TRABAJO PRÁCTICO Nº 4 EL DIODO ZENER

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO PRÁCTICO Nº 4 EL DIODO ZENER"

Transcripción

1 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS TABAJO PÁCTCO Nº 4 EL DODO ENE 1) ntroducción Teórica El ener es un diodo semiconductor que presenta en polarización directa, una característica exactamente idéntica a la de un diodo semiconductor normal. En cambio, en la zona de polarización inversa, pueden circular por él corrientes inversas intensas, si la tensión inversa supera un valor llamado tensión ener. Esta característica es absolutamente controlada y la misma tensión es prácticamente independiente de la corriente. Por lo tanto el diodo ener se polariza normalmente en inversa, de modo que la tensión en sus bornes se mantenga constante e igual a la tensión ener. Su uso más común es como regulador de tensión. Dicha característica se representa en la figura 1. figura 1 Página 1 de 11

2 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS ) Objeto de la Experiencia El objeto de esta experiencia es analizar el comportamiento del diodo zener en su polarización directa e inversa. 3) Elementos a utilizar 1 Fuente de corriente continua variable de 0 a 1 1 Miliamperímetro 1 oltímetro 1 Protoboard 1 Diodo ener 1N4738 con su respectiva hoja de datos 1 esistencia de 1KΩ x ¼ W 1 Potenciómetro lineal de 10KΩ Alambre para realizar los puentes 4) Desarrollo de la experiencia a) Polarización directa Armar el circuito de acuerdo a la figura. figura Página de 11

3 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS ariar la tensión aplicada, leyendo los valores de tensión sobre el diodo y la corriente que circula por él. olcar estos valores en el siguiente cuadro de valores. D [] D[mA] epresentar los valores en un gráfico D en función de D. Utilizar papel milimetrado. b) Polarización inversa Armar el circuito de acuerdo a la figura 3. figura 3 ariar la tensión aplicada, leyendo los valores de tensión sobre el diodo y la corriente que circula por él. olcar estos valores en el siguiente cuadro de valores. D [] D [ma] epresentar los valores en un gráfico milimetrado. D en función de D. Utilizar papel Página 3 de 11

4 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS 5) Cuestionario a) Calcular la resistencia directa e inversa en base a los valores medidos y comparar los resultados. En inversa hacerlo antes y después de la ruptura. b) A qué tensión se produce la conducción de corriente en cada sentido de polarización? c) Por qué le parece que el diodo zener cumple la función de regulador de tensión? d) En qué parte de la curva característica inversa se produce el efecto de regulación? Por qué? 6) Conclusiones Página 4 de 11

5 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS Apéndice 1 Diodo ener cómo regulador De Tensión Circuito de estabilización El circuito debe estabilizar la tensión de salida frente a cambios en la tensión de entrada (entre MN y MAX ) o variaciones en la resistencia de carga que provocará la variación en la corriente que por esta circula (entre LMN e LMAX ). Página 5 de 11

6 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS Cálculo de (alor comercial para ) Aplicando la º Ley de Kirchoff: + (1) Aplicando la Ley de Ohm:. () Aplicando la 1º Ley de Kirchoff: + L (3) eemplazando (3) en () y () en (1): ( + L ). + Despejando: L Tenemos: MN MN MAX LMAX MAX MN MN + LMAX MAX MAX MN LMN MN MAX MAX + LMN MN MN + LMAX MAX MAX + LMN Página 6 de 11

7 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS Cálculo de P (alor comercial de la potencia del la resistencia) Aplicando la º Ley de Kirchoff: + (1) Despejando: () Aplicando la definición de potencia eléctrica: P (3) eemplazando () en (3): ( ) P Tenemos: P MAX ( ) MAX P > ( ) MAX Página 7 de 11

8 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS Cálculo de P (alor comercial de la potencia del diodo zener) Aplicando condiciones de diseño: 4. MAX LMAX MN 10 MAX Aplicando la definición de potencia eléctrica: P. Tenemos: P. MAX MAX a) Si el fabricante suministra la potencia máxima de trabajo ( P tot ): Donde: P P tot P > P MAX b) Si el fabricante suministra la temperatura de juntura ( thja ) y la resistencia térmica de juntura ambiente ( T ) j T j T thja a > P MAX Donde: T a Temperatura ambiente Página 8 de 11

9 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS Ejemplo Se desea regular una tensión a 8,, sabiendo que la corriente que circulará por la carga estará entre 10mA y 0mA y qué la tensión de entrada fluctuará entre 10 y 16. Calcular los valores necesarios para la resistencia en serie y el diodo zener. Entonces tenemos los siguientes datos: 8, LMAX 0mA y LMN 10mA MN 10 y MAX 16 Calculamos: 1) MAX 4. LMAX 4. 0mA 80mA 10 80mA 10 MAX MN 8 ma MN MN + LMAX MAX MAX + LMN 10 8, 8mA + 0mA 16 8, 80mA + 10mA 64,9Ω 86, 67Ω 75Ω Página 9 de 11

10 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS ) P > ( ) MAX P > ( 16 8,) 75Ω P 1W 3) P. MAX MAX P > 8,. 80mA P 1W De acuerdo a lo calculado necesitaremos un Diodo ener con una 8, por lo que podemos utilizar el Diodo ener 1N4738A. P 1W y una Armar el circuito del regulador con los valores calculados, variar la tensión de alimentación y la resistencia de carga dentro del rango con un potenciómetro y sacar conclusiones. Página 10 de 11

11 E.T. Nº 17 - D.E. X eg. PÁCTCAS UNFCADAS Apéndice alores Normalizados De esistencias [ Ω ] alores Normalizados De Diodos ener Página 11 de 11

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de

Más detalles

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN.

ISEI JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS. Práctica 6. Aplicaciones de los diodos: REGULACIÓN. JOSE ALFREDO MARTINEZ PEREZ DISPOSITIVOS ELECTRONICOS Práctica 6 Aplicaciones de los diodos: REGULACIÓN. Objetivo: En esta práctica el estudiante conocerá una de las aplicaciones más importantes del diodo

Más detalles

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que

Más detalles

DIODOS ZENER DIODO GENERAL. Qué es un diodo Zéner? DISPOSITIVOS ELECTRONICOS 31/10/2017. Es un Diodo semiconductor. trabajar en polarización inversa.

DIODOS ZENER DIODO GENERAL. Qué es un diodo Zéner? DISPOSITIVOS ELECTRONICOS 31/10/2017. Es un Diodo semiconductor. trabajar en polarización inversa. Universidad Nacional de Misiones DSPOSTVOS EECTRONCOS DODOS ZENER Qué es un diodo Zéner? Es un Diodo semiconductor especialmente diseñando para trabajar en polarización inversa. SÍMBOO 2 DODO GENERA Diodo

Más detalles

V cc t. Fuente de Alimentación

V cc t. Fuente de Alimentación Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a

Más detalles

TRABAJO PRÁCTICO Nº 7 EL TRANSISTOR BIPOLAR - POLARIZACIÓN

TRABAJO PRÁCTICO Nº 7 EL TRANSISTOR BIPOLAR - POLARIZACIÓN TRBJO PRÁCTICO Nº 7 EL TRNSISTOR BIPOLR - POLRIZCIÓN 1) Introducción Teórica Polarizar un transistor de unión bipolar (en inglés Bipolar Junction Transistor, o sus siglas BJT) significa conseguir que las

Más detalles

Trabajo Practico: Transistores

Trabajo Practico: Transistores Universidad Abierta Interamericana Trabajo Practico: Transistores Alumnos: Profesor: Campus: Turno: Andrés Martín Dellafiore Facundo Juarez Martín Castiñeira Daniel Zuccari Eduardo Sandoval Solá Marcos

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

Práctica 1.- Característica del diodo Zener

Práctica 1.- Característica del diodo Zener A.- Objetivos Práctica 1.- Característica del diodo ener 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar experimentalmente y representar la característica

Más detalles

2. Circuito eléctrico en paralelo

2. Circuito eléctrico en paralelo DEPATAMENTO DE TECNOLOGÍA CUSO 06-07 NDCE:. Circuito eléctrico en serie. Circuito eléctrico en paralelo. Actividades DEPATAMENTO DE TECNOLOGÍA CUSO 06-07. Circuito eléctrico en serie El circuito serie,

Más detalles

Electrónica Analógica III Guía de Ejercicios Nº 2

Electrónica Analógica III Guía de Ejercicios Nº 2 ng. ubén J. Bernardoni ng.. Darío Novodvoretz lectrónica Analógica 1-7 jercicio N 1 Para el circuito de la figura asuma que la característica tensión corriente del diodo zener en su zona de funcionamiento

Más detalles

ÍNDICE CÁLCULOS Capítulo 1: Diodos Leds... 2 Capítulo 2: Diodo emisor infrarrojo... 5 Capítulo 3: Fototransistor... 6 Capítulo 4: Disipador...

ÍNDICE CÁLCULOS Capítulo 1: Diodos Leds... 2 Capítulo 2: Diodo emisor infrarrojo... 5 Capítulo 3: Fototransistor... 6 Capítulo 4: Disipador... ÍNDICE CÁLCULOS Índice Cálculos... 1 Capítulo 1: Diodos Leds... 2 1.1. LED 8 mm... 2 1.2. LED 20mm... 3 Capítulo 2: Diodo emisor infrarrojo... 5 Capítulo 3: Fototransistor... 6 Capítulo 4: Disipador...

Más detalles

TECNOLOGÍA ELECTRÓNICA (Examen de Febrero )

TECNOLOGÍA ELECTRÓNICA (Examen de Febrero ) E.U..T.. Curso 99/00 Madrid TECNOLOGÍA ELECTÓNCA (Examen de Febrero 922000) Ejercicio 1 (4 puntos) El diodo de silicio con parámetros S 5 ma y η 2, está conectado al circuito de la figura. eterminar a

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente

LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente LABORATORIO DE ELECTRÓNICA1 PRACTICA Nº 2 El Diodo. Estudio del componente Objetivos: 1. Comprobar el estado de un diodo semiconductor e identificar el cátodo (zona N) y el ánodo (zona P). 2. Realizar

Más detalles

TECNOLOGÍA 4º ESO IES PANDO

TECNOLOGÍA 4º ESO IES PANDO Componentes Electrónicos TECNOLOGÍA 4º ESO IES PANDO Resistencias Fijas Son componentes que presentan una oposición al paso de la corriente eléctrica. Sus principales características son: Valor Nominal:

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito

Más detalles

Conceptos preliminares

Conceptos preliminares Página1 OBJETIVO: Reconocer e interpretar las partes que componen una fuente de alimentación regulada y observar las características de tensión y corriente. Conceptos preliminares Al considerar una fuente

Más detalles

ELECTRÓNICA INDUSTRIAL. Transistor Unijuntura (UJT) Transistor Unijuntura Programable (PUT)

ELECTRÓNICA INDUSTRIAL. Transistor Unijuntura (UJT) Transistor Unijuntura Programable (PUT) ransistor Unijuntura (UJ) ransistor Unijuntura rogramable (U) 6 B LCRÓNICA 0 . RANSISOR UNIJUURA (UJ) Se trata de un dispositivo semiconductor compuesto por tres terminales; en dos terminales, denominados

Más detalles

FÍSICA II Ing. Pablo M. Flores Jara Ing. Pablo M. Flores Jara

FÍSICA II Ing. Pablo M. Flores Jara Ing. Pablo M. Flores Jara FÍSICA II pablofloresjara@gmail.com RÉGIMEN TRANSITORIO EN CIRCUITOS RC Circuitos RC Los circuitos RC son los formados por elementos resistivos y capacitivos. En esta sección vamos a analizar el comportamiento

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 6 LABORATORIO DE NOMBRE DE LA

Más detalles

DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN. I = Is e v /nv t. Escalas expandidas o comprimidas para ver mas detalles

DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN. I = Is e v /nv t. Escalas expandidas o comprimidas para ver mas detalles DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN I = Is e v /nv t 1 Escalas expandidas o comprimidas para ver mas detalles DEPENDENCIA DE LA TEMPERATURA MODELO EXPONENCIAL MODELO LINEAL POR SEGMENTOS

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA

CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA CURSO: SEMICONDUCTORES UNIDAD 4: POLARIZACIÓN - TEORÍA Hay varias formas de polarizar un transistor, esto es, obtener su punto de operación adecuado (valores de Vcc y de Ic). Se tiene la polarización fija,

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES

FISICA III. Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES FISICA III Departamento de Física y Química Escuela de Formación Básica LEY DE OHM EN ELEMENTOS RESISTIVOS LINEALES Y NO LINEALES PRÁCTICO DE LABORATORIO Nº FÍSICA III Comisión laboratorio: Docente: Fecha

Más detalles

FUNDAMENTOS DE CLASE 3: DIODOS

FUNDAMENTOS DE CLASE 3: DIODOS FUNDAMENTOS DE ELECTRÓNICA CLASE 3: DIODOS RECORTADORES Permiten eliminar parte de la señal de una onda En serie: RECORTADORES: EJERCICIO Ejercicio: Calcular la característica de trasferencia RECORTADORES:

Más detalles

CARACTERÍSTICAS Y CIRCUITOS CON DIODOS

CARACTERÍSTICAS Y CIRCUITOS CON DIODOS Laboratorio 1 CARACTERÍSTICAS Y CIRCUITOS CON DIODOS 1. LISTA DE MATERIALES Diodo de Germanio (1N34) o similar. Diodo de Silicio rectificador (1N4007) o similar. Diodo Zener de 5.1 [V]/500 [mw] (1N751)

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 2: Diodos Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de agosto de 2009 P. Parada (DIE) EL42A - Circuitos

Más detalles

GUIA DE APRENDIZAJE Y AUTOEVALUACION UNIDAD N 2 FUNDAMENTOS DE LOS DIODOS Y SUS APLICACIONES

GUIA DE APRENDIZAJE Y AUTOEVALUACION UNIDAD N 2 FUNDAMENTOS DE LOS DIODOS Y SUS APLICACIONES UNIVERSIDAD NACIONAL DE SAN JUAN. FACULTAD DE INGENIERIA. DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA. GABINETE DE TECNOLOGIA MÉDICA. Área: Electrónica Analógica. Asignatura: "Electrónica Analógica". Carrera:

Más detalles

PRINCIPIOS DE REGULACIÓN FUENTE REGULADA

PRINCIPIOS DE REGULACIÓN FUENTE REGULADA PRINCIPIOS DE REGULACIÓN FUENTE REGULADA PARÁMETROS DE LAS FUENTES DE VOLTAJE DC REGULADAS Regulación de Carga Es una medida de la capacidad de la Fuente de Voltaje DC de mantener constante su voltaje

Más detalles

ELO I UNIDAD DOS 2.1. DIODOS La característica del diodo utilizado en el circuito está expresada por:

ELO I UNIDAD DOS 2.1. DIODOS La característica del diodo utilizado en el circuito está expresada por: ELO I UNIA OS 2.1. IOOS 211.06.- La característica del diodo utilizado en el circuito está expresada por: i I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] onde: I 0 = Corriente inversa de saturación;

Más detalles

1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V

1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V A. A.1.- En el circuito de la figura los diodos son ideales. La señal de entrada v i es sinusoidal de 50 Hz de frecuencia y 100 V de amplitud. En el primer semiperiodo v i es positiva. Calcular: 1.- La

Más detalles

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7

FISICA II Escuela Politécnica de Ingeniería de Minas y Energía PRÁCTICA Nº 7 PRÁCTICA Nº 7 Ley de Ohm, resistencias en serie y en derivación A.- Ley de Ohm A.1.- Objetivo.- Comprobar la ley de Ohm en un circuito sencillo de corriente continua. A.2.- Descripción.- Cuando en un circuito

Más detalles

ELECTRÓNICA Y AUTOMATISMOS

ELECTRÓNICA Y AUTOMATISMOS ELECTRÓNCA Y AUTOMATSMOS 2º Curso de nstalaciones Electromecánicas Mineras Tema 1: Componentes Electrónicos El diodo (Segunda parte) Profesor: Javier Ribas Bueno Nota: Esta segunda parte ha sido desarrollada

Más detalles

Electrónica Analógica Diodos Práctica 2

Electrónica Analógica Diodos Práctica 2 APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- ANALISIS DE UN CIRCUITO CON DIODOS I. 1. a.- Analiza el funcionamiento del siguiente circuito y dibuja de forma acotada las formas de onda de las tensiones

Más detalles

Parcial_1_Curso.2012_2013. Nota:

Parcial_1_Curso.2012_2013. Nota: Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.

Más detalles

Resultado: V (Volt) I (A)

Resultado: V (Volt) I (A) Ejercicios relativos al diodo de unión pn 1. Una unión pn abrupta de germanio tiene las siguientes concentraciones de impurezas: N A = 5 10 14 cm -3. N D = 10 16 cm -3 ε r = 16.3 ε 0 = 8.854 10-12 F m

Más detalles

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador.

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. Práctica 2. Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. A. Objetivos Medir la resistencia dinámica del diodo de unión. Determinación

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Diodos) Escuela Politécnica Superior Profesor. Darío García Rodríguez . En el circuito de la figura los diodos son ideales, calcular la intensidad que circula por la fuente

Más detalles

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO

Más detalles

Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos

Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. ecta de carga. 3- Tipos especiales de diodos Zener Schottky Emisor de luz (LED) 4- Circuitos con diodos ecortadores ó

Más detalles

Marzo DIFERENCIA DE POTENCIAL GISPUD

Marzo DIFERENCIA DE POTENCIAL GISPUD Marzo 2012 http:///wpmu/gispud/ 1.3 DIFERENCIA DE POTENCIAL Ejercicio 3. Diferencia de potencial. Determinar analítica y gráficamente: a) la corriente en función del tiempo. b) la carga en función del

Más detalles

Diodo Zener. Figura 1 a)

Diodo Zener. Figura 1 a) 1 Diodo Zener Cuando la tensión inversa aplicada a un diodo de juntura PN excede cierto valor denominado tensión de ruptura la corriente inversa crece muy rápidamente mientras que la tensión sobre el diodo

Más detalles

+ _ V CC V L V D I D R F. V γ Figura 1.2 I CC R 1 D 1 D 2 D 3 R 2 I P. Figura 1.1 DIODOS 1

+ _ V CC V L V D I D R F. V γ Figura 1.2 I CC R 1 D 1 D 2 D 3 R 2 I P. Figura 1.1 DIODOS 1 OOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (E) de arseniuro de galio (Gas) conforme a la figura. a característica - del E se representa en la figura, en la que también

Más detalles

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)

Más detalles

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

RESISTENCIA Y LEY DE OHM

RESISTENCIA Y LEY DE OHM RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).

Más detalles

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo

Más detalles

TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.3 APLICACIONES DE LOS DIODOS TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 09 de octubre de 2014 TEMA 1.3 APLICACIONES DE LOS DIODOS Rectificador Regulador de tensión Circuitos recortadores

Más detalles

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1 Función de Transferencia en dispositivos eléctricos Taller de Construcción de Efectos, U2 Sesión 1 Definición La Función de Transferencia de un sistema es una expresión matemática que relaciona la salida

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 1.0.0. DIODOS Y TRANSISTORES. Caracterización de el diodo. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del 2015 Practica:

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 2 Tema: MEDICION DE RESISTENCIA. METODO DIRECTO METODO INDIRECTO Método Directo Vamos a centrar nuestro análisis en los sistemas

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE INTRODUCCIÓN A LA ELECTRICIDAD I 1A I 3 I 2 =8 A I 1 =5 A I 1,25A

SOLUCIONES DE LOS EJERCICIOS DE INTRODUCCIÓN A LA ELECTRICIDAD I 1A I 3 I 2 =8 A I 1 =5 A I 1,25A .E.S. NDÉS DE NDEL -LCETE- DETMENTO DE TECNOLOGÍ SOLUCONES DE LOS EJECCOS DE NTODUCCÓN L ELECTCDD º) ndicar las unidades y el símbolo en que se miden las siguientes magnitudes eléctricas: Magnitud eléctrica

Más detalles

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua.

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. PRÁCTICA Nº1. DIODOS CURVA CARACTERÍSTICA DEL DIODO. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. Figura 1. Montaje eléctrico para polarizar

Más detalles

PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro.

PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. PRÁCTICA Nº 1 RESISTENCIAS. LEY DE OHMS. Medida con el polímetro. NOMBRE y APELLIDOS: 1.- CÓDIGO DE COLORES DE RESISTENCIAS. Completa la siguiente tabla: Nº COLOR % 0 NEGRO 1 MARRÓN 1% 2 ROJO 2% 3 NARANJA

Más detalles

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente... Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3

Más detalles

Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos

Electrónica Analógica I Prof. Ing. Mónica L. González. Diodo Zener: características y especificaciones en hojas de datos Diodo Zener: características y especificaciones en hojas de datos Cuando la tensión inversa aplicada a un diodo de juntura PN excede cierto valor denominado tensión de ruptura la corriente inversa crece

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Ing. Aeroespacial 2009-3 11352 Mediciones eléctricas y electrónicas PRÁCTICA No. 4 LABORATORIO DE NOMBRE DE LA

Más detalles

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS

Más detalles

CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT)

CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT) LASE PRÁTIA RESUELTA. PLAN D PROBLEMAS DE POLARIZAIÓN DEL TRANSISTOR BIPOLAR (BJT) Sumario:. Introducción.. Solución de problemas. 3. onclusiones. Bibliografía:. Rashid M. H. ircuitos Microelectrónicos.

Más detalles

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo.

ELECTRONICA GENERAL. Tema 2. Teoría del Diodo. Tema 2. Teoría del Diodo. 1.- En un diodo polarizado, casi toda la tensión externa aplicada aparece en a) únicamente en los contactos metálicos b) en los contactos metálicos y en las zonas p y n c) la

Más detalles

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC

PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC PRÁCTICA Nº 2: MANEJO DE INSTRUMENTOS PARA DC Se inician las prácticas de laboratorio con dos sesiones dedicadas al análisis de algunos circuitos DC con un doble propósito: comprobar algunos de los circuitos

Más detalles

PROTECCION DE LOS CONTACTOS

PROTECCION DE LOS CONTACTOS RELES PROTECCION DE LOS CONTACTOS Aparte del cuidado de la corriente y la tensión que se verán sometido los contactos. Existen algunos cuidados adicionales que ayudan a prolongar la vida útil de los contactos

Más detalles

Ejercicio 2.1. Calcular el valor de tensión del generador VX

Ejercicio 2.1. Calcular el valor de tensión del generador VX Ejercicio 2.1. Calcular el valor de tensión del generador y los valores de tensión sobre cada una de las resistencias. Solución: 13.88[ ] 720.63 640 2.18 1.98 10.34 9 [ ] [ ] 8 9 1 m 2 4 7 m 3 5 6 Ejercicio

Más detalles

TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS

TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS U.N.S.J. F.F.H.A. TRABAJO PRÁCTICO INTEGRADOR COMPROBADOR DEL ESTADO DE UNA BATERÍA UTILIZANDO LEDS Alumno: CALABRÓ, RODOLFO Cátedra: ELECTRÓNICA GENERAL Y APLICADA Carrera: Profesorado de Tecnología Fecha:

Más detalles

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa.

TEORÍA DEL DIODO. Tema Unión p-n. Diodo sin polarizar 2.- Polarización del diodo Polarización inversa Polarización directa. Tema 2 TEORÍA DEL DIODO. 1.- Unión p-n. Diodo sin polarizar 2.- Polarización del diodo. 2.1.- Polarización inversa. 2.2.- Polarización directa. 3.- Curva característica del diodo. 4.- El diodo como elemento

Más detalles

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Electrica Laboratorio de Electrónica Electrónica 1 Primer

Más detalles

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación

Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Práctica 3. Diseño de un Transistor BJT en el Punto de Operación Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Electrica Laboratorio de Electrónica Electrónica 1 Auxiliar:

Más detalles

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja

Más detalles

EXP204 REGULADOR DE VOLTAJE SERIE

EXP204 REGULADOR DE VOLTAJE SERIE EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento

Más detalles

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA Universidad de Burgos Departamento de Ingeniería Electromecánica TECNOLOGÍA ELECTRÓNICA Ingeniería Técnica en Informática de Gestión Curso 1º - Obligatoria - 2º Cuatrimestre Área de Tecnología Electrónica

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

26/09/2017 DIODO SEMICONDUCTOR. Semiconductor tipo N. Conducción en Materiales SEMICONDUCTORES Extrínsecos. Semiconductor tipo P

26/09/2017 DIODO SEMICONDUCTOR. Semiconductor tipo N. Conducción en Materiales SEMICONDUCTORES Extrínsecos. Semiconductor tipo P Universidad Nacional de Misiones DODO SEMCONDUCTOR Semiconductor tipo N Unión P N DSPOSTOS ELECTRONCOS Mgtr. ng. ictor Hugo Kurtz SEMCONDUCTORES DOPADO Tec. y Dispo. Electrónicos 2017 KURTZ.H. Semiconductor

Más detalles

CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE RESUMEN

CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE RESUMEN CONTROL A LAZO ABIERTO PARA UN MOTOR DC SIMPLE Pablo A. Velásquez G. Departamento de Ingeniería Eléctrica y Computación, The Ohio State University Email: velasquezgarrido.1@osu.edu RESUMEN Este artículo

Más detalles

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN

CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN CURSO: CIRCUITOS ELÉCTRICOS UNIDAD 3: CIRCUITO PARALELO - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. INTRODUCCIÓN En esta unidad, usted aprenderá a analizar un circuito paralelo, a aplicar la Ley de Kirchhoff

Más detalles

U.D. Control eléctrico

U.D. Control eléctrico MAGNTUDES ELÉCTCAS En un circuito decimos que circula corriente cuando hay un paso continuo de electrones a través de los conductores del circuito desde el polo negativo al polo positivo debido a la diferencia

Más detalles

UNIVERSIDADE DE VIGO. Ii Io

UNIVERSIDADE DE VIGO. Ii Io 5.1 Se quiere utilizar el circuito de la figura, en el que Vi = - 1V, para activar de forma automática un sistema de riego cuando la luz desciende por debajo de 100 lux. El actuador del sistema se activa

Más detalles

GUIA DE EXPERIMENTOS

GUIA DE EXPERIMENTOS GUIA DE EXPERIMENTOS LABORATORIO N. 03 CURSO: Tema: Dispositivos Electrónicos Curvas Características del Diodo Zener Alumnos Integrantes:...... Nota PAGINA 1 CARACTERISTICA DEL DIODO DE RUPTURA ZENER *

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

Parámetros de diseño con una fuente externa: Tensión de entrada: 6V a 12V Corriente máxima: 300mA Potencia máxima disipada: 2,1W

Parámetros de diseño con una fuente externa: Tensión de entrada: 6V a 12V Corriente máxima: 300mA Potencia máxima disipada: 2,1W Introducción Durante el diseño de cualquier circuito, uno de los puntos más importantes es decidir cual será la tensión de alimentación del mismo. En muchos casos, el circuito se alimentará desde una fuente

Más detalles

EL3004-Circutios Electrónicos Analógicos

EL3004-Circutios Electrónicos Analógicos EL3004-Circutios Electrónicos Analógicos Clase No. 7: Operación del diodo Marcos Diaz Departamento de Ingeniería Eléctrica (DIE) Universidad de Chile Septiembre, 2011 Marcos Diaz (DIE, U. Chile) EL3004-Circuitos

Más detalles

Diodo zener y fuentes reguladas Boyacá. Yeison; Rosas. Jhonatan; Sierra, Michel.

Diodo zener y fuentes reguladas Boyacá. Yeison; Rosas. Jhonatan; Sierra, Michel. UNIVERSIDAD NACIONAL DE COLOMBIA. Facultad de Ingeniería. Electrónica Análoga. 1 Diodo zener y fuentes reguladas Boyacá. Yeison; Rosas. Jhonatan; Sierra, Michel. yaboyacac@unal.edu.co; jhfrosaspi@unal.edu.co;

Más detalles

PRINCIPIOS DE REGULACIÓN FUENTE REGULADA

PRINCIPIOS DE REGULACIÓN FUENTE REGULADA PRINCIPIOS DE REGULACIÓN FUENTE REGULADA PARÁMETROS DE LAS FUENTES DE VOLTAJE DC REGULADAS Regulación de Carga Es una medida de la capacidad de la Fuente de Voltaje DC de mantener constante su voltaje

Más detalles

*FUENTE DE ALIMENTACION VARIABLE*

*FUENTE DE ALIMENTACION VARIABLE* *FUENTE DE ALIMENTACION VARIABLE* HTK-00 www.detotus.com Las fuentes de alimentación variable o de voltaje variable son equipos electrónicos de gran utilidad para cualquier estudiante, aficionado o profesional.

Más detalles

Problemas Adicionales. Capítulo 2: Diodos (I).

Problemas Adicionales. Capítulo 2: Diodos (I). Problema _7ver Problemas Adicionales. Capítulo : Diodos (I). En el circuito de la figura.7., tome R = kω. El valor de R no se conoce: a) Demostrar que la situación D OFF y D ON es imposible. b) Determinar

Más detalles

EL DIODO DE POTENCIA

EL DIODO DE POTENCIA EL DIODO DE POTENCIA Ideas generales sobre diodos de unión PN Ecuación característica del diodo: V V T i = I S (e -1) donde: V T = k T/q I S = A q n i2 (D p /(N D L p )+D n /(N A L n )) Operación con polarización

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura.

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura. Circuitos Electrónicos II (66.10) Guía de Problemas Nº 3: Amplificadores de potencia de audio 1.- Grafique un circuito eléctrico que realice la analogía del fenómeno que involucra la potencia disipada

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector.

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos específicos Trazar la curva característica

Más detalles

PRÁCTICA PD5 Fuentes de Poder de CD

PRÁCTICA PD5 Fuentes de Poder de CD elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica PRÁCTICA PD5 Fuentes de Poder de CD OBJETIVO Entender el funcionamiento de los circuitos rectificadores de media onda y onda

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

ELECTRONICA. (Problemas) Alumno: Curso: Año:

ELECTRONICA. (Problemas) Alumno: Curso: Año: (Problemas) Alumno: Curso: Año: (ACTIVIDADES) AW01. RESISTENCIAS (ACTIVIDADES) 1.- Utilizando el código de colores, determinar el valor teórico de la siguiente 2.- Utilizando el código de colores, determinar

Más detalles

VALIJA DE EXPERIMENTACION EN ELECTRICIDAD BASICA

VALIJA DE EXPERIMENTACION EN ELECTRICIDAD BASICA VALIJA DE EXPERIMENTACION EN ELECTRICIDAD BASICA MODELO ELEC 11 2 TRABAJOS PRACTICOS 3 A continuación se muestran algunos ejemplos sobre la metodología para el desarrollo de los trabajos prácticos: TP

Más detalles

Seleccione la alternativa correcta

Seleccione la alternativa correcta ITEM I Seleccione la alternativa correcta La corriente eléctrica se define como: a) Variación de carga con respecto al tiempo. b) La energía necesaria para producir desplazamiento de cargas en una región.

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

EL MOSFET DE POTENCIA

EL MOSFET DE POTENCIA Ideas generales sobre el transistor de Efecto de Campo de MetalÓxido Semiconductor El nombre hace mención a la estructura interna: Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Es un dispositivo

Más detalles