Sistemas y Máquinas Fluido Mecánicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas y Máquinas Fluido Mecánicas"

Transcripción

1 Sistemas y Máquinas Fluido Mecánicas Bloque I. Tema 3.3. Turbinas Francis Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrEz Fernández Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY- NC- SA 4.0

2 Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus propios apuntes En esta presentación se incluye un listado de problemas en el orden en el que se pueden resolver siguiendo el desarrollo de la teoría. Es trabajo del alumno resolverlos y comprobar la solución

3 ..- Introducción a las Máquinas Hidráulicas..- Bombas Hidráulicas.3..- Generalidades de las Turbinas Hidráulicas.3..- Turbinas Pelton Turbinas Kaplan Estudio de Turbinas Hidráulicas

4 Generalidades Componentes Constructivos Funcionamiento Parámetros de Diseño

5 Generalidades Las Turbinas Francis se conocen como turbinas de sobrepresión por ser ésta variable en el rodete, o también como turbinas de admisión centrípeta o total por encontrarse el rodete sometido a la influencia directa del agua en toda su periferia Entran en la clasificación de turbinas radiales-axiales ydereacción El campo de aplicación es muy extenso, dado el avance tecnológico conseguido en la construcción de este tipo de turbinas. Se pueden emplear en saltos de distintas alturas dentro de una amplia gama de caudales (entre y 00 m 3 /s aproximadamente) Las turbinas Dériaz son, esencialmente, turbinas Francis de álabes orientables

6 Componentes (I): Son esencialmente los siguientes: Cámara espiral Palas directrices Distribuidor Sistema de accionamiento Rodete Tubo de aspiración Eje

7 Componentes (I): Son esencialmente los siguientes: 3 Cámara espiral 4 Palas directrices Distribuidor Sistema de accionamiento Caja espiral Distribuidor Rodete 3 Rodete Tubo de aspiración 4 Codo de salida 5 Tubo de Aspiración Eje 6 Nivel Inferior 5 S Salida 6 «Mecánica de Fluidos y Máquinas Hidráulicas» C. Mataix S

8 Componentes (II): Cámara Espiral (I) La cámara espiral más habitual está formada por la unión sucesiva de una serie de virolas tronco-cónicas, cuyos ejes respectivos forman una espiral Esta disposición constructiva permite que el agua atraviese la cámara a velocidad sensiblemente constante, evitándose la formación de torbellinos que darían lugar a pérdidas de carga En la zona periférica interna se encuentra el antedistribuidor, formado por una serie de palas fijas equidistantes unas de otras cuya curvatura y orientación consiguen que la proyección del agua salga dirigida casi radialmente componentes-y-camara-espiral-de-unaturbina-francis.html

9 Componentes (II): Cámara Espiral (I) La cámara espiral más habitual está formada por la unión sucesiva de una serie de virolas tronco-cónicas, cuyos ejes respectivos forman una espiral Esta disposición constructiva permite c e que el agua atraviese la cámara a Q velocidad sensiblemente constante, evitándose la formación de torbellinos que darían lugar a pérdidas de carga /8 Q En la zona periférica interna c se encuentra e el antedistribuidor, formado /8 Qpor una serie Rodete de palas fijas equidistantes unas de otras cuya curvatura y orientación consiguen que la proyección del agua salga 3/8 dirigida Q casi radialmente c e Distribuidor 4/8 Q 7/8 Q 5/8 Q Cámara Espiral c e 6/8 Q c e c e cte en toda la espiral «Turbinas Hidráulicas» P. Fernández Díez

10 Componentes (II): Q c e Cámara Espiral (II) Se debe limitar la velocidad de entrada del agua en la cámara para reducir las pérdidas por fricción c e /8 Q /8 Q 7/8 Q c e Metálicas: Hormigón: c c 0,8 0,8 0,3 g e H n g e H n c e cte en la espiral 3/8 Q c e Rodete Distribuidor 4/8 Q 5/8 Q Cámara Espiral «Turbinas Hidráulicas» P. Fernández Díez 6/8 Q c e Q A d ce ce 4 Si se consideran 8 secciones: 7 Q / 8 Q8 / Q / Q Q d Q / 8 4 Q c 8 e Q Q 4 Q 4 7 / 8 Q d 7 / 8 7 / 8 A7 / 8 ce c d e d 4 ce ce 8 7 d / 8 8 d

11 Componentes (III): Distribuidor (I) El distribuidor está formado por un determinado número de palas móviles cuya función es la de distribuir, regular o cortar totalmente el caudal de agua que fluye hacia el rodete El distribuidor lo componen principalmente los siguientes elementos: Palas o álabes directrices orientables Dirigen el líquido al rodete con un mínimo de pérdidas y transforman parte de la energía de presión en energía cinética El hecho de que los álabes se puedan orientar permite la regulación de la turbina, al poder variar el caudal que llega al rodete «Turbinas Hidráulicas» P. Fernández Díez

12 Componentes (III): El distribuidor está formado por un determinado número de palas móviles cuya función es la de distribuir, regular o cortar totalmente el caudal de agua que fluye hacia el rodete El distribuidor lo componen principalmente los siguientes elementos: Palas o álabes directrices orientables El sistema de accionamiento de los álabes Son los elementos mecánicos a base de servomecanismos, palancas y bielas que constituyen el equipo de regulación de la turbina y está gobernado por el regulador de velocidad Distribuidor Fink Distribuidor (II) Anillo Bielas Alabes Brazo Rodete «Turbinas Hidráulicas» P. Fernández Díez Cerrado Abierto

13 Bieletas Componentes (III): El distribuidor está formado por un determinado número de palas Bielas de mando móviles cuya función es la de distribuir, regular o cortar totalmente el caudal de agua que fluye hacia el rodete El distribuidor lo componen principalmente los siguientes elementos: Palas o álabes directrices orientables El sistema de accionamiento de los álabes Son los elementos mecánicos a base de servomecanismos, palancas y bielas Cerrado Abierto que constituyen el equipo de regulación de la turbina y está gobernado por el regulador de velocidad Distribuidor Fink Distribuidor (II) Anillo Bielas Alabes Brazo Rodete Anillo de maniobra «Turbinas Hidráulicas» P. Fernández Díez Cerrado Abierto

14 Bieletas Componentes (III): El distribuidor está formado por un determinado número de palas Bielas de mando móviles cuya función es la de distribuir, regular o cortar totalmente el caudal de agua que fluye hacia el rodete El distribuidor lo componen principalmente los siguientes elementos: Palas o álabes directrices orientables El sistema de accionamiento de los álabes Son los elementos mecánicos a base de servomecanismos, palancas y bielas Cerrado Abierto que constituyen el equipo de regulación de la turbina y está gobernado por el regulador de velocidad Distribuidor Fink Distribuidor (II) Anillo Bielas Alabes Brazo Rodete Anillo de maniobra Cerrado Abierto

15 Componentes (IV): Rodete (I) Se trata de la pieza fundamental de la turbina, donde se obtiene la energía mecánica deseada Consta de un núcleo central, alrededor del cual se encuentra dispuesto un número determinado de álabes, aproximadamente entre y, equidistantemente repartidos y solidarios al mismo, formando pieza única en bloque por fundición o soldadura, es decir, sin uniones ni fijaciones accesorias La longitud de los álabes y su mayor o menor inclinación respecto al eje de la turbina, depende del caudal, de la altura del salto y, en consecuencia, de la velocidad específica

16 Componentes (IV): BLOQUE : Máquinas de Fluidos Incompresibles Rodete (II) El Triángulo de Velocidades es como el genérico para M. H.: Triángulo en la entrada y otro Triángulo en la salida CU W U Velocidad del fluido Velocidad relativa C W c u w β U Velocidad periférica del rodete C C m C u c c u c m W m W u W β w w u w m u 90º cu Rodetes rápidos u 90º cu Rodetes normales u 90º cu Rodetes lentos Cuidado con la definición de los ángulos!!

17 Componentes (IV): BLOQUE : Máquinas de Fluidos Incompresibles Rodete (III) CU W U Rodete Rápido Rodete Normal Rodete Lento C U W β < 90 C W β = 90 U C W U β > 90 C C u U C u U u U n s 300 a 500 n s 5 a 00 n s 50 a 00 D D D D D D D D D D D D «Turbinas Hidráulicas» P. Fernández Díez

18 Componentes (IV): BLOQUE : Máquinas de Fluidos Incompresibles Rodete (IV) El Triángulo de Velocidades para una turbina Francis es: CU W U c u w Distribuidor C β U U U W C β U C W C U viene determinado por el distribuidor β y β vienen determinados por el álabe

19 Componentes (V): Tubo de Aspiración (I) Consiste en una conducción, recta ó acodada, troncocónica que une la turbina propiamente dicha con el canal de desagüe Adquiere más importancia con n s altos Turbina Eje Horizontal Turbina Eje Vertical Codo Tubo de Aspiración

20 Componentes (V): Sus funciones son: Tubo de Aspiración (II) Aprovechar la altura de salto disponible entre la salida del rodete y el nivel de aguas abajo Recuperar al máximo posible la energía cinética residual a la salida del rodete (c ) La energía cinética residual a la salida del rodete es despreciable en turbinas lentas. Sin embargo, en turbinas Francis rápidas representa del orden del 30% del salto neto mientras que en las turbinas Kaplan extrarrápidas supera el 60%

21 Componentes (V): Sus funciones son: Tubo de Aspiración (II) Aprovechar la altura de salto disponible entre la salida del rodete y el nivel de aguas abajo Recuperar al máximo posible la energía cinética residual a la salida c, pdel, z rodete (c ) c, p, z La energía Turbina cinética residual a la salida del rodete esturbina despreciable en turbinas lentas. Sin embargo, en turbinas Francis rápidas representa del orden del p 30% del salto neto mientras que en las turbinas Kaplan extrarrápidas supera c, p, z p el 60% = p c, p atm, z atm p atm vacio p Caso A (sin tubo) p 3 = p atm Caso B (con tubo) c H s Nivel en el canal de desagüe 3 c

22 Componentes (V): BLOQUE : Máquinas de Fluidos Incompresibles c, p atm, z A Tubo de Aspiración (III) c, p, z c, p, z p p = p atm c H s p 3 = p atm B 3 Nivel en el canal de desagüe c Aplicando Bernoulli entre la entrada y la salida de ambas turbinas se obtiene la energía aprovechada en cada caso (H T. A yh T.B ): c, p, z c ent pent z g g ent H Turbina h Loss c sal psal z g g sal A H T.A H H h LossA c g g p c patm z z hl.t. g g energía perdida en la Turbina B H T. B H H 3 h LossB c p z g g c p z g g c3 p3 z g g patm z3 h g 3 L.T h h L.T L.t.a. h L.t.a. energía perdida en el tubo de aspiración

23 Componentes (V): BLOQUE : Máquinas de Fluidos Incompresibles c, p atm, z A Tubo de Aspiración (IV) c, p, z c, p, z La ganancia de energía al instalar el tubo de aspiración es: p = p atm p H s p 3 = p atm 3 Nivel en el canal de desagüe B c, p, z c c H H T H.B T.A H H T. B T.A c p patm z z3 h g g g L.T h c p c p atm z z h g g g g L.t.a. L.T H c patm patm z z3 hl.t.a. g g g c g Hs hl.t.a. c z z 3 g h L.t.a. Recupera energía de la velocidad de salida Recupera energía de la cota

24 Componentes (V): BLOQUE : Máquinas de Fluidos Incompresibles c, p atm, z A Tubo de Aspiración (V) c, p, z c, p, z p = p atm p H s p 3 = p atm 3 Nivel en el canal de desagüe B c, p, z c c En el tubo de aspiración se producen dos tipos de pérdidas: Por fricción en tubo El tubo se diseña de modo que sean lo más reducidas posibles h L.t.a. h L.F.t.a. Por descarga del tubo en el canal El tubo troncocónico tiene menor velocidad de salida h L.s.t. c s.t. g De este modo la energía recuperada en el tubo de aspiración es: c H g H s h h L.F.t.a. L.s.t. c H g c s.t. Hs hl.f.t.a.

25 Componentes (V): BLOQUE : Máquinas de Fluidos Incompresibles c, p atm, z A Aplicando Bernoulli entre la entrada y la salida de la T.B se puede calcular la nueva presión en pto : c p z g g h c 3 p3 g g L.F.t.a. hl.s.t. z3 c g p z L.F.t.a. L.s.t. z 3 g g h h c z3 z h h L.F.t.a. L.s.t. p g g c 3 L.F.t.a. h L.s.t. p g Tubo de Aspiración (VI) z z h c, p, z c, p, z p = p atm p H s p 3 = p atm 3 Nivel en el canal de desagüe B h Expresado en presión relativa c L.s.t. c, p, z c c s.t. g p c g Hs h L.F.t.a. h L.s.t. p c c g s.t. Hs hl.f.t.a. p es negativa vacio

26 Componentes (V): Tubo de Aspiración (VII) c H g c s.t. Hs hl.f.t.a. Se define el rendimiento del difusor como: d c cs.t. h g c cs.t. g L.F.t.a Entonces, la ganancia de salto neto generada por el tubo se expresa como: H c c s.t.a. d Hs g Lo que pone de manifiesto la doble función del tubo de aspiración: Aprovechar la altura entre la salida del rodete y el nivel de aguas abajo (H s ) Recuperar al máximo posible la energía cinética residual a la salida del rodete (c )

27 Componentes (V): Tubo de Aspiración (VIII) Consideraciones Prácticas (I) El tubo de aspiración se diseña para que c s.t.a. sea pequeña Las experiencias de Rogers y Moody demuestran que para conseguir un buen funcionamiento y evitar problemas de cavitación la presión a la salida del rodete no debe ser inferior a un mínimo. Rogers y Moody proponen las siguientes funciones que relacionan dichos valores: f p gh n a f n s n s c gh n

28 Componentes (V): Consideraciones Prácticas (II) La función f (n s ) viene representada en las siguientes curvas: 0,08 p (ns ) Hn f Tubo de Aspiración (VIII) Considerando coeficiente de seguridad de m g,4 0,06 0,04 Francis Hélice p (ns ) Hn f,0 0,6 0,0 0,0 0, n s

29 Componentes (V): Tubo de Aspiración (VIII) Consideraciones Prácticas (III) La función f (n s ) viene representada en la siguiente curva: g 40% 30% c f(ns ) g Hn Considerando coeficiente de seguridad de m 0% Francis Hélice 0% n s

30 Componentes (V): La presión a la salida del rodete puede llegar a descender de manera peligrosa, favoreciendo el fenómeno de la CAVITACIÓN Expresado en presión absoluta Tubo de Aspiración (IX) p g p g c g atm d Hs Puede suceder debido a: Velocidad excesiva a la salida del rodete Altura de aspiración excesiva La solución más económica no consiste en construir una turbina en la cual se excluya totalmente la cavitación En la práctica se construyen turbinas en las cuales se llega a producir una cavitación controlada. Esto producirá un cierto desgaste en los álabes, pero sin que llegue a afectar de manera inaceptable al rendimiento de la máquina Esto se ha de tener presente a la hora de planificar el mantenimiento de las centrales hidroeléctricas

31 Funcionamiento de una T. Francis La sucesiva transformación de la energía se efectúa del modo siguiente: La energía potencial gravitatoria del agua embalsada se convierte, salvo pérdidas, una parte en energía de presión y otra parte en cinética a su llegada a la turbina En el distribuidor la altura de presión disminuye a costa de aumentar la altura cinética, aunque esta conversión no es tan completa como en el caso de las turbinas de acción La entrada de agua en el rodete se realiza de forma prácticamente radial, incidiendo sobre los álabes y cediendo a éstos la mayor parte posible de su energía En consecuencia, la presión disminuye notablemente y también la velocidad del agua a la salida del rodete. El tubo de aspiración permite aprovechar la energía disponible en el flujo de salida

32 Funcionamiento de una T. Francis La sucesiva transformación de la energía se efectúa del modo siguiente: La energía Tubería potencial forzadagravitatoria del agua embalsada se convierte, salvo pérdidas, una parte en energía p abs = 0de presión p atm y otra parte en cinética a su llegada a la turbina bar Distribuidor Pasa a E En el distribuidor la altura de presión disminuye a costa de aumentar cinética 0 E la altura cinética, aunque esta conversión no es tan completa como en el casorodete las turbinas de acción La entrada de agua en el rodete se realiza de forma prácticamente p radial, incidiendo sobre los álabes y cediendo a éstos la mayor > p atm E cinética y E presión E eje parte posible de su energía Tubo de Con T. asp. En consecuencia, la presión disminuye notablementep y también la aspiración < p atm velocidad del agua a la salida del rodete. El tubo de aspiración permite aprovechar la energía disponible en el flujo S de salida En el nivel libre

33 Parámetros de Diseño (I) Teniendo en cuenta los coeficiente óptimos de velocidad, se obtiene una expresión del número específico de revoluciones en función de las características de la turbina Q c m D b km ghn D b Q 3,9k m Hn D b Q Hn 3 Pot 0,855 km Hn D b 75 Pot 85,5 km Hn D b 3 D n u ghn 60 n 84,55 D H n n s Pot n Pot / 5 / ,55 Hn 85,5 km Hn D b D 5 4 Hn n s.50 k m b D

34 Parámetros de Diseño (II) BLOQUE : Máquinas de Fluidos Incompresibles,0 Dimensionamiento de rodetes Francis y Hélice Pelton ( iny.) Pelton (varios iny.),5 Francis Hélice,0 0,5 b /D 0, k n s

35 Parámetros de Diseño (III) BLOQUE : Máquinas de Fluidos Incompresibles Dimensionamiento de distribuidor para turbinas Francis 6º 0º 4º 7º 30º 3º 3º 33º 30º α 0º, n s,0 D /D φ 0,6 0, φ 0, n s

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque I. Tema 3.4. Turbinas Kaplan Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrHz Fernández Departamento de Ingeniería Eléctrica y Energé5ca

Más detalles

BLOQUE 1: Máquinas de Fluidos Incompresibles

BLOQUE 1: Máquinas de Fluidos Incompresibles Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 09. Máquinas Hidráulicas (2) Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque I. Tema 3.1. Generalidades de las Turbinas idráulicas Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo aya Félix OrGz Fernández Departamento de Ingeniería

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque II. Tema 5.1. Compresores: Generalidades y Clasificación I Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrJz Fernández Departamento de

Más detalles

BLOQUE 1: Máquinas de Fluidos Incompresibles

BLOQUE 1: Máquinas de Fluidos Incompresibles LOUE : Máquinas de Fluidos Incompresibles Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. l alumno le pueden servir como guía para recopilar

Más detalles

VALORES UNITARIOS DE UNA TURBINA

VALORES UNITARIOS DE UNA TURBINA SEMANA 5 3. Maquinas hidráulicas motrices (Cont.) Valores unitarios de una turbina. Turbina unidad. Magnitudes especificas. Determinación. Turbina padrón. Magnitudes características. Determinación Elección

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 7.4. Hidráulica Industrial: Circuitos Hidráulicos Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrFz Fernández Departamento de

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque I. Tema 3.. Turbinas Pelton Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrGz Fernández Departamento de Ingeniería Eléctrica y Energé5ca

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.1. Neumá1ca Industrial: Introducción a la Neumá1ca Industrial Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Or1z Fernández

Más detalles

BLOQUE 1: Máquinas de Fluidos Incompresibles

BLOQUE 1: Máquinas de Fluidos Incompresibles BLOQUE : Máquinas de Fluidos Incompresibles Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar

Más detalles

CLASIFICACION GENERAL DE LAS MAQUINAS HIDRAULICAS

CLASIFICACION GENERAL DE LAS MAQUINAS HIDRAULICAS SEMANA 3 2. Maquinas hidráulicas. Clasificación de las máquinas hidráulicas. Maquinas hidráulicas motrices. Descripción. Clasificación. Maquinas hidráulicas generatrices. Descripción. Clasificación. Maquinas

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 7.3. Hidráulica Industrial: Bombas y Motores Hidráulicos Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrGz Fernández Departamento

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.6. Neumá0ca Industrial: Regulación, Control y Bloqueo Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Or0z Fernández Departamento

Más detalles

8903&+,0':';<$%92,0'="%9>#';&?<29?,0'

8903&+,0':';<$%92,0'=%9>#';&?<29?,0' 890&+,0':';,'=&&B'C9&7#' @%,'1,?&>#'D,:,' =E"9F'GB'=&&B'!"#$%&$'"(&)*+"*,(-"(."%/$*01&%.$**0("%-$* 06&"*&"'$*6"*#781.$*8$9)*:."(.$;*

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.5. Neumáca Industrial: Válvulas Distribuidoras Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Orz Fernández Departamento de

Más detalles

MAQUINAS HIDRAULICAS ING. NELVER J. ESCALANTE ESPINOZA 1 ING. NELVER J. ESCALANTE ESPINOZA

MAQUINAS HIDRAULICAS ING. NELVER J. ESCALANTE ESPINOZA 1 ING. NELVER J. ESCALANTE ESPINOZA MAQUINAS HIDRAULICAS ING. NELVER J. ESCALANTE ESPINOZA 1 ING. NELVER J. ESCALANTE ESPINOZA TURBOMÁQUINAS HIDRAULICAS 1) DEFINICION Es un artefacto ó maquina en el cual se recibe o se transfiere energía

Más detalles

BOMBAS HIDRAULICAS. Mg. Amancio R. Rojas Flores

BOMBAS HIDRAULICAS. Mg. Amancio R. Rojas Flores BOMBAS HIDRAULICAS Mg. Amancio R. Rojas Flores 1 CLASIFICACION La primera clasificación posible de las bombas es separarlas en el grupo de bombas de desplazamiento positivo y bombas rotodinámicas. bombas

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Escuela de Ingeniería Electromecánica

Universidad Central Del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Escuela de Ingeniería Electromecánica Universidad Central Del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Escuela de Ingeniería Electromecánica Programa de la asignatura: IEM-930 MAQUINAS HIDRAULICAS Y COMPRESORES

Más detalles

BLOQUE 2: Hidráulica. BLOQUE 2: Hidráulica

BLOQUE 2: Hidráulica. BLOQUE 2: Hidráulica Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

Turbomáquinas Hidráulicas. Máster en Energía, generación y uso eficiente. Ingeniería Energética y Fluidomecánica. Mecánica de Fluidos

Turbomáquinas Hidráulicas. Máster en Energía, generación y uso eficiente. Ingeniería Energética y Fluidomecánica. Mecánica de Fluidos Guía docente de la asignatura Curso académico: 2016-2017 Asignatura Turbomáquinas Hidráulicas Materia Titulación Máster en Energía, generación y uso eficiente Nivel Máster Tipo/Carácter OB Créditos ECTS

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ FACULTAD DE INGENIERIA MECÁNICA CARRERA DE: LICENCIATURA EN MECÁNICA INDUSTRIAL DESCRIPCIÓN DE ASIGNATURA

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ FACULTAD DE INGENIERIA MECÁNICA CARRERA DE: LICENCIATURA EN MECÁNICA INDUSTRIAL DESCRIPCIÓN DE ASIGNATURA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ FACULTAD DE INGENIERIA MECÁNICA CARRERA DE: LICENCIATURA EN MECÁNICA INDUSTRIAL DESCRIPCIÓN DE ASIGNATURA ASIGNATURA: TURBOMAQUINARIA CÓDIGO: 4530 NUMERO: 4M:1IL CLASES

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.7. Neumáca Industrial: Detectores de Señal Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Orz Fernández Departamento de Ingeniería

Más detalles

TURBINAS KAPLAN, PELTON Y FRANCIS LIMPIARREJAS, COMPUERTAS Y VÁLVULAS

TURBINAS KAPLAN, PELTON Y FRANCIS LIMPIARREJAS, COMPUERTAS Y VÁLVULAS info@saltosdelpirineo.com TURBINAS KAPLAN, PELTON Y FRANCIS LIMPIARREJAS, COMPUERTAS Y VÁLVULAS Turbinas y equipamientos hidroeléctricos Turbinas KAPLAN de 4 palas Características Rodete KAPLAN de 4 palas

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas. MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.. En las conducciones hidráulicas los accesorios provocan a menudo pérdidas

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.12. Neumá2ca Industrial: Electro- Neumá2ca Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Or2z Fernández Departamento de Ingeniería

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 07. Golpe de Ariete y Cavitación Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

TURBINAS KAPLAN. HISTORIA

TURBINAS KAPLAN. HISTORIA 1 TURBINAS KAPLAN. HISTORIA Las turbinas tipo Kaplan fueron diseñado por el ingeniero austríaco. Víctor Kaplan (1876-1934) en el principio del siglo 20. A diferencia de los otros tipos de turbinas se puede

Más detalles

BLOQUE 2: Hidráulica. BLOQUE 2: Hidráulica

BLOQUE 2: Hidráulica. BLOQUE 2: Hidráulica Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

TURBINAS HIDRÁULICAS. 11 Abril Máquinas Hidráulicas 6ºORG 2005/2006

TURBINAS HIDRÁULICAS. 11 Abril Máquinas Hidráulicas 6ºORG 2005/2006 TURBINAS HIDRÁULICAS 11 Abril 006 Máquinas Hidráulicas 6ºORG 005/006 http://web.uniovi.es/areas/mecanica.fluidos/ TABLA DE CONTENIDOS /31 TEORÍA A UNIDIMENSIONAL PARA TURBINAS HIDRÁULICAS Tipología a básica

Más detalles

Holger Benavides Muñoz. Contenidos de la sesión

Holger Benavides Muñoz. Contenidos de la sesión www.utpl.edu.ec/ucg Hidráulica de tuberías MÁQUINAS HIDRÁULICAS Holger Benavides Muñoz Contenidos de la sesión CAPÍTULO 4 del texto: Hidráulica de tuberías, de PhD. Juan Saldarriaga. CAPÍTULO 18 y 19 del

Más detalles

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS. Prof. Jesús De Andrade Prof. Miguel Asuaje

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS. Prof. Jesús De Andrade Prof. Miguel Asuaje INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS Prof. Jesús De Andrade Prof. Miguel Asuaje Enero 2010 Contenido PARTE I Introducción Definiciones Generales Clasificación de las Turbomáquinas Bombas Centrífugas

Más detalles

BOMBAS HIDRAULICAS. Prof. Ing. Cesar Sanabria FACULTAD DE INGENIERIA UNA

BOMBAS HIDRAULICAS. Prof. Ing. Cesar Sanabria FACULTAD DE INGENIERIA UNA BOMBAS HIDRAULICAS Prof. Ing. Cesar Sanabria CLASIFICACIÓN GENERAL DE LAS MÁQUINAS HIDRÁULICAS 1- Máquinas Hidráulicas Generatrices 2- Máquinas Hidráulicas Motrices 3- Máquinas Hidráulicas Mixtas 1- MÁQUINAS

Más detalles

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS UNIDD SISTEMS COMPLEJOS DE TUERÍS Capítulo CONCEPTO ELEMENTL DE OM Y TURIN TURINS Noción básica de turbina El agua puede emplearse para producir energía mediante su conducción a un nivel situado a una

Más detalles

BLOQUE 1: Neumática. BLOQUE 1: Neumática

BLOQUE 1: Neumática. BLOQUE 1: Neumática BLOQUE : Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros,

Más detalles

n. TIPOS DE TURBINAS IIIDRÁULlCAS

n. TIPOS DE TURBINAS IIIDRÁULlCAS 31 en masa de agua, vapor o gas, al encontrarse dotadas de una determinada velocidad de desplazamiento. n. TIPOS DE TURBINAS IIIDRÁULlCAS Existen tres tipos de turbinas hidráulicas con los mejores resultados

Más detalles

BLOQUE 1: Neumática. BLOQUE 1: Neumática

BLOQUE 1: Neumática. BLOQUE 1: Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

Lección 1: Flujo laminar incompresible unidireccional. x + 2 u. z z. Ecuación de Bernoulli generalizada (α = 1 flujo turbulento y α = 2 flujo laminar)

Lección 1: Flujo laminar incompresible unidireccional. x + 2 u. z z. Ecuación de Bernoulli generalizada (α = 1 flujo turbulento y α = 2 flujo laminar) Formulario SF Este es el formulario generado específicamente para la realización de la parte de problemas de los exámenes de la asignatura Sistemas Fluidomecánicos. Las ecuaciones no incluídas aquí derivan

Más detalles

TURBOMÁQUINAS. Mg. Amancio R. Rojas Flores

TURBOMÁQUINAS. Mg. Amancio R. Rojas Flores TURBOMÁQUINAS Mg. Amancio R. Rojas Flores 1.- DEFINICIÓN DE TURBOMÁQUINAS Las turbomáquinas son equipos diseñados para conseguir un intercambio energético entre un fluido (que pasa a su través de forma

Más detalles

TURBOMAQUINAS MOTORAS. Mg. Amancio R. Rojas Flores

TURBOMAQUINAS MOTORAS. Mg. Amancio R. Rojas Flores TURBOMAQUINAS MOTORAS Mg. Amancio R. Rojas Flores 1 RUEDAS HIDRÁULICAS.- Las ruedas hidráulicas son máquinas capaces de transformar la energía del agua, cinética o potencial, en energía mecánica de rotación.

Más detalles

BLOQUE 2: Máquinas de Fluidos Compresibles

BLOQUE 2: Máquinas de Fluidos Compresibles Las trasarencias son el material de aoyo del rofesor ara imartir la clase. No son auntes de la asignatura. Al alumno le ueden servir como guía ara recoilar información (libros, ) y elaborar sus roios auntes

Más detalles

EQUIPOS ELECTROMECANICOS. Mg. Amancio Rojas Flores

EQUIPOS ELECTROMECANICOS. Mg. Amancio Rojas Flores EQUIPOS ELECTROMECANICOS Mg. Amancio Rojas Flores I. CASA DE MAQUINAS En un aprovechamiento hidroeléctrico, la casa de máquinas tiene como misión proteger el equipo electro-hidráulico que convierte la

Más detalles

BLOQUE 2: Máquinas de Fluidos Compresibles

BLOQUE 2: Máquinas de Fluidos Compresibles Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

VIII. BOMBAS HIDRÁULICAS

VIII. BOMBAS HIDRÁULICAS VIII. BOMBAS HIDRÁULICAS DEFINICIÓN: SON MÁQUINAS HIDRÁULICAS QUE TRANSFORMAN LA ENERGÍA MECÁNICA SUMINISTRADA POR UN MOTOR EN ENERGÍA HIDRÁULICA, INCREMENTANDO LA ENERGÍA DE LA CORRIENTE DONDE SE INTERCALAN.

Más detalles

Ingeniería Mecánica UNIDADES: 3 HORAS TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 2 2 4

Ingeniería Mecánica UNIDADES: 3 HORAS TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 2 2 4 Mecánica PAG: 1 Universidad Central de Venezuela Facultad de Escuela de Mecánica Departamento de Tecnología de Producción Unidad Docente y de Investigación Turbomáquinas Asignatura TURBINAS HIDRÁULICAS

Más detalles

924:&+,4';'<7$%20,4'="%23#'<&87028,4'

924:&+,4';'<7$%20,4'=%23#'<&87028,4' 924:&+,4';',18&3#'6,;,' =D"2E'F1GA'=&10703&A'!"#$%&$'"(&)*+"*,(-"(."%/$*0123&%.3$*4*0("%-253$*

Más detalles

APROVECHAMIENTOS HIDRÁULICOS

APROVECHAMIENTOS HIDRÁULICOS APROECHAMIENTOS HIDRÁULICOS 9 CAPÍTULO I APROECHAMIENTOS HIDRÁULICOS PROBLEMAS SOBRE TURBINAS FRANCIS, KAPLAN Y PELTON 4. DIMENSIONES DE LAS TURBINAS FRANCIS En un aprovechamiento hidráulico, los datos

Más detalles

BLOQUE 1: Neumática. BLOQUE 1: Neumática

BLOQUE 1: Neumática. BLOQUE 1: Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ) y elaborar sus

Más detalles

BLOQUE 2: Máquinas de Fluidos Compresibles

BLOQUE 2: Máquinas de Fluidos Compresibles Las trasarencias son el material de aoyo del rofesor ara imartir la clase. No son auntes de la asignatura. Al alumno le ueden servir como guía ara recoilar información (libros, ) y elaborar sus roios auntes

Más detalles

TURBINAS KAPLAN. Utilización para:

TURBINAS KAPLAN. Utilización para: TURBINAS KAPLAN Las turbinas tipo Kaplan fueron diseñado por el Dr. técnico víctor Kaplan (1876-1934) en el principio del siglo XX. A diferencia de los otros tipos de turbinas se puede ajustar ambas alabas

Más detalles

Ing. Héctor Guillermo LORENZO 6 90 Ing. Jorge Eduardo PEYRANO ASIGNATURAS CORRELATIVAS PRECEDENTES PROGRAMA DE LA ASIGNATURA

Ing. Héctor Guillermo LORENZO 6 90 Ing. Jorge Eduardo PEYRANO ASIGNATURAS CORRELATIVAS PRECEDENTES PROGRAMA DE LA ASIGNATURA CARRERA: INGENIERIA MECANICA DEPARTAMENTO DE: HIDRAULICA ASIGNATURA: MAQUINAS HIDRAULICAS. - (Código 425) APROBADO POR RESOLUCION Nº 121/02 - C.D. AREA: TECNOLÓGICAS APLICADAS CARACTER DE LA ASIGNATURA

Más detalles

B - MÁQUINAS Y TURBOMÁQUINAS HIDRÁULICAS

B - MÁQUINAS Y TURBOMÁQUINAS HIDRÁULICAS FL 03.1 - BOMBAS SERIE-PARALELO (pag. B - 1) FL 03.1i - BOMBAS SERIE PARALELO INFORMATIZADO (Incluye ordenador) (pag. B - 1) FL 03.2 - CARACTERÍSTICAS DE LAS BOMBAS CENTRÍFUGAS (pag. B - 1) FL 07.1 - VENTILADOR

Más detalles

BLOQUE 1: Máquinas de Fluidos Incompresibles

BLOQUE 1: Máquinas de Fluidos Incompresibles BLOUE 1: Máquinas de Fluidos Incompresibles Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar

Más detalles

Turbinas Hidráulicas. Turbomáquinas Hidráulicas CT Prof. Jesús De Andrade Prof. Miguel Asuaje

Turbinas Hidráulicas. Turbomáquinas Hidráulicas CT Prof. Jesús De Andrade Prof. Miguel Asuaje Turbinas Hidráulicas Turbomáquinas Hidráulicas CT-3411 Prof. Jesús De Andrade Prof. Miguel Asuaje Descripción, Clasificación, Dimensionamiento y Curvas Características Características Generales Turbina

Más detalles

Energía Hidroeléctrica. Haz lo que el planeta necesita!

Energía Hidroeléctrica. Haz lo que el planeta necesita! Energía Hidroeléctrica Haz lo que el planeta necesita! VAPTECH Energía Hidroeléctrica Bienvenidos a VAPTECH 100 años de experiencia y tradición en la construcción de maquinaria. Los orígenes de la empresa

Más detalles

Código: Titulación: Ingeniero Técnico Industrial (Electricidad) Curso: 2, 2C

Código: Titulación: Ingeniero Técnico Industrial (Electricidad) Curso: 2, 2C ASIGNATURA: Máquinas Hidráulicas en Centrales Eléctricas Código: 127212005 Titulación: Ingeniero Técnico Industrial (Electricidad) Curso: 2, 2C Profesor(es) responsable(s): Blas Zamora Parra Departamento:

Más detalles

Soluciones de Layout para PCHs

Soluciones de Layout para PCHs Soluciones de Layout para PCHs Ing. Robert Fink Ing. Luiz Valbusa SEMI Industrial Ltda. - Brasil Expo APEMEC 2014 Empresas del Grupo SEMI Engenharia SEMI Sistemas SEMI Industrial Montajes Electromecánicos

Más detalles

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 7.1. Hidráulica Industrial: Fluidos Hidráulicos Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix OrFz Fernández Departamento de

Más detalles

Diseño y estandarización de Microturbinas hidráulicas para energización rural.

Diseño y estandarización de Microturbinas hidráulicas para energización rural. Diseño y estandarización de Microturbinas hidráulicas para energización rural. Msc. Ing. Edgar Alfredo Catacora Acevedo Universidad Nacional de San Antonio Abad del Cusco- Depto. Ingeniería Mecánica. Diseño

Más detalles

15.- Mencione como se puede distinguir el potencial hidroeléctrico mundial.

15.- Mencione como se puede distinguir el potencial hidroeléctrico mundial. 1.- Que es un tubo de aspiración en una turbina? Consiste en un conducto, normalmente acodado, que une a las turbinas de reacción con el canal de desagüe. y tiene como misión crear una succión a la salida

Más detalles

1.SISTEMAS DE UNIDADES. DIMENSIONES 1.1 El sistema internacional de unidades SI. 1.2 Ecuación de dimensiones. 1.3 Cambio de unidades.

1.SISTEMAS DE UNIDADES. DIMENSIONES 1.1 El sistema internacional de unidades SI. 1.2 Ecuación de dimensiones. 1.3 Cambio de unidades. FACULTAD REGIONAL LA RIOJA Departamento: Ingeniería Electromecánica Asignatura: Mecánica de los Fluidos y Máquinas Fluidodinámicas Profesor Adjunto: Ing. Dante Agustín Simone JTP: Ing. Martín Heredia Auxiliares:

Más detalles

PROBLEMAS BOMBAS CENTRÍFUGAS

PROBLEMAS BOMBAS CENTRÍFUGAS PROBLEMAS BOMBAS CENTRÍFUGAS P.1 Una bomba centrífuga que gira a 1450 rpm tiene un rodete con las siguientes características: β 1 =18º, β 2 =28º, r 1 =100 mm, r 2 =200 mm, b 1 =45 mm, b 2 =25 mm Determinar

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO ASIGNATURA: MAQUINAS HIDRAULICAS CÓDIGO: 8C0041 I. DATOS

Más detalles

Banco de Ensayos de Bombas Centrífugas

Banco de Ensayos de Bombas Centrífugas Banco de Ensayos de Bombas Centrífugas 1.- Objetivos. Determinación de las curvas características de una bomba radial. Conocer y manejar el instrumental del laboratorio..- Fundamento teórico. El impulso

Más detalles

BLOQUE 1: Máquinas de Fluidos Incompresibles

BLOQUE 1: Máquinas de Fluidos Incompresibles Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asinatura. Al alumno le pueden servir como uía para recopilar información (libros, ) y elaborar sus

Más detalles

PROBLEMAS DE NAVIDAD 2003

PROBLEMAS DE NAVIDAD 2003 PROBLEMAS DE NAVIDAD 2003 1 PROBLEMAS DE NAVIDAD 2003 Fig. Navidad 2003-1 Navidad 2003-1. Una conducción de sección cuadrada contiene en su interior un haz de cinco tubos de 5 cm de diámetro cada uno,

Más detalles

9:3&+,';'F":G'4IC'>&4=?&C'!"#$%&$'"(&)*+"*,(-"(."%/$*13&%.3$*4*("%-53$* 6&"*&"'$*6"*#781.3$*8$9)*:.3"(3.$;*

Más detalles

BLOQUE "D" Circuitos neumáticos y oleohidráulicos

BLOQUE D Circuitos neumáticos y oleohidráulicos Año 1997 1.- Considere los siguientes aparatos de medida utilizados en neumática: manómetro, termómetro, caudalímetro y contador totalizador. Se pide, para cada aparato: Explicar su funcionamiento y aplicación.

Más detalles

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII:

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII: UNIA VII: Acción dinámica de los fluidos. Generalidades. Ecuación de la cantidad de movimiento. Coeficiente de oussinesq. Ecuación de la cantidad de movimiento aplicada a un tubo de corriente. Escurrimiento

Más detalles

BLOQUE 1: Neumática. BLOQUE 1: Neumática

BLOQUE 1: Neumática. BLOQUE 1: Neumática BLOQUE : Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros,

Más detalles

IV.- TURBINA FRANCIS

IV.- TURBINA FRANCIS IV.- TURBINA FRANCIS IV.1.- CLASIFICACIÓN SEGÚN EL RODETE Las turbinas Francis, Fig IV.1.a.b, son de tipo radial, admisión centrípeta y tubo de aspiración; siempre se construyen en condiciones de rendimiento

Más detalles

EXPERIENCIA C915 "LABORATORIO DE TURBINA PELTON"

EXPERIENCIA C915 LABORATORIO DE TURBINA PELTON INGENIERIA CIVIL EN MECANICA PROGRAMA DE PROSECUCIÓN DE ESTUDIOS GUIA DE LABORATORIO ASIGNATURA "LABORATORIO DE MÁQUINAS HIDRÁULICAS" CÓDIGO 9517 NIVEL 04 EXPERIENCIA C915 "LABORATORIO DE TURBINA PELTON"

Más detalles

EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"

EXPERIENCIA C917 LABORATORIO DE VENTILADOR CENTRÍFUGO INGENIERIA CIVIL EN MECANICA PROGRAMA DE PROSECUCIÓN DE ESTUDIOS GUIA DE LABORATORIO ASIGNATURA "LABORATORIO DE MÁQUINAS HIDRÁULICAS" CÓDIGO 9517 NIVEL 04 EXPERIENCIA C917 "LABORATORIO DE VENTILADOR CENTRÍFUGO"

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

TURBINAS KAPLAN. Prof. Ing. Cesar Sanabria FACULTAD DE INGENIERIA UNA

TURBINAS KAPLAN. Prof. Ing. Cesar Sanabria FACULTAD DE INGENIERIA UNA TURBINAS KAPLAN Prof. Ing. Cesar Sanabria Generalidades Las turbinas tipo Kaplan son turbinas de admisión total y clasificadas como turbinas de reacción Se emplean en saltos de pequeña altura (alrededor

Más detalles

VII.- TURBINA FRANCIS

VII.- TURBINA FRANCIS VII.- TURBINA FRANCIS VII.1.- CLASIFICACIÓN SEGÚN EL RODETE Las turbinas Francis, Fig VII.1.a.b, son de tipo radial, admisión centrípeta y tubo de aspiración; siempre se construyen en condiciones de rendimiento

Más detalles

Sistemas y Máquinas Fluido Mecánicas

Sistemas y Máquinas Fluido Mecánicas Sistemas y Máquinas Fluido Mecánicas Bloque III. Tema 6.4.. Neumáca Industrial: Actuadores Neumácos II Carlos J. Renedo Inmaculada Fernández Diego Juan Carcedo Haya Félix Orz Fernández Departamento de

Más detalles

Máquinas Hidráulicas Prof. Jesús DE ANDRADE Prof. Miguel ASUAJE

Máquinas Hidráulicas Prof. Jesús DE ANDRADE Prof. Miguel ASUAJE INTRODCCIÓN A LAS MÁINAS IDRÁLICAS Máquinas idráulicas Prof. Jesús DE ANDRADE Prof. Miguel ASAJE Motores idráulicos Ruedas y Turbinas Máquinas que transforman energía hidráulica en energía mecánica Clasificación

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA GUÍA DOCENTE DE LA ASIGNATURA M1207 - Sistemas Energéticos Máster Universitario en Ingeniería Industrial Obligatoria. Curso 1 Curso Académico 2016-2017 1 1. DATOS IDENTIFICATIVOS Título/s Máster Universitario

Más detalles

Práctica 3 de Máquinas de Fluidos Incompresibles. Curvas características de una turbina axial

Práctica 3 de Máquinas de Fluidos Incompresibles. Curvas características de una turbina axial Práctica 3 de Máquinas de Fluidos Incompresibles. Curvas características de una turbina axial P. Bohórquez 21 de mayo de 21 El objetivo de esta práctica es la caraterización de una turbina axial mediante

Más detalles

Contenidos CONCEPTOS FUNDAMENTALES - ESTÁTICA DE LOS FLUIDOS

Contenidos CONCEPTOS FUNDAMENTALES - ESTÁTICA DE LOS FLUIDOS Unidad Temática Contenidos Estrategias Seleccionadas- Actividades Modalidad y fechas de Evaluaciones I Parte I: MECÄNICA DE FLUIDOS: CONCEPTOS FUNDAMENTALES - ESTÁTICA DE LOS FLUIDOS I.1. Definición y

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA GUÍA DOCENTE DE LA ASIGNATURA G750 - Sistemas y Máquinas Fluido Mecánicas Grado en Ingeniería Mecánica Obligatoria. Curso 3 Curso Académico 2015-2016 1 1. DATOS IDENTIFICATIVOS Título/s Grado en Ingeniería

Más detalles

MOVIMIENTO DE FLUIDOS INCOMPRESIBLES L/O/G/O

MOVIMIENTO DE FLUIDOS INCOMPRESIBLES L/O/G/O MOVIMIENTO DE FLUIDOS INCOMPRESIBLES L/O/G/O CONTENIDOS 1. DEFINICIÓN Y CLASIFICACIÓN DE LAS BOMBAS 2. CARACTERÍSTICAS GENERALES DE LAS BOMBAS 3. CAPACIDAD DE LAS BOMBAS 4. BOMBAS CENTRÍFUGAS 5. CURVAS

Más detalles

Figura 5.17: Selección de turbinas hidráulicas (Polo)

Figura 5.17: Selección de turbinas hidráulicas (Polo) 2.2 Turbinas hidráulicas Las turbinas hidráulicas funcionan según los mismos principios que las turbomáquinas para gases, y las hay también radiales (centrífugas y centrípetas), mixtas, axiales y de chorro.

Más detalles

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS BOMBAS AXIALES Prof. Jesús DE ANDRADE Prof. Miguel ASUAJE Marzo 010 Bombas Axiales Turbomáquinas en las cuales el flujo es paralelo al eje Rotor También son denominadas

Más detalles

CRONOGRAMA DE ASIGNATURA

CRONOGRAMA DE ASIGNATURA ACADEMIA DE INGENIERÍA DE FLUIDOS; MÁQUINAS HIDRÁULICAS (T). ENERO 2009 /5 UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE INGENIERÍAS DEPARTAMENTO DE INGENIERIA

Más detalles

Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m

Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m 89. Una bomba centrífuga se utiliza para elevar agua, según el esquema representado en la figura. Teniendo en cuenta los datos indicados en la figura: 1º) Calcular la altura manométrica de la bomba y la

Más detalles

FACULTAD DE INGENIERIA TURBOMAQUINAS TRABAJO PRACTICO No. 2 TURBINA DE ACCION CURTISS DE 2 SALTOS DE VELOCIDAD

FACULTAD DE INGENIERIA TURBOMAQUINAS TRABAJO PRACTICO No. 2 TURBINA DE ACCION CURTISS DE 2 SALTOS DE VELOCIDAD Hoja 1 de 1 FACULTAD DE INGENIERIA TURBOMAQUINAS - 67.20 TRABAJO PRACTICO No. 2 TURBINA DE ACCION CURTISS DE 2 SALTOS DE VELOCIDAD Nombre y apellido: No. de padrón : Diseño de una etapa de acción Curtiss

Más detalles

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA INTRODUCCIÓN IMPORTANCIA DE LA GENERACIÓN DE POTENCIA ASPECTOS FUNDAMENTALES TIPOS DE PLANTAS

Más detalles

CAVITACIÓ N. Mg. Amancio R. Rojas Flores. Mg. ARRF 1

CAVITACIÓ N. Mg. Amancio R. Rojas Flores. Mg. ARRF 1 CAVITACIÓ N Mg. Amancio R. Rojas Flores Mg. ARRF 1 1.- CAVITACIÓN EN BOMBAS CENTRÍFUGAS Las bombas centrífugas funcionan con normalidad si la presión absoluta a la entrada del rodete no está por debajo

Más detalles

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio

Más detalles

La Energía hidráulica IES BELLAVISTA

La Energía hidráulica IES BELLAVISTA La Energía hidráulica IES BELLAVISTA La energía hidráulica Desde la antigüedad se ha aprovechado la energía potencial del agua almacenada o la energía cinética del agua fluyente en molinos, forjas, batanes,

Más detalles

CAPITULO I Introducción 1

CAPITULO I Introducción 1 VI INDICE GENERAL Agradecimientos. Dedicatoria. Resumen. Abstract. Índice II III IV V VI CAPITULO I Introducción 1 1.1 Antecedentes y motivación. 2 1.2 Descripción del problema. 2 1.3 Solución propuesta.

Más detalles

PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar;

PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; 4.558.500 Pa) 2. Expresa en bares, en atmósferas y en milímetros de mercurio una presión

Más detalles

One family for a big world

One family for a big world One family for a big world 1 Headquarter 1h de Venecia Fara Vicentino Manufacturing plant Engineering department 2 Que es hidroelectricidad? la idea no es realmente una inovación Fue utilizado por los

Más detalles

Sistemas Fluidomecánicos (1810)

Sistemas Fluidomecánicos (1810) Escuela Politécnica Superior de Elche Universidad Miguel Hernández de Elche Sistemas Fluidomecánicos (1810) Tercer Curso. Titulación Grado Ingeniería Mecánica Profesor Responsable: Javier Ruiz Ramírez

Más detalles

Termodinámica y Termotecnia

Termodinámica y Termotecnia Termodinámica y Termotecnia Tema 05. Flujo Compresible Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

Una bomba es una turbo máquina generadora para líquidos incompresibles. Las bombas aumentan la energía del fluido al realizar trabajo sobre él.

Una bomba es una turbo máquina generadora para líquidos incompresibles. Las bombas aumentan la energía del fluido al realizar trabajo sobre él. MECANICA DE LOS FLUIDOS Capítulo 10 TURBOMAQUINARIA Tabla de contenidos: Bombas: componentes, tipos Altura de una bomba Curvas características de una bomba Leyes de semejanza Conceptos de unidad homóloga

Más detalles