I = Q / t ó Q = I x t

Tamaño: px
Comenzar la demostración a partir de la página:

Download "I = Q / t ó Q = I x t"

Transcripción

1 CAPITULO III, IV y V (ELECTRICIDAD PARA ELECTRONICOS) ELECTRODINAMICA 3.1 Corriente eléctrica 3.2 Ley de Ohm 3.3 Resistores 3.4 Resistores variables 3.5 Resistores especiales 3.6 Limitaciones de los resistores 3.7 Valores comerciales 3.8 Conductividad 3.9 Código de colores 3.10 Asociación de resistencias 3.11 Shunt 3.12 Resistencia de absorción 3.13 Divisor de tensión 3.14 Divisor de corriente 3.15 Leyes de Kirchoff 4.1 Energía y Potencia eléctrica 4.2 Potencia calorífica y calor. LEY DE JOULE 5.1 CIRCUITO EQUIVALENTE - DEFINICION 3.1 CORRIENTE ELECTRICA. Se ha dicho que las cargas eléctricas pueden moverse a través de diferencias de potencial. Naturalmente, deberán de hacerlo por medio de los conductores (excepto en el caso especial de las válvulas de vacio, pero también éstas están terminadas en conductores). A este movimiento de cargas se le denomina corriente eléctrica. La causa que origina la corriente eléctrica es la diferencia de potencial. Las cargas "caen" del potencial más alto al más bajo. Las únicas partículas que pueden desplazarse a lo largo de los conductores, debido a su pequeño tamaño, son los electrones, que como se sabe, son cargas de signo negativo. Entonces, la corriente eléctrica se mueve desde el potencial negativo, que es la fuente de electrones, hacia el positivo, que atrae las cargas negativas. Esta circulación recibe el nombre de CORRIENTE ELECTRONICA, para distinguirla de la CORRIENTE ELECTRICA, que fluye al revés, de positivo a negativo. Este último acuerdo fué tomado en los principios de la electricidad, por considerar que las cargas "caen" del potencial más alto al más bajo, cuando se creía que eran las cargas positivas las que se desplazaban. En la actualidad, coexisten ambos criterios, uno real y otro ficticio. A la hora de resolver circuitos puede aplicarse uno u otro, ya que, tratándose de convenios, ambos dan el mismo resultado. Es evidente que no en cualquier circunstancia, circulará el mismo número de electrones. Este depende de la diferencia de potencial y de la conductividad del medio. Una forma de medir el mayor o menor flujo de cargas es por medio de la INTENSIDAD DE CORRIENTE (o también, simplemente, CORRIENTE), que se define como la cantidad de carga que circula por un conductor en la unidad de tiempo (un segundo). Según esto: I = Q / t ó Q = I x t La intensidad de corriente eléctrica se expresa en AMPERIOS que, por definición, es el número de culombios por segundo. Los divisores más usuales del amperio son: El miliamperio (ma) que es la milésima parte del amperio, por lo que: 1 A. = ma. El microamperio (ma) que es la millonésima parte del amperio, por lo que: 1 A. = ma Amperios A Miliamperios ma 1 Amperio = Miliamperio = Microamperio = Microamperios µa

2 3.2 LEY DE OHM Debe existir alguna relación entre la diferencia de potencial aplicada en los extremos de un conductor y la corriente que atraviesa ese conductor. Ohm encontró experimentalmete que esta relación era proporcional, es decir, que para un conductor dado, cuando, por ejemplo, se duplica o se triplica la diferencia de potencial, se duplica o se triplica la coriente, respectivamente. Dicho de otro modo, cuando una corriente eléctrica atraviesa un conductor, cra en éste una diferencia de potencial directamente proporcional a la corriente. A esta constante de proporcionalidad se le llama resistencia. La mayor o menor resistencia de un conductor es la mayor o menor dificultad que opone al paso de la corriente. Y así tendremos buenos y malos conductores de la corriente en función de que tengan pequeña o alta resistencia respectivamente. Obviamente, los aislantes ( no conducen la corriente) tendrán una resistencia altísima. Si se representa la resistencia del conductor por la letra R, la diferencia de potencial en los extremos del conductor por la letra V, y la corriente que circula por él, con la letra I la ley de Ohm puede formularse como: que es lo mismo que decir V= I x R I = V / R ó R = V / I La unidad de resistencia eléctrica es el OHMIO, simbolizado por la letra griega Ω (omega) Los múltiplos más usuales del Ohmio son: El Kilohmio que es igual a Ohmios => 1KΩ = Ω El Megaohmio ques es igual a Ohmios => 1MΩ = Ω En el lenguaje normal, muchas veces se abrevian estos nombres y, en vez de decir Kilohmio, se dice sencillamente K o, en vez de decir Megaohmio, sencillamente Mega. o M. La resistencia de un conductor depende de sus dimensiones: es decir, tendrá más resistencia cuanto más estrecho y largo sea dicho conductor. Esto resulta intuitivo si se considera la resistencia como la dificultad que opone al paso de la corriente. Dicha proporcionalidad se expresa como: R = r x l / S Donde: R es la resistencia medida en ohmios l es la longitud medida en metros. S es la sección (área) transversal del conductor, en metros cuadrados. r es una constante que depende del material con que está fabricado el conductor y se llama RESISTIVIDAD o RESISTENCIA ESPECIFICA del material en cuestión, y que da la resistencia por cada unidad de longitud y de sección. (Ver Tabla de resistividades) A veces se utiliza el inverso de la RESISTIVIDAD, al que se le llama CONDUCTIVIDAD (s ) representación gráfica de la ley de Ohm s = 1 / r r = 1 / s Toda ley matemática puede representarse gráficamente por medio de un sistema de ejes coordenados; en el eje horizontal ( llamado eje de abscisas o eje de las X) se representan los valores de una variable y en el eje vertical ( eje de ordenadas o eje de las Y) se representan los valores de la función que correspondan a los dados de la variable. De este modo se puede ver por medio de la gráfica el comportamiento de esa ley, resultando ser un método rápido y sencillo, por lo que será profusamente usado en Electrónica.

3 Representación gráfica Supóngase una determinada resistencia por la que se hacen circular distintas corrientes, produciéndose sendas caídas de potencial, según la tabla: Para 0,5 A... 4 V. Para 1 A... 8 V. Para 2 A V. Para 3 A V. Una vez determinada la unidad de longitud en cada eje, (en el eje del voltaje V se han tomado de 5 en 5 voltios, y en el eje de la corriente I de 0,5 en 0,5 amperios) se procederá a tomar sobre ellos los valores de la tabla. Cada pareja define un punto: el valor de 0,5 en el eje horizontal corresponde 4 en el eje vertical, y a 1 en el horizontal corresponde 8 en el vertical, y así sucesivamente. La línea que pasa por los puntos así formados (ver figura) es la representación gráfica de la función. En este caso (Ley de Ohm), resulta ser una recta, y diremos que esta ley es LINEAL. Una vez dibujada la función, en nuestro caso la recta, se puden obtener de ella nuevos valores. Por ejemplo, qué caida de potencial se produce para una corriente de 2,5 A.? Respuesta (viendo la figura): 20 V. Qué corriente circula cuando la d.d.p. (diferencia de potencial) es de 10 V.? Respuesta (viendo la figura ): 1,25 A. Cuánto vale la resistencia? Respuesta: R = DV / DI D Viendo la figura DV = 8 V DI = 1 A. R = 8 / 1 R = 8 W y ese valor lo obtendremos para cualquier D V que elijamos de la figura

4 3.3 RESISTORES (También llamados RESISTENCIAS) Los circuitos electrónicos necesitan incorporar resistencias. Es por esto que se fabrican un tipo de componentes llamados resistores cuyo único objeto es proporcionar en un pequeño tamaño una determinada resistencia, especificada por el fabricante. El símbolo de un resistor es: Hay resistencias de varios tipos. Los tipos más usuales son: BOBINADAS: Sobre una base de aislante en forma de cilindro se arrolla un hilo de alta resistividad (wolframio, manganina, constantán). La longitud y sección del hilo, asi como el material de que está compuesto, darán una resistencia. Esta suele venir expresada por un número impreso en su superficie. Se utilizan para grandes potencias, pero tienen el inconveniente de ser inductivas. AGLOMERADAS: Una pasta hecha con gránulos de grafito (el grafito es una variedad del carbono puro; la otra es el diamante). El valor viene expresado por medio de anillos de colores, con un determinado código. DE PELICULA DE CARBON: Sobre un cilindro de cerámica se deposita una fina película de pasta de grafito. El grosor de ésta, y su composición, determinan el valor de la resistencia. PIROLITICAS: Similares a las anteriores, pero con la película de carbón rayada en forma de hélice para ajustar el valor de la resistencia. Son inductivas. 3.4 RESISTORES VARIABLES Hay veces en que interesa disponer de una resistencia cuyo valor pueda variarse a voluntad. Son los llamados reostatos o potenciómetros. Se fabrican bobinados o de grafito, deslizantes o giratorios. Se suelen llamar potenciómetros cuando poseen un eje practicable, y resistencias ajustables cuando para vararlas se precisa la ayuda de una herramienta, porque una vez ajustados no se van a volver a retocar más... Los potenciómetros se representan en los circuitos por :

5 3.5 RESISTORES ESPECIALES Existen resistores fabricados con materiales especiales, comúnmente semiconductores, cuya resistencia no es constante, sino que depende de algún parámetro exterior. Por ejemplo: LDR VDR PTC NTC 3.6 LIMITACIONES DE LOS RESISTORES LDR (Litgh Dependent Resistance) Resistencia dependiente de la luz VDR (Voltage Dependent Resistance) Resistencia dependiente del Voltaje PTC (Positive Temperature Coefficient) Coeficiente de Temperatura Positivo NTC ( Negative Temperature Coefficient) Coeficiente de Temperatura Negativo A la hora de escoger un resistor hay que tener en cuenta, además de su valor óhmico, otros parámetros, tales como la máxima potencia que es capaz de disipar y la tolerancia. Respecto a la primera, es preciso considerar que una resistencia se calienta al paso por ella de una corriente (como se verá más adelante). Debido a esto, hace falta dimensionar el resistor de acuerdo con la potencia calorífica que vaya a disipar en su funcionamiento normal. Se fabrican resistores de varias potencias nominales, y se diferencian por su distinto tamaño. La tolerancia es un parámetro que expresa el error máximo sobre el valor óhmico nominal con que ha sido fabricado un determinado resistor. Por ejemplo, un resistor de valor nominal 470 Ω con una tolerancia del 5 % quiere decir que el valor óhmico real de ese resistor puede oscilar entre el valor nominal más el 5 % del mismo, y el valor nominal menos el 5 %. Es decir, entre : 470-0,05 x 470 = 446, ,05 x 470 = 493,5 Si no se usan siempre resistores de alta precisión (baja tolerancia) es porque el coste es elevado y para las aplicaciones normales es suficiente con una tolerancia relativamente alta. 3.7 VALORES COMERCIALES No se fabrican resistores de todos los valores posibles por razones obvias de economía. Además sería absurdo, ya que, por ejemplo, en un resistor de 100 Ω y 10 % de tolerancia, el fabricante nos garantiza que su valor está comprendido entre 90 Ω y 100 Ω, por lo tanto no tiene objeto alguno fabricar resistores de vaolres comprendidos entre estos dos últimos. Hay tolerancias del 1 por mil, del 1 %, 5 %, 10 % y 20 %. Para la serie de resistores que se fabrican con una tolerancia del 10 % que es la más utilizada, los valores comerciales son: y los mismos seguidos de ceros Resistores de valores muy pequeños no son comunes, por la dificultad que entraña ajustar su valor. Resistores de valores muy grandes son difíciles de conseguir, porque en ellos comienza a tener importancia fenómenos como la resistencia superficial, condiciones ambientales, étc. y tampoco es normal su uso. Por ejemplo: En la serie de resistores con tolerancia del 10 % el valor más pequeño es de 4,7 Ω y el mayor de 22 MΩ. En la serie del 5 % los valores extremos son 0,33 Ω 7 10 M Ω.

6 3.8 CONDUCTANCIA La conductancia es una magnitud eléctrica que se define como la inversa de la resistencia y se representa con la letra G. Por analogía con la resistencia, podría decirse que la conductancia es la facilidad que un conductor ofrece al paso de la corriente a través de él. G = 1 / R ó R = 1 / G La unidad de conductancia es el MHO (inverso de Ohm), y se representa por la letra omega invertida. 3.9 CODIGO DE COLORES Ya se ha dicho que los valores óhmicos de los resistores se suelen representar por medio de unos anillos de color pintados en el cuerpo de los mismos. Suelen ser en número de cuatro, y su significado es el siguiente: 1er. anillo : 1ª cifra 2º. anillo : 2ª cifra 3er. anillo : Número de ceros que siguen a los anteriores. 4º. anillo : Tolerancia

7 Los resistores del 1 % llevan cinco bandas de color : Cuatro para el valor y una para la tolerancia. Los resistores de valor inferior a 1Ω llevan la tercera banda de color oro, que representa la coma. Por ejemplo, una resistencia de colores amarillo, violeta, oro,oro tiene un valor de 4,7 Ω y una tolerancia del 5 % ASOCIACION DE RESISTENCIAS. Los resistores pueden combinarse entre ellos en tres tipos de montaje: serie, paralelo y mixto. ASOCIACION SERIE: Se dice que varias resistencias están montadas en serie cuando el final de una está conectada al principio de la otra, como muestra la figura. Cuando este conjunto se conecte a un generador con un voltaje V T, por ejemplo, circulará por él una corriente I indicada en la figura por la flecha. Pero obsérvese que esta CORRIENTE es la MISMA por todas las resistencias, ya que no hay más que un camino posible. En cambio, la TENSION en cada resistencia será distinta (excepto en el caso de que las resistencias sean iguales), y de valor V=I x R. La suma de todas las tensiones sera igual al la del

8 generador de valor VT. El conjunto es equivalente a una sola resistencia de valor igual a la suma de todas ellas. (piénsese que, al conectarlas en serie la dificultad al paso de la corriente aumenta). V T = V 1 + V 2 + V 3 = I x R 1 + I x R 2 + I x R 3 = I x (R 1 + R 2 + R 3 ) por lo que : V T / I = R T = R 1 + R 2 + R 3 Es decir que la resistencia total equivalente R T es igual a la suma de todas las resistencias ASOCIACION PARALELO: Se dice que varias resistencias están montadas en paralelo cuando tienen conectados todos los principios entre si y todos los finales entre si, como indica la figura. Cuando a este conjunto se le conecte un generador, éste entregará una corriente; pero esta corriente se repartirá en varias, una por cada rsistencia. La SUMA de todas las CORRIENTES es IGUAL a la CORRIENTE TOTAL, y cada una de ellas vale V/R. En cambio, la TENSION EN EXTREMOS de todas es la MISMA (la que impone el generador) Obsérvese que este caso es dual del anterior..antes la tensión total del circuito era igual a la suma de las tensiones de cada una de las resistencias, ahora la corriente total que entrega el generador es la que es igual a la suma de las corrientes por cada una de las resistencias. I T = I 1 + I 2 + I 3 = V T / R 1 + V T / R 2 + V T / R 3 =V T x (1 / R / R / R 3 ) por lo que : I T / V T = 1 / R T = 1 / R / R / R 3 Es decir que ahora la inversa de la resistencia total del circuito paralelo es igual a la suma de las inversas de cada una de las resistencias O también se puede decir, teniendo en cuenta que habíamos dicho que la inversa de la resistencia es igual a la conductancia, (recordar que G = 1 / R) que G T = G 1 + G 2 + G 3 La conductancia total del circuito es igual a la suma de las conductancias. En el caso particular de que las resistencias asociadas en paralelo sean dos: 1 / RT = 1 / R1 + 1 / R2 = (R2 + R1) / R2 x R1 o sea R T = R 1 x R 2 / (R 1 + R 2 ) En este caso la resistencia total de dos resistencias es igual al producto de ellas dividiva por la suma. Esta fórmula se puede aplicar reiteradamente para cualquier número de resistencias (siempre que estén todas en paralelo) en vez de la fórmula general. ASOCIACION PARALELO: Pueden presentarse circuitos como combinación de los dos anteriores. Ejemplo: En el circuito de la figura vamos a calcular la resistencia total:

9 El método seguido es el que se considera más cómodo: 1º) R3 // R4 (Observar que R3 está en paralelo con R4) R3 // R4 = R3 x R4 / (R3+ R4)= 60 x 40 / ( ) = 24 Ω 2º) El paralelo de R3 con R4 se encuentra en serie con R5 (R3 // R4 ) + R5 = = 70 Ω 3º) Este grupo se encuentra a su vez en paralelo con R2 [ (R3 // R4 ) + R5 ] // R2 = 70 x 30 / ( ) = 21 Ω 4º) Y todo este grupo anterior está en serie con R1 [ (R3 // R4 ) + R5 ] // R2 + R1 = = 40 Ω Luego la resistencia total del circuito es : RT = 40 W Se comienza por reducir todos los paralelos del circuito aplicando la fórmula correspondiente. A continuación se reducen las res istencias que han quedado en serie. Se vuelven a reducir los nuevos paralelos que se han formado... y asi sucesivamente. CASOS PARTICULARES : 1.- Resistencias iguales en serie: con un número n de resistencias iguales de valor R en serie: R T = R + R + R +... (n veces)... + R = n x R La resistencia total es igual a una de ellas multiplicada por el número de resistencias R T = n x R 2.- Resistencias iguales en paralelo: con un número n de resistencias iguales de valor R en paralelo: 3.11 SHUNT 1 / R T = 1/R + 1/R + 1/R +...(n veces) /R = n/r por lo que: La resistencia total es igual a una de ellas dividida por el número de resistencias R T = R / n La asociación en paralelo se llama también derivación o shunt. Este último nombre se suele aplicar a los montajes en los que es necesario limitar la corriente que atraviesa un determinado aparato de medida, es decir protegerlo, drenando el exceso de corriente por medio de una resistencia en paralelo. Ejemplo: Construir un miliamperímetro de 5 miliamperios a fondo de escala con un galvanómetro de 100 microamperios y 50 Ω de resistencia interna. El galvanómetro es un aparato de medida que registra corrientes débiles y es la base de los polímetros. La tensión en extremos del galvanómetro será: V = I x R =100 µa x 50 Ω = 5 mv. La tensión en extremos de R es la misma por estar en paralelo. 100 µa = 0,1 ma. La corriente por R será: IR = 5 ma - 0,1 ma = 4,9 ma. Luego: R = V / I = 5mV / 4,9 ma = 1,02 Ω

10 3.12 RESISTENCIA DE ABSORCION Cuando se quiere limitar la tensión que se aplica a un determinado circuito se conecta una resistencia en serie, llamada de absorción. Ejemplo: Construir un voltímetro de 0,5 V. a fondo de escala con el mismo galvanómetro del ejemplo anterior 3.13 DIVISOR DE TENSIÓN La tensión de máxima desviación del galvanómetro era: 100 µa x 50 Ω = 5 mv. por lo tanto en R aparecen 0,5 V - 5 mv = 495 mv La corriente que circula por R es la misma que la que circula por el galvanómetro, por estar en serie, R = V / I = 495 mv / 100 m A = 4950 W Cuando se aplica una tensión a un circuito serie y se toma la diferencia de potencial en extremos de una de las resistencias se obtiene un divisor de tensión, ya que la salida es una fracción de la de entrada, y esa fracción viene determinada por la relación entre las resistencias. En el ejemplo de la figura: I = Ve / (R1 + R2) Vs = I x R2 = Ve x R2 / (R1 + R2) Vs = 20 x 1 / (1 + 9) = 2 V DIVISOR DE CORRIENTE Cuando se aplica una corriente a un circuito paralelo y se toma la intensidad que circule por una de las resistencias, se obtiene un divisor de corriente, ya que la de la salida es una fracción de la corriente de entrada i dicha fracción viene determinada por la relación entre las resistencias. Ejemplo V = Ie x (R1 // R2) = Ie x R1 x R2 / (R1 + R2) Is = V / R2 = Ie x R1 /(R1 + R2) Is = 20 x 9 / (1 + 9) = 18 A.

11 3.15 LEYES DE KIRCHOFF Aunque el concepto de generador y fuerza electromotriz se verá en otro capítulo, adelantaremos que la fuerza electromotriz (f.e.m.) es la tensión que suministra un generador (pila o bateria) cuando no se le conecta ninguna resistencia. Concepto de malla: Se llama malla en un circuito a cualquier camino cerrado. En el ejemplo de la figura hay tres mallas: ABEF BCDE ABCDEF El contorno de la malla está formado por ramas. Hay tres ramas: EFAB BE BCDE Concepto de nudo: Se llama nudo en un circuito a cualquier punto en el que concurren más de dos ramas. En el ejemplo de la figura hay dos nudos: los puntos B y E. Convenios: Se fijan en cada malla un sentido de referencia arbitrario, que no tiene por qué ser el mismo en todas las mallas. En el ejemplo se ha escogido el sentido de las agujas del reloj para ambas. Basta con tomar las mallas que sean independientes. La ABCDEF no es independiente, porque está formada por las otras dos. Se conviene en asignarle a los generadores signo positivo cuando tienden a producir corriente en el mismo sentido que el de referencia, y negativo en caso contrario. 1ª Ley de Kirchoff o ley de mallas A lo largo de una malla, la suma de fuerzas electromotrices es igual a la suma de las diferencias de potencial producidas en las resistencias. Otra manera de expresar esto es: la suma algebraica de las tensiones a lo largo de una malla es cero. Obsérvese que esta ley no es sino la ley de Ohm generalizada. 2ª Ley de Kirchoff o ley de nudos En un nudo, la suma de las corrientes que entran es igual a las de que salen. O vien, la suma algebraica de corrientes en un nudo es nula. Esto es evidente, ya que los electrones no se pueden acumular en un nudo, ni tampoco pueden producirse allí. Como aplicación, se resolvera el jemplo propuesto: (ver Fig. 1) Aplicamos la 1ª ley de Kirchoff a la malla I : - 3 V + 5 V = I 1 x 1 + I 1 x 2 + I 1 x 5 - I 3 x 3 2 V = I 1 x 8 - I 3 x 3 ( I ) Aplicamos la 1ª ley de Kirchoff a la malla II : 0 V = I 2 x 2 + I 2 x 4 + I 2 x 1 + I 3 x 3 0 V = I 2 x 7 + I 3 x 3 ( II )

12 Aplicamos la 2ª ley de Kirchoff al nudo B: Resolviendo el sistema de ecuaciones ( I ) ( II ) ( III ) I 1 = 20 / 101 = 0,198 A. I 2 = 6 / 101 = 0,0594 A. I3 = -14 / 101 = - 0,138 A. I1 + I3 = I2 ( III ) El signo negativo de I 3 quiere decir que, en realidad, dicha corriente tiene sentido contrario al que hemos supuesto y dibujado en nuestra figura 1. Recordemos la asociación de resistencias en serie y paralelo: A) Asociación en serie La flecha que he puesto al lado de E significa que el generador nos eleva la tensión en el valor que tenga E. Las flechas puestas encima de las V I,V II, V III significan que la tensión disminuye en esos valores.la corriente I circula en el sentido del polo positivo de la bateria (el supeior en la figura) al negativo atravesándo las resistencias. En este montaje tenemos UNA sola malla. No hay, por lo tanto, nudos. La corriente I que circula por la única malla es la MISMA para todas las resistencias. Lo que cambia es la tensión en cada una de ellas. La suma de todas las tensiones será igual a la f.e.m. E producida por el generador (1ª Ley de Kirchoff) B) Asociación en paralelo En este montaje hay varias mallas, apareciendo, por lo tanto, NUDOS. La tensión en extremos de todas las resistencias es la MISMA. Lo que cambia es la corriente a través de cada una de ellas. La suma de todas las corrientes será igual a la corriente total suministrada por el generador (2ª Ley de Kirchoff) 4.1 ENERGIA Y POTENCIA ELECTRICA. Cuando una corriente eléctrica circula por un circuito, éste opone una resistencia al paso de la misma. Los electrones, en su camino, se ven frenados, experimentando diversos choques con los átomos. En estos choques se desprende calor, y este efecto se utiliza para construir estufas y bombillas eléctricas. Por otra parte, es bien sabido que existen máquinas eléctricas capaces de transformar la corriente en trabajo mecánico (motores). Llegados a este punto debemos preguntarnos cuánto trabajo puede producir una corriente. Para responder a ello es preciso concretar antes las siguientes definiciones: a) TRABAJO: Se denomina trabajo al desplazamiento de una fuerza en la propia dirección de la fuerza, y su valor es, precisamente, el producto de la fuerza por el desplazamiento. W = F x d Si se empuja una pared, existe una fuerza, pero no hay desplazamiento, con lo que el trabajo resulta ser nulo. Si, para arrastrar un carro, es preciso comunicar una fuerza de F = 100 N (N=newton) y se desplaza una distancia d = 20 metros el trabajo resulta ser: W = F x d = 100 x 20 = J. (J = Julio). Recordar: La fuerza se mide en Newtons y el Trabajo en Julios. Siempre que multipliquemos Newtos x metros (N x m) obtendremos Julios.

13 b) ENERGIA: Es todo lo susceptible de transformarse en trabajo. Existen muchos tipos de energía: energía potencial, gravitatoria, cinética, química, eléctrica, nuclear, calorífica, luz, radiaciones, étc. Puesto que la energía puede transformarse en trabajo, se expresará en las mismas unidades que éste. c) POTENCIA: Un mismo trabajo puede desarrollarse en más o menos tiempo: los 2000 J. de trabajo realizado en el ejemplo anterior pueden realizarse en un segundo o en una hora. El trabajo realizado es el mismo, pero no asi la velocidad con la que se realiza. A esta velocidad con que se realiza dicho trabajo se le llama POTENCIA. En el primer caso, realizar un trabajo de 2000 Julios en un segundo, supone realizar una potencia de: P = W / t = 2000 / 1 = 2000 J / s es decir 2000 watios. al cociente entre Julios y segundos obtendremos Watios. asi pues, la Potencia en este primer caso será de 2000 watios. En el segindo caso, si realizamos un trabajo de 2000 Julios en una hora, es decir en 60 x 60 = 3600 segundos la potencia será: P = W / t = 2000 / 3600 = 0'55 J / s es decir 0,55 watios. Observemos que la potencia desarrollada en el primer caso es mucho mayor que en el segundo, aunque hayamos realizado el mismo trabajo, lo hemos hecho en menos tiempo. De la misma manera podemos decir que: el trabajo es igual a la potencia por el tiempo. W = P x t Con esto podemos decir que para una misma potencia realizaremos más trabajo cuanto más tiempo la estemos empleando. UNIDADES: En el sistema internacional de unidades: El Trabajo y la Energía se expresan en JULIOS o JOULES La potencia se expresa en Watios 1 kilowatio = 1000 watios => 1Kw = 1000 w. 1 Julio = 1 Newton x 1 metro (1 J = 1 N x 1 m) 1 Watio = 1 Julio / 1 segundo (1 W = 1 J / 1 s) Como estas unidades resultan relativamente pequeñas, existen otras de tipo práctico: -Trabajo ó energía: KILOWATIO-HORA (Kwh): Es el trabajo realizado por un kilowatio durante una hora: 1 Kwh = 1000 watios x 3600 segundos = Julios -Potencia: CABALLO DE VAPOR (C.V.) ó Horse Power (H.P.) 1 C.V. = 736 watios = 0'736 Kw.

14 1 Kw = 1 / 0,736 = 1,36 C.V. Algunas veces se necesitan unidades más pequeñas: 1 MILIVATIO (mw) = 0,001 W. = 10-3 W. 1 MICROVATIO (µw) = 0, W. = 10-6 W 1 PICOVATIO (pw) = 0, W W 4.2 POTENCIA CALORIFICA Y CALOR. LEY DE JOULE. Se ha dicho en la lección anterior que la corriente eléctrica puede producir calor o trabajo. Si queremos desplazar una determinada carga eléctrica Q desde un potencial a otro, cuya diferencia sea de V voltios, el trabajo que desarrollaremos será tanto mayor cuanta más carga Q queramos desplazar y también tanto mayor cuanta más diferencia de potencial haya entre los puntos que queramos desplazar dicha carga Q. Por lo que dicho trabajo será igual al producto de la carga Q por la diferencia de potencial V entre los dos puntos: por otro lado sabemos que Q = I x t (ver lección 3.1) W = V x Q W = V x I x t Como hemos dicho que Potencia es igual al trabajo dividido por el tiempo: P = W / t tendremos que P = V x I x t / t P = V x I Sabemos por la Ley de Ohm que V = R x I =>luego P = R x I x I = R x I 2 o también I = V / R => luego también podemos poner que P = V x V / R = V 2 / R así pues tenemos tres formas de calcular la potencia eléctrica: P = V x I P = R x I 2 P = V 2 / R Evidentemente, el trabajo: W W = V x I x t W = R x I 2 x t W = (V 2 / R) x t Cuando el trabajo eléctrico se manifiesta en forma de calor, suele expresarse en CALORIAS. El número de calorías es fácil de calcular sabiendo que: 1 julio = 0,24 calorias (llamado equivalente calorífico del trabajo) o bien: 1 caloria = 4,18 julios (llamado equivalente mecánico del calor) * Estos valores fueron demostrados por el físico inglés Joule (1845) donde encontró por primera vez la equivalencia entre calor y trabajo. Su experiencia estaba proyectada para comprobar que cuando una cierta energía mecánica se consume en un sistema, la energía desaparecida es exactamente igual a la cantidad de calor producido. En su célebre experiencia, un agitador de paletas se ponía en movimiento en el seno del agua y el calor desarrollado en ésta era comparado con el trabajo mecánico realizado sobre el agitador. Así pues podemos decir que (LEY DE JOULE): C (calor) = 0,24 x R x I 2 x t

15 5.1 CIRCUITO EQUIVALENTE - DEFINICION. Ya se ha adelantado el concepto de circuito equivalente, al decir, por ejemplo, que un generador real es equivalente a uno ideal con su resistencia interna en serie. La idea es más general: Circuito equivalente de uno dado es otro ficticio que, visto desde sus terminales, se COMPORTA igual que el dado. Dicho de otra manera, es un artificio matemático por medio del cual se consigue estudiar el comportamiento de un circuito mediante otro más sencillo. El circuito equivalente NO es igual que el original: tan sólo su comportamiento hacia el exterior es igual que el del original.

Hay resistencias de varios tipos. Los tipos más usuales son:

Hay resistencias de varios tipos. Los tipos más usuales son: ESSENCAS Los circuitos electrónicos necesitan incorporar resistencias. Es por esto que se fabrican un tipo de componentes llamados resistencias cuyo único objeto es proporcionar en un pequeño tamaño una

Más detalles

INSTRUCCIONES PARA OPERACIÓN ACADÉMICA:

INSTRUCCIONES PARA OPERACIÓN ACADÉMICA: CIRCUITOS ELÉCTRICOS Asignatura Clave: FIM014 Numero de Créditos: 4 Teóricos: 4 Prácticos: 3 INSTRUCCIONES PARA OPERACIÓN ACADÉMICA: El Sumario representa un reto, los Contenidos son los ejes temáticos,

Más detalles

La anterior ecuación se puede también expresar de las siguientes formas:

La anterior ecuación se puede también expresar de las siguientes formas: 1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión

Más detalles

Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice

Fecha de Entrega: 20/8/2013. Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56. Índice Gabinete Tema 1: Definiciones Básicas de Corriente Fecha de Entrega: 20/8/2013 Resolver los ejercicios 4, 5, 9, 15, 17, 22, 24, 28, 30, 34, 37, 43, 44, 46, 49, 52, 54, 56 Índice 1 Definiciones Básicas...

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 1: Corriente Continua. 1.- Naturaleza de la electricidad El átomo es la parte más pequeña que puede existir de un cuerpo simple o elemento. Está constituido por un núcleo y una corteza.

Más detalles

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1 ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación

Más detalles

QUÉ ES LA RESISTENCIA ELÉCTRICA

QUÉ ES LA RESISTENCIA ELÉCTRICA QUÉ ES LA RESISTENCIA ELÉCTRICA Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las

Más detalles

TEMA 5. CORRIENTE ELÉCTRICA CONTINUA

TEMA 5. CORRIENTE ELÉCTRICA CONTINUA TEMA 5. CORRIENTE ELÉCTRICA CONTINUA 1. Corriente eléctrica continua (c.c.). 2. Magnitudes características de la corriente continua: 2.1 Diferencia de potencial (ddp), tensión o voltaje. 2.2 Fuerza electromotriz

Más detalles

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones.

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones. CORRENTE CONTNU CONTENDOS. 1.- Carga eléctrica. Conservación. 2.- Corriente continua. Diferencia de potencial. ntensidad. 3.- Ley de Ohm. 4.- Fuerza electromotriz suministrada por un generador. 5.- Fuerza

Más detalles

CORRIENTE ELECTRICA. Presentación extraída de Slideshare.

CORRIENTE ELECTRICA. Presentación extraída de Slideshare. FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia

Más detalles

ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica

ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica ELECTRÓNICA ANALÓGICA Tema 1 Introducción a la electrónica analógica Índice Tensión, diferencia de potencial o voltaje. Corriente eléctrica. Resistencia eléctrica. Potencia eléctrica. Circuito eléctrico

Más detalles

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto

Más detalles

1 Leyes y magnitudes fundamentales de los circuitos eléctricos

1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1.1 Tensión Se denomina tensión eléctrica a la diferencia de potencial existente entre dos puntos de un circuito eléctrico. Su unidad de medida

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

Qué difewrencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios?

Qué difewrencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios? 1. CÁLCULO DE LA RESISTENCIA MEDIANTE LA LEY DE OHM. Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios. 2. CÁLCULO DE LA TENSIÓN DE UN CONDUCTOR Qué difewrencia de

Más detalles

EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica

EL ÁTOMO. Quiénes componen el átomo? El ion. Circulación de la corriente eléctrica EL ÁTOMO Quiénes componen el átomo? El ion Circulación de la corriente eléctrica EL CIRCUITO ELÉCTRICO (1) Por qué se enciende la bombilla? Definición de circuito eléctrico Corriente eléctrica EL CIRCUITO

Más detalles

Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω).

Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). V Ley de Ohm I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia

Más detalles

1. COMPONENTES DE UN CIRCUITO.

1. COMPONENTES DE UN CIRCUITO. . COMPONENTES DE UN CIRCUITO. Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico esta compuesto por los siguientes elementos: INTENSIDAD DE CORRIENTE

Más detalles

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD INSTITUTO DE ENSEÑANZA SECUNDARIA VILLA DE MAZO CONSEJERÍA DE EDUCACIÓN CULTURA DEPORTE GOBIERNO DE CANARIAS DEPARTAMENTO DE TECNOLOGÍA. U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD Definición Se

Más detalles

AMBITO PRÁCTICO: 4º ESO CURSO

AMBITO PRÁCTICO: 4º ESO CURSO AMBITO PRÁCTICO: 4º ESO CURSO 2.010-2.011 CONOCIMIENTOS PRELIMINARES Y DE REPASO: ELECTRICIDAD-ELECTRÓNICA IES EMILIO PEREZ PIÑERO Profesor: Alfonso-Cruz Reina Fernández ELECTRICIDAD-ELECTRÓNICA BÁSICA

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.-MAGNITUDES ELÉCTRICAS. LEY DE OHM 3.- ANÁLISIS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA

Más detalles

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios

Más detalles

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor.

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor. Corriente Eléctrica Es el flujo de cargas s (electrones, protones, iones) a través de un medio conductor. Los metales están constituidos por una red cristalina de iones positivos. Moviéndose a través de

Más detalles

LA CORRIENTE ELÉCTRICA

LA CORRIENTE ELÉCTRICA LA CORRIENTE ELÉCTRICA 1- MOVIMIENTO DE CARGAS LIBRES EN UN CAMPO ELÉCTRICO La corriente eléctrica consiste en el desplazamiento de cargas libres. Hay distintas sustancias capaces de conducir la corriente

Más detalles

PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro.

PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. NOMBRE y APELLIDOS: 1.- CÓDIGO DE COLORES DE RESISTENCIAS. Completa la siguiente tabla: Nº COLOR % 0 NEGRO 1 MARRÓN 1% 2 ROJO 2% 3 NARANJA

Más detalles

TEMA 2: ELECTRICIDAD Y ELECTRÓNICA

TEMA 2: ELECTRICIDAD Y ELECTRÓNICA TEMA 2: ELECTRICIDAD Y ELECTRÓNICA INDICE 1. Corriente eléctrica 2. Magnitudes 3. Ley de Ohm 4. Potencia 5. Circuito serie 6. Circuito paralelo 7. Circuito mixto. 8. Componentes de un circuito electrónico.

Más detalles

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles

ELECTRODINAMICA. Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS

ELECTRODINAMICA. Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS 1 ELECTRODINAMICA Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS.Las resistencias eléctricas pueden conectarse o asociarse de tres maneras diferentes. 1. En serie 2. En paralelo o derivación 3. Mixto

Más detalles

Unidad 12. Circuitos eléctricos de corriente continua

Unidad 12. Circuitos eléctricos de corriente continua Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica

Más detalles

CORRIENTE CONTINUA. 1 KV (kilovoltio) = 10 3 V 1 mv (milivoltio) = 10-3 V A = Amperio 1 ma (miliamperio) = ua (microamperio) = 10-6

CORRIENTE CONTINUA. 1 KV (kilovoltio) = 10 3 V 1 mv (milivoltio) = 10-3 V A = Amperio 1 ma (miliamperio) = ua (microamperio) = 10-6 CORRIENTE CONTINUA 1. CIRCUITOS BÁSICOS 1.1 LEY DE OHM La ley de ohm dice que en un conductor el producto de su resistencia por la corriente que pasa por él es igual a la caída de voltaje que se produce.

Más detalles

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están

Más detalles

PROBLEMAS DE ELECTRICIDAD

PROBLEMAS DE ELECTRICIDAD PROBLEMAS DE ELECTRICIDAD 1. Qué intensidad de corriente se habrá establecido en un circuito, si desde que se cerro el interruptor hasta que se volvió a abrir, transcurrieron 16 minutos y 40 segundos y

Más detalles

ELECTRICIDAD TECNOLOGÍA INDUSTRIAL I

ELECTRICIDAD TECNOLOGÍA INDUSTRIAL I ELECTRICIDAD TECNOLOGÍA INDUSTRIAL I CONCEPTO DE ENERGÍA ELECTRICA La materia está formada por átomos y los átomos por partícula subatómicas. El núcleo está formado a su vez por protones, con masa y carga

Más detalles

9 La corriente eléctrica

9 La corriente eléctrica Solucionario 9 La corriente eléctrica EJERCICIOS PROPUESTOS 9. Identifica qué tipo de corriente (continua o alterna) circula por los siguientes aparatos y dispositivos: a) Una linterna de pilas. b) Una

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.-MAGNITUDES ELÉCTRICAS. LEY DE OHM 3.- ANÁLISIS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA

Más detalles

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA

índice DEFINICIÓN DE ELECTRICIDAD ORIGEN DE LOS FENÓMENOS ELÉCTRICOS CONCEPTO DE CARGA ELÉCTRICA índice Efectos de la energía eléctrica. Conversión y aplicaciones. Magnitudes eléctricas básicas. Ley de Ohm. Elementos de un circuito eléctrico. Simbología. Tipos de circuitos eléctricos. Potencia y energía

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

U.D. Control eléctrico

U.D. Control eléctrico MAGNTUDES ELÉCTCAS En un circuito decimos que circula corriente cuando hay un paso continuo de electrones a través de los conductores del circuito desde el polo negativo al polo positivo debido a la diferencia

Más detalles

TEMA 5. Electricidad

TEMA 5. Electricidad 9º CCNN Departamento de Ciencias Naturales Curso 2012-13 1. Las cargas eléctricas TEMA 5. Electricidad La materia es eléctricamente neutra, sin embargo, un cuerpo se dice que está electrizado cuando gana

Más detalles

RESISTENCIA Y LEY DE OHM

RESISTENCIA Y LEY DE OHM RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).

Más detalles

TEMA 1: CIRCUITOS ELÉCTRICOS

TEMA 1: CIRCUITOS ELÉCTRICOS TEMA 1: CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.- LA LEY DE OHM 3.- TIPOS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA 5.- POTENCIA

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

Práctica 2. Ley de Ohm. 2.1 Objetivo. 2.2 Material. 2.3 Fundamento

Práctica 2. Ley de Ohm. 2.1 Objetivo. 2.2 Material. 2.3 Fundamento Práctica 2 Ley de Ohm 2.1 Objetivo En esta práctica se estudia el comportamiento de los resistores, componentes electrónicos empleados para fijar la resistencia eléctrica entre dos puntos de un circuito.

Más detalles

Electricidad. Electricidad. Tecnología

Electricidad. Electricidad. Tecnología Electricidad Tecnología LA CARGA ELÉCTRICA Oxford University Press España, S. A. Tecnología 2 Oxford University Press España, S. A. Tecnología 3 Oxford University Press España, S. A. Tecnología 4 Oxford

Más detalles

MEDIDAS ELÉCTRICAS: POLÍMETROS

MEDIDAS ELÉCTRICAS: POLÍMETROS MEDIDAS ELÉCTRICAS: POLÍMETROS Objetivos: Medir V, I y R en un circuito elemental, utilizando el polímetro analógico y el polímetro digital. Deducir el valor de la resistencia a partir del código de colores.

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO: LEY DE OHM UNIDAD 1: LEY DE OHM - TEORÍA En esta unidad usted aprenderá a aplicar la Ley de Ohm, a conocer las unidades eléctricas en la medición de las resistencias,

Más detalles

4. Leyes básicas. Resistencia eléctrica

4. Leyes básicas. Resistencia eléctrica 4. Leyes básicas Resistencia eléctrica Resistencia eléctrica es el grado de dificultad que presentan los distintos materiales al paso de la corriente eléctrica. La resistencia depende de cada material,

Más detalles

Unidad. Circuitos eléctricos 5 de corriente continua

Unidad. Circuitos eléctricos 5 de corriente continua Unidad 5 Circuitos eléctricos d i t ti 5 de corriente continua 15.1. 1 El circuito eléctrico A Concepto de energía eléctrica Composición de un átomo. Cationes y aniones. 1 Diferentes métodos para producir

Más detalles

Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a:

Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a: Tema 5 Electricidad 5.1.- INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son partículas con carga eléctrica negativa. - Protones: son

Más detalles

PROBLEMAS Y EJERCICIOS

PROBLEMAS Y EJERCICIOS 24 PROBLEMAS Y EJERCICIOS 1.- Una corriente permanente de 10 A de intensidad circula por un conductor durante un tiempo de un minuto. Hallar la carga desplazada. (Sol: 600 C) 2.- Calcula la resistencia

Más detalles

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO

FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO FICHAS DE RECUPERACIÓN DE 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) ELECTRICIDAD: EL CIRCUITO ELÉCTRICO El circuito eléctrico es la unión de varios aparatos por los que se mueven los electrones, este

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

Taller de electrónica para usos creativos: Conceptos básicos

Taller de electrónica para usos creativos: Conceptos básicos Taller de electrónica para usos creativos: Conceptos básicos 8 al 11 de Mayo de 2008 1 Sistema electrónico SISTEMA ELECTRÓNICO SISTEMA FÍSICO sensores procesamiento y control actuadores SISTEMA FÍSICO

Más detalles

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón

Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, miaguilar@ciudad.com.ar Mariana Ceraolo

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

Electrónica REPASO DE CONTENIDOS

Electrónica REPASO DE CONTENIDOS Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS

Más detalles

Resistencias no dependientes

Resistencias no dependientes Resistencias no dependientes Las resistencias son unos elementos eléctricos cuya misión es dificultar el paso de la corriente eléctrica a través de ellas. Su característica principal es su resistencia

Más detalles

UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD

UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD UD1. CONCEPTOS BÁSICOS DE ELECTRICIDAD Centro CFP/ES CONCEPTO DE ENERGÍA La capacidad de desarrollar trabajo EA= EU + EP N (Rendimiento) = EU / EA 1 ORIGEN DE LA ELECTRICIDAD Los electrones giran alrededor

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 8 CORRIENTE ELÉCTRICA

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 8 CORRIENTE ELÉCTRICA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 8 CORRIENTE ELÉCTRICA CORRIENTE Y DENSIDAD DE CORRIENTE. La corriente eléctrica se define como la circulación o movimiento ordenado de cargas,

Más detalles

Cuaderno de Actividades

Cuaderno de Actividades Cuaderno de Actividades Pendientes Tecnología 3-ESO NOMBRE DEL ALUMNO: CURSO [Entregar a Jaume Castaño, Jefe del Dpto de Tecnología, el día del examen. La nota final será: Cuaderno: 40% + Examen: 60%]

Más detalles

b) Qué ocurre si se colocan próximos los átomos A y B? c) Qué ocurre si se colocan próximos los átomos B y C?

b) Qué ocurre si se colocan próximos los átomos A y B? c) Qué ocurre si se colocan próximos los átomos B y C? Departamento Tecnología I.E.S. Drago Cádiz PÁG. 1 # ACTIVIDADES 1.- Investiga y averigua cuál es el origen de la palabra electricidad. 2.- Observa estos esquemas atómicos y responde: a) Qué carga tienen

Más detalles

LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS

LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS LEY DE OHM - CICUITOS - ESISTENCIA - INSTUMENTOS Amperímetros y Voltímetros Las dos magnitudes que siempre interesa conocer para un componente de circuito (por ejemplo una resistencia), son la corriente

Más detalles

1. Circuito eléctrico en serie. 2. Circuito eléctrico en paralelo. 5. Aparatos de medida

1. Circuito eléctrico en serie. 2. Circuito eléctrico en paralelo. 5. Aparatos de medida IES JINAMA DPTO. DE TECNOLOGÍA CUSO 204-205 INDICE:. Circuito eléctrico en serie 2. Circuito eléctrico en paralelo 3. Circuito mixto 4. Actividades 5. Aparatos de medida IES JINAMA DPTO. DE TECNOLOGÍA

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

TEMA: CIRCUITOS ELÉCTRICOS

TEMA: CIRCUITOS ELÉCTRICOS TEMA: CIRCUITOS ELÉCTRICOS ÍNDICE 1. INTRODUCCIÓN 2 2. LA ELECTRICIDAD 2 3. EL CIRCUITO ELÉCTRICO 2 a) Generador de corriente 3 b) Conductor 3 c) Receptores 3 d) Controladores 3 4. TIPOS DE CIRCUITOS 3

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

Circuitos eléctricos TECNOLOGÍA - ESO

Circuitos eléctricos TECNOLOGÍA - ESO Circuitos eléctricos TECNOLOGÍA - ESO 2009-0 Índice:. Componentes de un circuito 2. Circuitos. Tipos de circuito 3. Ejemplos numéricos de tipos de circuito. 3. En serie 3.2 En paralelo 4. Simbología colores

Más detalles

TEMA 1 FUNDAMENTOS DE ELECTRICIDAD Y MAGNITUDES ELECTRICAS LA CARGA ELECTRICA

TEMA 1 FUNDAMENTOS DE ELECTRICIDAD Y MAGNITUDES ELECTRICAS LA CARGA ELECTRICA LA CARGA ELECTRICA Carga eléctrica o cantidad de electricidad de un cuerpo es el exceso o defecto de electrones. UNIDAD DE CARGA ELÉCTRICA La unidad natural de carga eléctrica es la carga del electrón

Más detalles

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo

TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO. Samuel Escudero Melendo TEMA 3 ELECTRÓNICA TECNOLOGÍA 3º ESO Samuel Escudero Melendo QUÉ VEREMOS? CONCEPTOS BÁSICOS ELECTRICIDAD y ELECTRÓNICA CANTIDAD DE CARGA, INTENSIDAD, VOLTAJE, RESISTENCIA LEY DE OHM ELEMENTOS DE CIRCUITOS

Más detalles

CIRCUITOS ELEMENTALES CC

CIRCUITOS ELEMENTALES CC UNIVESIDAD JOSE CALOS MAIATEGUI LECCIÓN Nº 02 CICUITOS ELEMENTALES CC. LEY DE OHM La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

ÁREA: INDUSTRIAL ELECTRICIDAD

ÁREA: INDUSTRIAL ELECTRICIDAD ÁREA: INDUSTRIAL ELECTRICIDAD Queda prohibida toda la reproducción de la obra o partes de la misma por cualquier medio sin la autorización previa 1 Área: Industrial Curso: Electricidad Edición: Diciembre

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica 1(8) Ejercicio nº 1 Un alambre de aluminio está recorrido por una corriente eléctrica de 30 ma. Calcula la carga eléctrica que atraviesa una sección recta del alambre cada media hora. Ejercicio nº 2 Una

Más detalles

MÉTODOS DE MEDIDA DE RESISTENCIAS

MÉTODOS DE MEDIDA DE RESISTENCIAS MÉTODOS DE MEDIDA DE RESISTENCIAS OBJETIVO Se trata de que el alumno se familiarice con cuatro métodos diferentes de medida de resistencias: Voltímetro - Amperímetro, Puente de Wheatstone, Puente de hilo

Más detalles

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :...

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :... Departamento de Tecnología I.E.S. Mendiño Electricidad 3º E.S.O. Alumna/o :... Electricidad.- Magnitudes fundamentales. Tensión o Voltaje: Indica la diferencia de potencial entre 2 puntos de un circuito.

Más detalles

TEMA 1 Nociones básicas de Teoría de Circuitos

TEMA 1 Nociones básicas de Teoría de Circuitos TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

Please purchase PDFcamp Printer on to remove this watermark. ElCircuitoEléctrico:

Please purchase PDFcamp Printer on  to remove this watermark. ElCircuitoEléctrico: ElCircuitoEléctrico: Definimos como circuito eléctrico al camino cerrado por el cual circula la intensidad de corriente. En dicho camino cerrado o circuito existirá una fuente de energía eléctrica (pila,batería,

Más detalles

Unidad didáctica 4. Introducción a la electricidad y la electrónica.

Unidad didáctica 4. Introducción a la electricidad y la electrónica. Unidad didáctica 4. Introducción a la electricidad y la electrónica. 1. Introducción. Entre las distintas formas de energía, la eléctrica es sin duda una de las mas utilizadas. La corriente producida por

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones

Más detalles

CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L

CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L CURSO ELEMENTAL DE ELECTRICIDAD PROFESSOR: JUAN PLAZA L VALORES DE LA C.A. Valor máximo (Vmax): es el valor de cresta o pico,. Valor instantáneo (Vi): Es el valor que toma la corriente en un momento determinado.

Más detalles

CIRCUITOS DE CORRIENTE CONTINUA

CIRCUITOS DE CORRIENTE CONTINUA CIRCUITOS DE CORRIENTE CONTINUA Concha Rodríguez de Ávila Fuencisla Prados Santaengracia 1. NECESIDAD DE UN GENERADOR PARA QUE LA CORRIENTE CIRCULE DE FORMA CONTINUA. El funcionamiento de un circuito de

Más detalles

PROBLEMAS DE ELECTRICIDAD PRIMER CURSO

PROBLEMAS DE ELECTRICIDAD PRIMER CURSO PROBLEMAS DE ELECTRICIDAD PRIMER CURSO INTENSIDAD Y DENSIDAD DE CORRIENTE ELECTRICA INTENSIDAD Y DENSIDAD DE CORRIENTE ELECTRICA...3 RESISTIVIDAD Y RESISTENCIA ELECTRICA...8 ASOCIACION DE RESISTENCIAS...16

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

11. Calcula la energía consumida por una corriente de 2A que circula durante 2 min a través de una resistencia de 30Ω. Sol 14400J

11. Calcula la energía consumida por una corriente de 2A que circula durante 2 min a través de una resistencia de 30Ω. Sol 14400J 1. En el casquillo de una lámpara figura la inscripción 60W, 220V. Calcular: a- Intensidad de corriente que pasa por la lámpara cuando la conectamos a 220V. b- Resistencia del filamento de la lámpara.

Más detalles

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio:

GUIA DE FÍSICA LEY DE OHM. Nombre: Curso. 4º Medio: GUIA DE FÍSICA LEY DE OHM Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor Corriente eléctrica Una corriente eléctrica es un movimiento ordenado de cargas eléctricas (electrones libres) en un conductor.

Más detalles

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza

Más detalles

Práctica 4. Fenómenos transitorios: carga y descarga de un condensador. 4.1 Objetivo. 4.2 Material. 4.3 Fundamento

Práctica 4. Fenómenos transitorios: carga y descarga de un condensador. 4.1 Objetivo. 4.2 Material. 4.3 Fundamento Práctica 4 Fenómenos transitorios: carga y descarga de un condensador 4.1 Objetivo Existen numerosos fenómenos en los que el valor de la magnitud física que los caracteriza evoluciona en régimen transitorio,

Más detalles

Resistencia interna de una pila

Resistencia interna de una pila Resistencia interna de una pila Fundamento Las pilas eléctricas se caracterizan por su fuerza electromotriz ε y por su resistencia interna r. El valor de r en general en las pilas comerciales es inferior

Más detalles

CORRIENTE ELÉCTRICA. Materiales conductores y aislantes:

CORRIENTE ELÉCTRICA. Materiales conductores y aislantes: CORRIENTE ELÉCTRICA Definición: La corriente eléctrica se define como el movimiento de cargas a través de un conductor. Para que haya circulación de cargas necesitamos que exista tensión eléctrica, es

Más detalles

TEMA 5 CIRCUITOS ELÉCTRICOS TECNOLOGÍA 1º ESO. Samuel Escudero Melendo

TEMA 5 CIRCUITOS ELÉCTRICOS TECNOLOGÍA 1º ESO. Samuel Escudero Melendo TEMA 5 CIRCUITOS ELÉCTRICOS TECNOLOGÍA 1º ESO Samuel Escudero Melendo QUÉ ES UN CIRCUITO ELÉCTRICO? QUÉ VEREMOS? ELEMENTOS DE UN CIRCUITO ELÉCTRICO GENERADOR ELÉCTRICO VOLTAJE CONDUCTORES Y AISLANTES

Más detalles