia que posee o ha adquirido la propiedad de atraer el hierro. Normalmente son barras o agujas imantadas de forma geométrica regular y alargada. Existen tres tipos de imanes:

Más detalles

Máquinas de corriente directa

Máquinas de corriente directa Electricidad básica ENTREGA 6 - Curso de electricidad Máquinas de corriente directa Las máquinas de corriente continua (MCC) se caracterizan por su versatilidad debido a las distintas configuraciones posibles

Más detalles