Vertedores y compuertas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Vertedores y compuertas"

Transcripción

1 Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

2 Vertedores Un vertedor es un dique o pared que intercepta una corriente de un líquido con superficie libre, causando una elevación del nivel del fluido aguas arriba de la misma. Se pueden emplear para mantener un nivel aguas arriba que no exceda un valor límite en un almacenamiento de agua o un canal o bien, para medir el caudal transportado por un canal. Es fácil fabricarlos y para calcular el caudal simplemente es necesario conocer la carga de agua H que esté pasado por el vertedero en determinado momento y utilizar la ecuación que corresponda, según el tipo de vertedor. Figura 1. Partes de un vertedor.

3 Existen variadas formas y disposiciones de vertedores lo que determina su comportamiento hidráulico, siendo muchos los factores que pueden servir de base para su clasificación. Por su forma. Pueden ser, entre muchas otras, vertedores rectangulares, triangulares y trapezoidales. Figura 2, Vertedores rectangular, triangular y trapezoidal.

4 Por el espesor de la pared. Vertedores de pared delgada: la descarga se efectúa sobre una placa con perfil de cualquier forma, pero con arista aguda. Vertedores de pared gruesa: con e > 0,5H. Figura 3. Vertedores de pared delgada y de pared gruesa.

5 Ecuación general del gasto Se considera un vertedero de pared delgada y sección geométrica como se observa en la figura 3, cuya cresta se encuentra a una altura w, medida desde la plantilla del canal de alimentación. El desnivel entre la superficie inalterada del agua, antes del vertedero y la cresta, es h y la velocidad uniforme de llegada del agua es de VO, de tal manera que: Si w es muy grande, es despreciable y H = h. Aplicando la ecuación de Bernoulli para una línea de corriente entre los puntos 0 y 1, de la figura 3 se obtiene que la velocidad en cualquier punto en (1) es:

6 Por otra parte, a partir de la figura 4, el perfil de las formas usuales de vertedores de pared delgada se puede presentar por la ecuación: y el gasto a través del área elemental, en la misma figura es Donde: Sustituyendo se obtiene: Simplificando queda: La ecuación general del gasto para un vertedor de pared delgada: Se introduce µ para considerar el efecto de la contracción de la lámina vertiente) Para obtener el gasto, se integra esta ecuación (si se conoce la forma del vertedor)

7 Vertedor rectangular Es uno de los más sencillos para construir por lo que es uno de los más utilizados, puede tener contracciones. Para esta forma de vertedero la ecuación general es del tipo x=b/2 donde b es la longitud de la cresta (figura 5)y se puede escribir de la manera siguiente: Sustituyendo u = h-y y dy = -du, se llega a la ecuación general para el cálculo del gasto en un vertedor rectangular Si se agrupan los términos en un solo coeficiente, se obtiene con

8 Vertedor rectangular con contracciones laterales Cuando el vertedor rectangular se encuentra al centro de un canal de ancho B mayor que la longitud de su cresta b (figura 6), se producen contracciones laterales semejantes a las de un orificio, por lo que es necesario hacer una modificación a la ecuación y utilizar la carga total. Algunos investigadores han utilizado la siguiente forma de la relación y con trabajo experimental han obtenido expresiones para m, como la de Francis, que introduce el efecto de la contracción de la lámina vertiente) que es la más utilizada: Haciendo la sustitución correspondiente, el gasto sobre el vertedor es: Q = Caudal que fluye por el vertedero, en m 3 /s b = Ancho de la cresta, en m h = Carga del vertedero, en m n = Número de contracciones (0, 1 ó 2)

9 Vertedor triangular Permite obtener medidas más precisas de las alturas de carga (h) correspondientes a caudales pequeños. Se recomienda utilizar los que tienen forma isósceles. Cuando el vertedero es de sección triangular (figura 7), simétrica respecto del eje vertical y con un ángulo en el vértice, el valor de x de la ecuación es: Y la ecuación general se puede escribir como Sustituyendo z=h-y; o bien y =(h-z) y dy = dz y con los límites de integración: para y=0, z =h y para y = h, z =0 se obtiene la ecuación general para vertedores triangulares.

10 Vertedor trapezoidal El gasto de un vertedor trapezoidal como el de la figura se puede calcular suponiendo la suma del gasto correspondiente a uno rectangular con longitud de cresta b y el triangular formado con las dos orillas. Esto quiere decir la suma de las ecuaciones correspondientes El vertedor de Cipolletti tiene el trazo de un trapecio regular con taludes en los lados k =1 (1 horizontal y 4 vertical) y que encuentra aplicación como aforador en canales. La ecuación es válida si 0,08 m 0,6 m; a 2h; b 3h; w 3h y anchos de canal de 30 h a 60 h.

11 Fórmulas experimentales para determinar el coeficiente de gasto para vertedores rectangulares (B=b, para vertedores sin contracciones)

12 Ejercicio. Calcular el gasto de un vertedor de pared delgada en un canal del mismo ancho de la cresta como se muestra en la figura. Calcular la carga en el vertedor si se desea un gasto de 2.0 m 3 /s, manteniendo las mismas condiciones de descarga libre.

13 Calcular la descarga libre del vertedor de la figura. Está construido sobre un canal de 5.0 m de ancho.

14 Vertedores de pared gruesa Cuando e/h < 0.67, el chorro se separa de la cresta y el vertedor funciona como uno de pared gruesa; cuando e/h > 0.67, la lámina vertiente se adhiere a la cresta del vertedor y su funcionamiento es diferente. En un vertedor de pared gruesa sin contracciones, el gasto puede determinarse con el procedimiento de Bazin, que introduce un coeficiente de reducción a la ecuación utilizada para vertedores rectangulares sin contracciones de pared delgada. Válida para e/h 3

15 Para valores de e/h y w/h de acuerdo a las distintas formas de funcionamiento de los vertedores, x 1 se puede obtener de la figura siguiente: Coeficiente x 1 para vertedores de pared gruesa con descarga libre (Dominguez, F., tomado de Sotelo Ávila (1997)

16 Ejercicio. El vertedor de la figura tiene un espesor de pared e = 0.45 m y está construido sobre un canal de ancho B = 2.5 m. Determina el gasto de vertido

17

18 Compuertas Consiste en una placa móvil, plana o curva, que al levantarse o bajarse, amplía o reduce el área de flujo del orificio, lo que permite controlar la descarga producida. Generalmente la compuerta tiene el mismo ancho que el canal y su borde inferior cae sobre la plantilla, a partir de donde se abre el orificio. Para determinar el gasto de descarga, deben considerarse los siguientes factores, entre otros: El chorro que sale se contrae desde una altura a, hasta un valor C c a Debido a la contracción y a la fricción con el piso se produce una pérdida de carga dh La carga de velocidad de llegada tiene mayor importancia cuando y 1 /a disminuye La velocidad es mayor en el canto inferior de la compuerta

19 Gasto en una compuerta plana inclinada La ecuación de energía en las secciones 1 y 2 es Cv, Cc y Cd dependen de la geometría del flujo y del número de Reynolds y se obtienen experimentalmente. Por la ecuación de continuidad, para un ancho unitario de compuerta, se tiene: Sustituyendo Con lo que La velocidad media en la sección contraida es En la figura se presentan los coeficientes de gasto Cd obtenidos por Gentilini en compuertas planas con un ángulo de inclinación x en términos de la relación y1/a. La inclinación x es equivalente a la de la tangente en el labio de la compuerta radial de la figura y con x = 90º incluye el caso de la compuerta vertical. El gasto se determina con la relación La fórmula se puede escribir como Con

20 Hacer un resumen de la aportación al estudio de las compuertas de los siguientes investigadores: Gentilini Joukousky y Vedérnikov Franke Henry Cofré y Buchheister Knapp Henderson Toch Creager

HIDRAULICA EJERCICIOS PRUEBA

HIDRAULICA EJERCICIOS PRUEBA UNIVERSIDAD DIEGO PORTALES ESCUELA DE INGENIERIA OBRAS CIVILES HIDRAULICA EJERCICIOS PRUEBA 1. Para un canal trapezoidal de ancho basal b = 6 m y taludes (2/1) (H/V), pendiente 0,3%, coeficiente de rugosidad

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

Flujo en canales abiertos

Flujo en canales abiertos cnicas y algoritmos empleados en estudios hidrológicos e hidráulicos Montevideo - Agosto 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Flujo en canales abiertos Luis Teixeira Profesor Titular,

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra

PROGRAMA DE CURSO. Horas de Trabajo Personal Horas de Cátedra Código Nombre CI4101 HIDRÁULICA Nombre en Inglés HYDRAULICS SCT es Docentes PROGRAMA DE CURSO Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3 2 5 Requisitos Carácter del CI3101,

Más detalles

REFERENCIA HIDRÁULICA DEL MÓDULO 6

REFERENCIA HIDRÁULICA DEL MÓDULO 6 REFERENCIA HIDRÁULICA DEL MÓDULO 6 La presencia en los cauces naturales de elementos de retención, derivación y control de flujo como aliviaderos, vertederos, presas, tomas de captación, etc. son perfectamente

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi

Más detalles

Prólogo RANALD V. GILES

Prólogo RANALD V. GILES Prólogo Este libro ha sido concebido con el principal propósito de complementar los textos ordinarios (de mecánica de los fluidos e hidráulica. Se basa en la convicción del autor de que el esclarecimiento

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

MEDICIÓN DE FLUJO EN COMPUERTAS Y ORIFICIOS

MEDICIÓN DE FLUJO EN COMPUERTAS Y ORIFICIOS Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Civil MEDICIÓN DE FLUJO EN COMPUERTAS Y ORIFICIOS Andy Williams Alonzo Vásquez Asesorado por el Ing. Luis Manuel Sandoval

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO 1 Aplicaciones de la integral 3.6 uerza y presión de un fluido Cuando en un fluido contenido por un recipiente se encuentra un cuerpo sumergido, este experimenta una fuerza, perpendicular a cualquiera

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

RESUMEN DEL PROGRAMA (parte de Hidráulica)

RESUMEN DEL PROGRAMA (parte de Hidráulica) Código de la asignatura: 68202, 60203 Nombre de la asignatura: Hidráulica y máquinas agrícolas Créditos: 6 (3 Hidráulica) Año académico: 2007-2008 Titulación: Ingeniero Técnico Agrícola (Hortofruticultura

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

Canal Parshall I.A.C. S.L.

Canal Parshall I.A.C. S.L. Canal Parshall I.A.C. S.L. Instrucciones de montaje Ingenieros Asociados de Control, S.L. 1 1.- Introducción La precisión de un sistema de medida de caudal en Canal Abierto está determinada por la totalidad

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras.

Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras. LOS POLIEDROS: El cubo, la pirámide, la esfera, el cilindro... son figuras sólidas. Observando tales figuras, vemos que algunos sólidos, como el cubo y la pirámide, tienen su superficie exterior formada

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica 8.- BALANCE INTEGRAL DE AGUAS SUBTERRÁNEAS Un balance de aguas subterráneas consiste en registrar las entradas, salidas y cambio en el volumen de almacenamiento, que acontecen en un volumen específico

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

ESTUDIO DE LA TRANSFERENCIA DE CALOR DE UN PISO RADIANTE HIDRONICO SOLAR A UN ESPACIO

ESTUDIO DE LA TRANSFERENCIA DE CALOR DE UN PISO RADIANTE HIDRONICO SOLAR A UN ESPACIO ESTUDIO DE LA TRANSFERENCIA DE CALOR DE UN PISO RADIANTE HIDRONICO SOLAR A UN ESPACIO Oscar E. Rodea García y Manuel D. Gordon Sánchez racso_rogo@msn.com, mgs@correo.azc.uam.mx Universidad Autónoma Metropolitana

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS

FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS FICHAS DE PRÁCTICAS 1ºBACHILLERATO MATEMÁTICAS UNIDAD DIDÁCTICA : ÁLGEBRA Y ARITMÉTICA 04.- Inecuaciones Duración Estimada: 1,5 h Capacidad Terminal Comprender plantear y solucionar inecuaciones de primer

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

La cavitación n en sistemas de tuberías

La cavitación n en sistemas de tuberías La cavitación n en sistemas de tuberías Que es la cavitación? La cavitación n es un fenómeno físico, f mediante el cual un líquido, l en determinadas condiciones, pasa a estado gaseoso y unos instantes

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

4. ESTRUCTURAS HIDRÁULICAS I (AFORADORES)

4. ESTRUCTURAS HIDRÁULICAS I (AFORADORES) 4. ESTRUCTURAS HIDRÁULICAS I (AFORADORES) Objetivos El objetivo de la práctica es que el alumno aprenda a identificar y utilizar las estructuras hidráulicas que comúnmente se utilizan para medir el caudal

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA Ing. Alejandro Mayori 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA 6.1 Introducción - Teoría matemática y resultados experimentales

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

Tema 14. Conducciones abiertas. Canales.

Tema 14. Conducciones abiertas. Canales. Tema 14. Conducciones abiertas. Canales. 1. Introducción.. Ecuación general en régimen permanente.. Fórmulas prácticas para la determinación de pérdida de carga. 4. Velocidades admisibles. Distribución

Más detalles

Matemáticas 2 Agosto 2015

Matemáticas 2 Agosto 2015 Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola en las soluciones de

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:

MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos: MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

UNIDAD 1 Estadimetría

UNIDAD 1 Estadimetría UNIDAD 1 Estadimetría La estadimetría es un método que sirve para medir distancias y diferencias de elevación indirectamente, es rápido pero su precisión no es muy alta. Este procedimiento se emplea cuando

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO)

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) GENERALIDADES. CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) El bombeo hidráulico tipo jet es un sistema artificial de producción especial, a diferencia del tipo pistón, no ocupa partes móviles y

Más detalles

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA.

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 2. Hoja 1 Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. 1. Un solar de forma triangular tiene dos lados de longitudes 140,5 m y 170,6 m, y el

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

DES: Tipo de materia: Clave de la materia: Semestre: Fecha de actualización:

DES: Tipo de materia: Clave de la materia: Semestre: Fecha de actualización: UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD INGENIERÍA Clave: IB605 PROGRAMA DEL CURSO: HIDRÁULICA DE CANALES DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: Área en plan

Más detalles

MECÁNICA DE LOS FLUIDOS

MECÁNICA DE LOS FLUIDOS Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para

Más detalles

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido. UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema

Más detalles

1. Sistemas lineales. Resolución gráfica

1. Sistemas lineales. Resolución gráfica 5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

PRESIÓN Y ESTÁTICA DE FLUIDOS

PRESIÓN Y ESTÁTICA DE FLUIDOS La presión se define como una fuerza normal ejercida por un fluido por unidad de área. Se habla de presión sólo cuando se trata de un gas o un líquido. Puesto que la presión se define como fuerza por unidad

Más detalles

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES República bolivariana de Venezuela La Universidad del Zulia Facultad de Ingeniería Escuela de Ingeniería Química Laboratorio de Operaciones Unitarias I PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Instituto de Ingeniería y Tecnología Modalidad: Presencial. Programa: Ingeniería Civil Carácter: Obligatoria

Instituto de Ingeniería y Tecnología Modalidad: Presencial. Programa: Ingeniería Civil Carácter: Obligatoria CARTA DESCRIPTIVA I. Identificadores de la asignatura Instituto: Instituto de Ingeniería y Tecnología Modalidad: Presencial Departamento: Materia: Ingeniería Civil y Ambiental Hidráulica II Créditos: 8

Más detalles

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado. Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Introducción a la geometría

Introducción a la geometría Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA

MUNICIPIO DE MEDELLÍN GRADO 10 CONCEPTOS BÁSICOS DE TRIGONOMETRÍA CONCEPTOS BÁSICOS DE TRIGONOMETRÍA ÁREA MATEMÁTICAS PERÍODO 01 FECHA: 13 de enero de 2014 LOGROS: MUNICIPIO DE MEDELLÍN GRADO 10 Construir y clasificar los diferentes tipos de ángulos, expresando su medida

Más detalles

1. Sistemas lineales. Resolución gráfica

1. Sistemas lineales. Resolución gráfica 6 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o

Más detalles

MEDICIÓN DEL VOLUMEN

MEDICIÓN DEL VOLUMEN MEDICIÓN DEL VOLUMEN CONCEPTOS BÁSICOS Volumen: porción de espacio que ocupa un cuerpo ya sea sólido, líquido o gaseoso. Capacidad: es el volumen de un fluido que puede contener o suministrar un instrumento

Más detalles

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN . ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos

Más detalles

Desagüe de fondo Obra de seguridad y control.

Desagüe de fondo Obra de seguridad y control. Desagüe de fondo Obra de seguridad y control. 1 Propósito del Desagüe de Fondo (Bottom Outlet) Este tipo de esta obra corresponde eminentemente a una estructura de seguridad y en forma secundaria puede

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles