Caracterización De Los Elementos De Un Circuito *

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Caracterización De Los Elementos De Un Circuito *"

Transcripción

1 UNIVERSIDAD NACIONAL DE COLOMBIA Departamento de Física Fundamentos de Electricidad y Magnetismo Guía de laboratorio N o 04 Objetivos Caracterización De Los Elementos De Un Circuito * 1. Conocer y aprender a manejar correctamente los elementos de un circuito sencillo. 2. Familiarizarse con el montaje de circuitos eléctricos. 3. Encontrar las características de I vs V correspondientes a elementos óhmicos y no óhmicos. 4. Determinar la influencia de la resistencia interna del voltímetro en las mediciones de corrientes. 1. Aspecto Teórico Resistencias, diodos, transistores, etc., son elementos frecuentemente presentes en circuitos eléctricos. El papel que desempeña cada uno depende de su respuesta cuando a través de ellos se establece una diferencia de potencial. Por ejemplo, la respuesta de una resistencia óhmica es el paso de una corriente eléctrica que resulta ser directamente proporcional a la diferencia de potencial entre sus extremos (Ley de Ohm); además, cuando las cargas se mueven a través de una resistencia pierden energía por choques sucesivos con las imperfecciones de la red del material, lo cual se manifiesta en un aumento de la temperatura de la resistencia. Estos hechos dan lugar a que las resistencias se utilicen en los circuitos como elementos limitadores de corriente y disipadores de energía Cuando se quiere conocer el desempeño de un elemento en un circuito, se elabora, a partir de datos experimentales, un gráfico de corriente I en función de la diferencia de potencial V; el análisis de esta gráfica permite determinar el uso y las posibles aplicaciones del elemento. A este procedimiento se le llama caracterización del elemento. En cada caso la curva característica se explica según el modelo teórico aplicable. En las resistencias óhmicas, es el modelo clásico de conducción: los electrones se mueven bajo la acción de un campo eléctrico externo E, originando una densidad de corriente J, que obedece la relación J = σ E donde σ es la conductividad propia del material. La relación anterior indica que para un material dado, la relación J/E es una constante (Ley de Ohm). a L b I E A Figura 1: Conductor de sección transversal A A nivel macroscópico, cuando se establece una diferencia de potencial V entre los extremos a y b de un segmento recto de conductor óhmico de sección transversal A (ver Figura 1), se origina una corriente eléctrica I relacionada con la densidad de corriente J mediante la expresión: * Tomado y adaptado de: E. Bautista et ál. Guías de laboratorio de Física II. Electromagnetismo. Universidad Nacional De Colombia. Bogotá, 2001

2 Pero: Entonces: I = JA V = EL V = JL σ = IL Aσ Sea ρ 1/σ = resistividad del material. Entonces: V = IR Donde R es la resistencia del segmento conductor, y es igual a ρl/a. La relación igual a V = IR es la expresión macroscópica de la ley de Ohm y establece que un material óhmico el cociente V/I es una constante. En el caso de los diodos semiconductores, el anterior modelo no es aplicable. Sin embargo es un elemento fácil de caracterizar y a partir de la curva correspondiente se pueden deducir sus aplicaciones. La caracterización de un elemento implica armar un circuito usando fuentes de voltaje, medidores de corriente (amperímetros), medidores de voltaje (voltímetros) y por supuesto el elemento mismo. En el laboratorio usará fuentes de voltaje que transforman la señal de la red (señal alterna) en voltaje continuo, es decir, diferencias de potencial constantes en el tiempo. Una fuente de voltaje está constituida por una fuerza electromotriz f.e.m. y una resistencia interna en serie, r i. Una fuente de voltaje buena tiene una resistencia interna muy pequeña. Los voltímetros y amperímetros tradicionales se construyen a partir de un elemento básico llamado galvanómetro de d Arsonval. El galvanómetro tiene una bobina móvil colocada en una campo magnético permanente (por ejemplo el producido por un imán) que sufre una torsión cuando se hace pasar una corriente eléctrica a través de ella. Esta torsión se observa en el aparato de medida como la deflexión de una aguja sobre una escala previamente calibrada. La deflexión de la aguja es directamente proporcional a la corriente que pasa por la bobina. El alambre del cual está hecha la bobina tiene una resistencia propia que constituye la resistencia interna del galvanómetro R G Figura 2. El amperímetro se construye a partir del galvanómetro, agregando una resistencia pequeña conectada en paralelo con Figura 2: Galvanómetro la resistencia interna del galvanómetro R G. Esta combinación se denomina resistencia interna del amperímetro R A. Figura 3. El voltímetro se construye a partir de un galvanómetro, agregando una resistencia conectada en serie con la resistencia interna del galvanómetro. Esta combinación se denomina resistencia interna del voltímetro R V. Figura 3. La resistencia interna de un buen amperímetro debe ser muy pequeña. La resistencia interna de un buen voltímetro debe ser muy grande. En los medidores construidos a partir de un galvanómetro dado, el valor de la resistencia interna determina los rangos de la corriente y voltaje que pueden medirse. 2

3 Figura 3: Circuitos para un Amperímetro y un Voltímetro La forma correcta de conectar los medidores en un circuito está relacionada con el propósito para el cual está diseñado el aparato. Así pues, los amperímetros deben conectarse en serie para que efectivamente su lectura corresponda a la de la corriente que está pasando por la parte del circuito que se quiere medir. Observe en el circuito de la izquierda de la Figura 4, que la corriente I que pasa por la resistencia R es la misma que pasa por el amperímetro. Figura 4: Manera correcta de conectar el amperímetro y el voltímetro También puede darse cuenta que mientras más pequeña sea R A (resistencia interna del amperímetro) comparada con R la lectura del amperímetro se aproxima más al valor de ε/r (para r i R). En el circuito de la derecha se ve que el voltímetro, como aparato diseñado para medir diferencias de potencial, debe conectarse en paralelo con el elemento a medir. La caída de potencial a través de la resistencia interna del voltímetro R V es la misma que a través de la resistencia R. Obsérvese que si R V es comparable con R, una fracción importante de la corriente I pasará por el voltímetro. Para disminuir en lo posible esta corriente, un buen voltímetro debe tener una resistencia interna muy grande. PRECAUCIONES! No conecte el amperímetro directamente a la fuente. No conecte el amperímetro en paralelo con el elemento a caracterizar. En ambos casos circulará una corriente muy grande por el amperímetro y con seguridad el galvanómetro se destruirá. 3

4 2. Procedimiento 2.1. Manejo de las escalas del voltímetro y amperímetro Para la realización de la práctica, usted recibirá una tableta como la que se muestra en la Figura 5. Figura 5: Tableta con elementos a caracterizar También encontrará en su mesa de laboratorio una fuente de voltaje, un voltímetro (V), un amperímetro (A) y cables para la conexión. Monte el circuito mostrado en la Figura 6. Antes de prender la fuente, cerciórese que el voltaje sea el mínimo, girando el botón de ajuste de voltaje en sentido contrario a las manecillas del reloj. Si no está seguro de las conexiones que acaba de realizar, pida ayuda al docente encargado. Conecte el voltímetro en la escala de 15 V. Incremente el voltaje de la fuente girando el botón de ajuste en el sentido de las manecillas del reloj. Lea al menos 5 valores diferentes cualesquiera y anótelos correctamente, teniendo en cuenta la incertidumbre en la lectura (por ejemplo V=9± V? Voltios). Conecte ahora el voltímetro en la escala de 30 V. Varíe el voltaje y anote 5 valores cualesquiera, teniendo en cuenta la incertidumbre de la lectura. Antes de desconectar el circuito poner el control de voltaje en el mínimo y apagar la fuente. Figura 6: Manera correcta de colocar el voltímetro para medir diferencias de potencial 4

5 Montar el circuito indicado en la Figura 7 utilizando el amperímetro en la escala de 50 ma con una resistencia de 690 Ω. Aumente el voltaje de fuente. Esto incrementará la corriente que pasa por el circuito. Mida 5 valores diferentes cualesquiera de corriente y anótelos con su incertidumbre. Figura 7: Forma correcta de colocar el amperímetro para medir corrientes Repita lo anterior conectando el amperímetro a la escala de 500 ma. Antes de desconectar el circuito poner el control de voltaje en el mínimo y apagar la fuente. Pregunta Qué conclusión obtiene sobre la utilización de las diferentes escalas en el voltímetro y el amperímetro? Explique 2.2. Caracterización de una resistencia óhmica Figura 8: Medición simultánea de la corriente y el voltaje 5

6 1. Arme el circuito (Figura 8) tomado como elemento a caracterizar la resistencia de 10 kω. Utilice el amperímetro en la escala de 5 ma (mueva a la derecha el interruptor que está en la parte superior del amperímetro) y el voltímetro en la escala de 15 V. 2. Encienda la fuente y proporcione al circuito un voltaje de alimentación. Anote los valores de corriente I y V que reportan el amperímetro y el voltímetro respectivamente. 3. Desconecte el voltímetro y anote la corriente que se lee en el amperímetro. 4. Repita los pasos 2. y 3. incrementando el voltaje de alimentación. Tome por lo menos diez datos. Utilice la misma escala del voltímetro para todas sus medidas. 5. Elabore una tabla de datos como se indica a continuación: Voltaje I con voltímetro I sin voltímetro 6. Repita el procedimiento anterior con las resistencias de 5 kω y 690 Ω. 7. En una sola hoja de papel milimetrado elabore las gráficas de corriente I (con voltímetro) vs voltaje V y corriente I (sin voltímetro) vs V para las tres resistencias. Preguntas 1. Analice las gráficas que obtuvo. Pasan por el origen? 2. Qué significado tiene la pendiente? 3. Usted obtuvo pendientes diferentes para la misma resistencia cuando tomó los datos con y sin voltímetro Por qué? 4. Cómo podría determinar la resistencia interna del voltímetro? 5. Calcule el error en la medida de las resistencias de 10 kω y 5 kω debido a la influencia de la resistencia interna del voltímetro. 6. Cuál debería ser la resistencia interna del voltímetro si Ud. desea medir las resistencias de 10 kω y 5 kω con un error inferior al 1%? 2.3. Caracterización de un bombillo Figura 9: Circuito conteniendo un bombillo 6

7 1. Arme el circuito que se muestra en la Figura 9. En este caso, una resistencia R de 100 Ω limitadora de corriente se coloca en serie con el bombillo. Mida la diferencia de potencial a través del bombillo y la corriente en el amperímetro para diferentes valores de voltaje en la fuente de alimentación. Para tomar los datos comience incrementando el voltaje de la fuente hasta su valor máximo y luego repita los mismos valores disminuyendo el voltaje. Utilice el amperímetro en la escala de 500 ma y el voltímetro en la escala de 3.0 V. 2. Elabore una tabla con los datos. 3. Elabore el gráfico de corriente vs voltaje. 4. Determine la resistencia del filamento para cada valor de voltaje medido. La temperatura de funcionamiento nominal de un filamento de incandescencia es de 2575 K, es decir, unas ocho veces la temperatura ambiente ( 293 K). Preguntas 1. Qué puede decir sobre la resistencia del filamento del bombillo? 2. La característica I vs V del filamento le permite encontrar una zona de comportamiento óhmico? 3. Puede decirse que el filamento es un elemento óhmico? Qué restricción le impondría al filamento para considerarlo un elemento óhmico? 4. Que representa la pendiente de la gráfica extrapolada al origen? 5. El bombillo que usó para la práctica está previsto para valores nominales V=, I= cuál es su resistencia nominal? Compare este valor con la máxima resistencia calculada. Código de colores de las resistencias Color 1 era Cifra 2 da Cifra Multiplicador Tolerancia Negro Café ±1% Rojo ±2% Naranja Amarillo Verde ±0, 5% Azul Violeta Gris Blanco Dorado ±5% Plateado ±10% Ninguno ±20% 7

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO LABORATORIO 2: USO DE INSTRUMENTOS DE MEDICIÓN ELÉCTRICA (PARTE II) I. OBJETIVOS OBJETIVO

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

Práctica 2. Ley de Ohm. 2.1 Objetivo. 2.2 Material. 2.3 Fundamento

Práctica 2. Ley de Ohm. 2.1 Objetivo. 2.2 Material. 2.3 Fundamento Práctica 2 Ley de Ohm 2.1 Objetivo En esta práctica se estudia el comportamiento de los resistores, componentes electrónicos empleados para fijar la resistencia eléctrica entre dos puntos de un circuito.

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

RESISTENCIA Y LEY DE OHM

RESISTENCIA Y LEY DE OHM RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).

Más detalles

PRÁCTICA NÚMERO 10 LEY DE OHM

PRÁCTICA NÚMERO 10 LEY DE OHM PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias

Más detalles

Ley de Ohm. I. Objetivos

Ley de Ohm. I. Objetivos Ley de Ohm I. Objetivos 1. Familiarizarse con el Power Supply y sus diferentes parámetros 2. Medir corriente y voltaje en un circuito dc 3. Determinar la relación entre corriente y voltaje 4. Graficar

Más detalles

PRÁCTICA NÚMERO 5 LEY DE OHM

PRÁCTICA NÚMERO 5 LEY DE OHM PRÁCTICA NÚMERO 5 LEY DE OHM I. Objetivos. 1. Investigar si los siguientes elementos eléctricos son óhmicos o no: - Una resistencia comercial. - Un diodo rectificador. II. Material. 1. Dos multímetros.

Más detalles

Práctico de Laboratorio 3

Práctico de Laboratorio 3 Práctico de Laboratorio 3 Objetivos: Aprender a conectar un amperímetro para medir corriente continua en un circuito. Medir el efecto de la resistencia y la tensión sobre la corriente. Resistencia, Tensión

Más detalles

BLOQUE I MEDIDAS ELECTROTÉCNICAS

BLOQUE I MEDIDAS ELECTROTÉCNICAS 1.- Un galvanómetro cuyo cuadro móvil tiene una resistencia de 40Ω, su escala está dividida en 20 partes iguales y la aguja se desvía al fondo de la escala cuando circula por él una corriente de 1 ma.

Más detalles

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía.

Consulte y explique los conceptos de energía potencial gravitacional; energía potencial eléctrica, y explicar su analogía. :: OBJETIVOS [2.1] Comprobar experimentalmente la ley de Ohm. Analizar las diferencias existentes entre elementos lineales (óhmicos) y no lineales (no óhmicos). Aplicar técnicas de análisis gráfico y ajuste

Más detalles

MEDIDAS ELÉCTRICAS: POLÍMETROS

MEDIDAS ELÉCTRICAS: POLÍMETROS MEDIDAS ELÉCTRICAS: POLÍMETROS Objetivos: Medir V, I y R en un circuito elemental, utilizando el polímetro analógico y el polímetro digital. Deducir el valor de la resistencia a partir del código de colores.

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

Práctico de Laboratorio 3

Práctico de Laboratorio 3 Práctico de Laboratorio 3 Objetivos: Aprender a conectar un amperímetro para medir corriente continua en un circuito resistivo serie. Medir el efecto de la resistencia y la tensión sobre la corriente.

Más detalles

Material complementario del tema de Electricidad y Magnetismo.

Material complementario del tema de Electricidad y Magnetismo. Material complementario del tema de Electricidad y Magnetismo. Para Segundo Año de Bachillerato General Unificado, como preparación para examen emedial de Física II Materias: A. Circuitos eléctricos simples.

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÌSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS OBJETIVO GENERAL LABORATORIO 1: USO DE MEDIDORES Y FUENTES DE ENERGÍA Capacitar

Más detalles

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor.

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor. Corriente Eléctrica Es el flujo de cargas s (electrones, protones, iones) a través de un medio conductor. Los metales están constituidos por una red cristalina de iones positivos. Moviéndose a través de

Más detalles

Laboratorio de Física II

Laboratorio de Física II Laboratorio de Física II Capitulo 12: Inducción electromagnética (funcionamiento de transformadores) Ley de Faraday Ley de Lenz Transformadores OBJETIVOS [12.1] Entender en que consiste el fenómeno de

Más detalles

LABORATORIO DE FÍSICA 1. PRÁCTICA 6: Guía de circuitos de corriente continua y RC PRÁCTICA 6 1ER CUATRIMESTRE 2014 OBJETIVO GENERAL

LABORATORIO DE FÍSICA 1. PRÁCTICA 6: Guía de circuitos de corriente continua y RC PRÁCTICA 6 1ER CUATRIMESTRE 2014 OBJETIVO GENERAL PRÁCTICA 6: Guía de circuitos de corriente continua y RC OBJETIVO GENERAL Estudiar la relación entre la diferencia de potencial y la corriente que circula en una resistencia eléctrica. Analizar el comportamiento

Más detalles

Física II CiBEx 1er semestre 2016 Departamento de Física - FCE - UNLP

Física II CiBEx 1er semestre 2016 Departamento de Física - FCE - UNLP Física II CiBEx 1er semestre 2016 Departamento de Física - FCE - UNLP Laboratorio 1: Circulación y leyes de Kirchhoff. Objetivos Generales de corriente, circuitos eléctricos en serie y paralelo, ley de

Más detalles

:: OBJETIVOS [6.1] :: PREINFORME [6.2]

:: OBJETIVOS [6.1] :: PREINFORME [6.2] :: OBJETIVOS [6.1] Estudiar la influencia que ejerce la resistencia interna de una pila sobre la diferencia de potencial existente entre sus bornes y medir dicha resistencia interna. :: PREINFORME [6.2]

Más detalles

La Ley de Ohm. Pre-Laboratorio

La Ley de Ohm. Pre-Laboratorio La Ley de Ohm Pre-Laboratorio Nombre Sección Conteste las siguientes preguntas y entregue este pre-laboratorio a su instructor antes de comenzar la experiencia de laboratorio. 1. El sensor V-I integra

Más detalles

Informe 2 - Tecnología 1

Informe 2 - Tecnología 1 Informe 2 - Tecnología 1 Ing. Gabriel Loría Marín 2017 Fecha de entrega: 09/Abril/2017 1. Descripción Se realizará la primera implementación de circuitos de resistencias en serie, paralelo y mixtos. Esto

Más detalles

ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA

ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA OBJETIO Aprender a utilizar equipos eléctricos en corriente continua, estudiar la distribución de corriente y energía en un circuito eléctrico, hacer

Más detalles

LEY DE OHM. Voltímetro y amperímetro.

LEY DE OHM. Voltímetro y amperímetro. Alumno: Página 1 1.- Medida de tensión continua (DC) o alterna (AC). PARA LA MEDIDA DE TENSIONES EL MULTÍMETRO SE COLOCARÁ EN PARALELO CON LA CARGA. Se conectan las clavijas de las puntas de prueba, situando

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

ACTIVIDADES ELECTRICIDAD

ACTIVIDADES ELECTRICIDAD 1.- INTRODUCCIÓN. ACTIVIDADES ELECTRICIDAD 1.1.- Observa los dos montajes, razona la respuesta que creas que es correcta. a) La pila A es más nueva. b) Son iguales, pero la A se acabará antes. c) Las bombillas

Más detalles

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES

PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES Laboratorio de Circuitos/Electrotecnia I PRÁCTICA 1 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 1: INSTRUMENTOS DE MEDICIÓN Y CIRCUITOS ELEMENTALES OBJETIVO Enseñar a usar y en lo posible, familiarizar

Más detalles

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS Monta los siguientes circuitos, calcula y mide las magnitudes que se piden: 1) Con el Voltímetro, mide la tensión de una pila y la de la fuente de tensión

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 28-10-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA TRES ING. SANTIAGO GONZALEZ LOPEZ CIRCUITOS ELECTRICOS OBJETIVO CARGAS ELECTRICAS EN REPOSO: ELECTROSTATICA CARGAS ELECTRICAS EN MOVIMIENTO: CORRIENTE ELECTRICAS

Más detalles

LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA

LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 6: FUERZA ELECTROMOTRIZ, RESISTENCIA INTERNA Y POTENCIA Determine

Más detalles

CIRCUITOS EN SERIE Y PARALELO

CIRCUITOS EN SERIE Y PARALELO CIRCUITOS EN SERIE Y PARALELO Objetivos: - Evaluar experimentalmente las reglas de Kirchhoff. - Formular el algoritmo mediante el cual se obtiene la resistencia equivalente de dos o más resistores en serie

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

FÍSICA II Guía de laboratorio 03: Voltaje y resistencia eléctrica. Resistores (0,5-2,0-4,2 kω) Protoboard Cables conectores (Fuente y alligator)

FÍSICA II Guía de laboratorio 03: Voltaje y resistencia eléctrica. Resistores (0,5-2,0-4,2 kω) Protoboard Cables conectores (Fuente y alligator) FÍSICA II Guía de laboratorio 0: Voltaje y resistencia eléctrica I. OBJETIVOS a) Calcula la resistencia equivalente de resistores conectados en serie y en paralelo, utilizando los valores nominales dados

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

MÉTODOS DE MEDIDA DE RESISTENCIAS

MÉTODOS DE MEDIDA DE RESISTENCIAS MÉTODOS DE MEDIDA DE RESISTENCIAS OBJETIVO Se trata de que el alumno se familiarice con cuatro métodos diferentes de medida de resistencias: Voltímetro - Amperímetro, Puente de Wheatstone, Puente de hilo

Más detalles

III. Aparatos de medición

III. Aparatos de medición III. Aparatos de medición Voltímetro - Amperímetro - Ohmímetro Objetivos Conocer y manejar el multímetro digital para hacer mediciones de voltaje, corriente y resistencia en un circuito eléctrico que contiene

Más detalles

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA

CORRIENTE CONTINUA II : CURVA CARACTERÍSTICA DE UNA LÁMPARA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El

Más detalles

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo. FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad EJEMPLO MEDICIÓN DE LA RESISTENCIA ELÉCTRICA DE DIFERENTES CONDUCTORES ELÉCTRICOS Fecha del ensayo: Enero 20 de 2004 Ensayo realizado por: Ing. Helmuth Ortiz Condiciones ambientales del ensayo: Temperatura:

Más detalles

Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales.

Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales. 8. COMPONENTES ELECTRÓNICOS 8.1 Resistencias. Son componentes que ofrecen cierta oposición al paso de la corriente, y produce una caída de tensión entre sus terminales. Una característica muy importante

Más detalles

MATERIA: ELECTRICIDAD Y MAGNETISMO.

MATERIA: ELECTRICIDAD Y MAGNETISMO. MATERIA: ELECTRICIDAD Y MAGNETISMO. ÁREA: INGENIERÍA. CUATRIMESTRE: CUARTO NOMBRE DEL ALUMNO: FECHA DE REALIZACIÓN: Página 1 de 18 PRÁCTICA No. 2 Conocimiento del Equipo Básico OBJETIVO: Conocer el multímetro,

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM UNIDAD 1: LEY DE OHM - TEORÍA En esta unidad usted aprenderá a aplicar la Ley de Ohm, a conocer las unidades eléctricas en la medición de las resistencias,

Más detalles

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado. Laboratorio 6 Inducción E.M. y el Transformador 6.1 Objetivos 1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

Laboratorio de Electricidad PRACTICA - 7 MULTIPLICADORES DE VOLTÍMETRO

Laboratorio de Electricidad PRACTICA - 7 MULTIPLICADORES DE VOLTÍMETRO PRCTIC - 7 MULTIPLICDORS D VOLTÍMTRO I - Finalidades 1.- Convertir un dispositivo fundamental de medición (galvanómetro) en un voltímetro, mediante la disposición en serie de un "multiplicador" (resistencia).

Más detalles

FÍSICA II PRÁCTICO 5 Corriente continua

FÍSICA II PRÁCTICO 5 Corriente continua FÍSICA II PRÁCTICO 5 Corriente continua Ejercicio 1 Se considera un cable de plata de 1 mm 2 de sección que lleva una corriente de intensidad 30A. Calcule: a) La velocidad promedio de los electrones suponiendo

Más detalles

COL.LEGI BEAT RAMON LLULL Curs Tccnología EJERCICIOS

COL.LEGI BEAT RAMON LLULL Curs Tccnología EJERCICIOS 1. Una estufa eléctrica es más eficiente: a) Cuando la resistencia eléctrica es más alta. b) Cuando la potencia eléctrica es más alta. c) Cuando la intensidad de corriente es más alta. 2. Señala qué tienen

Más detalles

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos

Más detalles

TEMA 2: ELECTRICIDAD Y ELECTRÓNICA

TEMA 2: ELECTRICIDAD Y ELECTRÓNICA TEMA 2: ELECTRICIDAD Y ELECTRÓNICA INDICE 1. Corriente eléctrica 2. Magnitudes 3. Ley de Ohm 4. Potencia 5. Circuito serie 6. Circuito paralelo 7. Circuito mixto. 8. Componentes de un circuito electrónico.

Más detalles

PROBLEMAS Y EJERCICIOS

PROBLEMAS Y EJERCICIOS 24 PROBLEMAS Y EJERCICIOS 1.- Una corriente permanente de 10 A de intensidad circula por un conductor durante un tiempo de un minuto. Hallar la carga desplazada. (Sol: 600 C) 2.- Calcula la resistencia

Más detalles

PRÁCTICA DE LABORATORIO No. 1 MEDICIONES ELÉCTRICAS

PRÁCTICA DE LABORATORIO No. 1 MEDICIONES ELÉCTRICAS 1. INTRODUCCIÓN PRÁCTIC DE LBORTORIO No. 1 MEDICIONES ELÉCTRICS Para el desarrollo exitoso de todas las prácticas de Física III es necesario conocer y operar correctamente los instrumentos de mediciones

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

Incertidumbres y Métodos Gráficos *

Incertidumbres y Métodos Gráficos * UNIVERSIDAD NACIONAL DE COLOMBIA Departamento de Física Fundamentos de Electricidad y Magnetismo Guía de laboratorio 02 Objetivos Incertidumbres y Métodos Gráficos * 1. Aprender a expresar y operar correctamente

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna

Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Laboratorio 1. Circuitos en serie y en paralelo en corriente alterna Objetivos: 1. Comprobar experimentalmente la validez de los cálculos teóricos, por medio del análisis de un circuito RL en serie y de

Más detalles

PUENTE DE WHEATSTONE

PUENTE DE WHEATSTONE PRÁCTICA DE LABORATORIO II-07 PUENTE DE WHEATSTONE OBJETIVOS Familiarizarse con la técnica de puente de Wheatstone para la medición de resistencias. Determinar la resistencia eléctrica de algunos elementos.

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 5. Construcción de un voltímetro y un óhmetro 5.1. Objeto de la práctica El objeto

Más detalles

GUIÓN 5. CAMPO ELÉCTRICO EN LÁMINAS DÉBILMENTE CONDUCTORAS. - la dependencia entre voltaje aplicado e intensidad en láminas de papel mojado,

GUIÓN 5. CAMPO ELÉCTRICO EN LÁMINAS DÉBILMENTE CONDUCTORAS. - la dependencia entre voltaje aplicado e intensidad en láminas de papel mojado, GUIÓN 5. CAMPO ELÉCTRICO EN LÁMINAS DÉBILMENTE CONDUCTORAS Objetivos En esta práctica se analiza el comportamiento del campo eléctrico en medios débilmente conductores. En particular se estudia experimentalmente:

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal.

Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal. Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal. Objetivos En esta práctica se verificará la Ley de Ohm, esto es, la dependencia lineal entre la intensidad

Más detalles

MATERIA: ELECTRICIDAD Y MAGNETISMO.

MATERIA: ELECTRICIDAD Y MAGNETISMO. MATERIA: ELECTRICIDAD Y MAGNETISMO. ÁREA: INGENIERÍA. CUATRIMESTRE: CUARTO NOMBRE DEL ALUMNO: FECHA DE REALIZACIÓN: Página 1 de 18 PRÁCTICA No. 2 Conocimiento del Equipo Básico OBJETIVO: Conocer el multímetro,

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA II LEY DE OHM SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA II LEY DE OHM SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIAS ÚNICAS DE LABORATORIO DE FÍSICA II LEY DE OHM SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS LA LEY DE OHM Objetivos - Conocer la Ley de Ohm y las Leyes de Kirchoff. -

Más detalles

No 5. LABORATORIO DE ELECTROMAGNETISMO Circuito Serie Circuito Paralelo Ley de Ohm. Objetivos. Esquema del laboratorio y materiales

No 5. LABORATORIO DE ELECTROMAGNETISMO Circuito Serie Circuito Paralelo Ley de Ohm. Objetivos. Esquema del laboratorio y materiales No 5 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Investigar y analizar las tres variables involucradas en la relación

Más detalles

Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica

Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica Nombre y apellidos: Ejercicios de la unidad didáctica 6.- Electricidad y magnetismo. Efectos de la corriente eléctrica En determinados materiales, como los metales y las sustancias iónicas fundidas o disueltas

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE LABORATORIO DE FISICA C Duración máxima del examen: 2 horas Feb. 8/ 2011 PROF.... ALUMNO....PAR 1) Se acerca una barra de

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática Circuitos Electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos Electrónicos Otoño 2000 Práctica 1: Equivalentes Thevenin / Norton y puertas lógicas Boletín F00-018

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

Resistores en circuitos eléctricos

Resistores en circuitos eléctricos Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

ELECTRICIDAD DINÁMICA. Profesor Mauricio Hernández F Física 8 Básico

ELECTRICIDAD DINÁMICA. Profesor Mauricio Hernández F Física 8 Básico ELECTRICIDAD DINÁMICA Durante las clases anteriores En qué se diferencia este tipo de electricidad de la que usamos en los electrodomésticos? 1 Electricidad básica http://dpto.educacion.navarra.es/micros/tecnologia/elect.swf

Más detalles

PRÁCTICA Nº 2: MEDIDA DE RESISTENCIAS

PRÁCTICA Nº 2: MEDIDA DE RESISTENCIAS PRÁCTICA Nº 2: MEDIDA DE RESISTENCIAS Objetivos: Medida de resistencias; estudio del efecto de carga en los montajes corto y largo del método voltímetro/amperímetro; estudio del puente de Wheatstone. Material:

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES

FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES FISICA III Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES PRÁCTICO DE LABORATORIO Nº FÍSICA III Comisión laboratorio: Docente: Fecha

Más detalles

RESISTENCIA EN FUNCIÓN DE LA TENSIÓN

RESISTENCIA EN FUNCIÓN DE LA TENSIÓN Laboratorio de Física General Primer Curso (Electromagnetismo RESISTENCIA EN FUNCIÓN DE LA TENSIÓN Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la

Más detalles

Divisor de tensión y puente de Wheatstone

Divisor de tensión y puente de Wheatstone Divisor de tensión y puente de Wheatstone 1. OBJETIVOS. Determinar los valores de resistencias desconocidas, utilizando el Puente de Wheatstone. Estudiar la versatilidad del circuito puente. 2. Fundamento

Más detalles

CORRIENTE Y RESISTENCIA ELÉCTRICA

CORRIENTE Y RESISTENCIA ELÉCTRICA Laboratorio de Física General (Electricidad y Magnetismo) CORRIENTE Y RESISTENCIA ELÉCTRICA Fecha: 02/10/2013 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la tensión

Más detalles

CENTRO DE CIENCIA BÁSICA Curso: Fundamentos de Electromagnetismo Docente: M. Sc Luz Aída Sabogal Tamayo 1

CENTRO DE CIENCIA BÁSICA Curso: Fundamentos de Electromagnetismo Docente: M. Sc Luz Aída Sabogal Tamayo 1 Docente: M. Sc Luz Aída Sabogal Tamayo 1 PRÁCTICA 2: CIRCUITOS RESISTIVOS EN CORRIENTE DIRECTA PRÓPOSITO: Conocer las características de circuitos resistivos de corriente directa, determinando las características

Más detalles

El valor efectivo del voltaje de C.A. se puede determinar como sigue:

El valor efectivo del voltaje de C.A. se puede determinar como sigue: OBJETIVO: 1.- Medir el valor efectivo de un voltaje alterno. 2.- Aprender a usar los Voltímetros y Amperímetros en C.A. 3.- Verificar la ley de Ohm en los circuitos de C.A. 4.- Calcular la potencia de

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION DOCENTE: TEMA: TURNO: ALUMNOS: UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA ESCUELA PROFESIONAL DE INGENIERIA ELECTRICA LABORATORIO Nº 4 FISICA III CICLO: 2009-A JUAN

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE CICLO I-15 MEDICIONES ELECTRICAS UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 1 :Mediciones de potencia electrica I. RESULTADOS DE

Más detalles

MINISTERIOS DE EDUCACIÓN SUPERIOR LA VICTORIA ESTADO ARAGUA

MINISTERIOS DE EDUCACIÓN SUPERIOR LA VICTORIA ESTADO ARAGUA REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIOS DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOÍA DE LA VICTORIA LA VICTORIA ESTADO ARAUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO DE

Más detalles

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA Fecha: 29/03/202 Página : de 8 NOMBRE DEL ALUMNO GRADO FECHA. Calcula el siguiente circuito y completa la tabla de resultados V R T I I I 2 I 3 V AB V BC P P R P R2 P R3 2. Resuelve el siguiente circuito

Más detalles

LA RELACIÓN VOLTAJE- CORRIENTE EN RESISTENCIAS Y DIODOS

LA RELACIÓN VOLTAJE- CORRIENTE EN RESISTENCIAS Y DIODOS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE PONENCIA: LA RELACIÓN VOLTAJE- CORRIENTE EN RESISTENCIAS Y DIODOS YURI POSADAS VELÁZQUEZ JUNIO DE 2008 LA RELACIÓN

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica 1(8) Ejercicio nº 1 Un alambre de aluminio está recorrido por una corriente eléctrica de 30 ma. Calcula la carga eléctrica que atraviesa una sección recta del alambre cada media hora. Ejercicio nº 2 Una

Más detalles

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO OBJETIO 1.- El alumno comprenderá los factores que intervienen en la formación de un campo magnético en una estructura ferromagnética. INTRODUCCIÓN Recordemos

Más detalles

Práctica de medidas eléctricas. Uso del poĺımetro.

Práctica de medidas eléctricas. Uso del poĺımetro. Departamento de Física Aplicada I, E.U.P, Universidad de Sevilla http://euler.us.es/ niurka/ Plan 1 Objetivos. Asociación de resistencias 2 Realización de medidas Asociación de resistencias Objetivos 1

Más detalles

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes. INDUCCION ELECTROMAGNETICA Funcionamiento de Transformadores CAAPPÍ ÍTTUU LOO L 12 Ley de Faraday Ley de Lenz Transformadores :: OBJETIVOS [12.1] Entender en que consiste el fenómeno de la inducción electromagnética

Más detalles

PRACTICA N O 5. TITULO: MEDICIÓN DE RESISTENCIAS II. Puente de Wheatstone

PRACTICA N O 5. TITULO: MEDICIÓN DE RESISTENCIAS II. Puente de Wheatstone PRACTICA N O 5 TITULO: MEDICIÓN DE RESISTENCIAS II. Puente de Wheatstone EQUIPO: 1 Fuente regulable de voltaje 1 Reóstato de 2870-0,38 Amp, 1 Puente portátil de Wheatstone tipo L - 3c YEW 3 Cajas de resistencia

Más detalles