IV. Práctica 4: Respuesta en frecuencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IV. Práctica 4: Respuesta en frecuencia"

Transcripción

1 IV. Práctica 4: Respuesta en frecuencia En esta práctica se analizará la respuesta en frecuencia eléctrica de diversos sistemas de Comunicaciones Ópticas, empleando tanto modulación analógica como digital, para lo cual se utilizará un Analizador de Espectro Eléctrico. En primer lugar se observará el espectro eléctrico de la señal transmitida al modular analógicamente un diodo láser por encima y debajo del umbral. En segundo lugar se observará el espectro al modular un LED en forma digital, tanto con señal de reloj como con datos. Finalmente, en el último apartado se estudiarán las características de transmisión de un sistema de fibra de plástico, observando el efecto de la atenuación en la fibra sobre la potencia óptica y eléctrica de la señal recibida y se estimará la distancia máxima del enlace. PRECAUCIONES ESPECÍFICAS No encienda ni apague el diodo láser ni la caja de emisores durante toda la práctica. Compruebe la longitud de onda en el medidor de potencia antes de cada serie de medidas. Cuando en alguna parte de la práctica se le indique que debe medir corrientes, esta medida se realizará SIEMPRE de modo indirecto, midiendo tensión en bornas de una resistencia de valor conocido por la que circula la Compruebe también las unidades de medida en el medidor. NUNCA utilice el polímetro en escalas de corriente. El Analizador de Espectro puede dañarse si se le introduce una potencia mayor de 10 dbm. NO INTRODUZCA NUNCA EN EL ANALIZADOR LAS SEÑALES QUE PROCEDEN DE LOS GENERADORES. Introduzca sólo las salidas analógicas de los detectores.

2 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica Caja de emisores Caja de detectores Caja de generadores Osciloscopio MATERIAL NECESARIO Latiguillo de fibra MM FC 3 cables BNC-BNC 1 adaptador BNC en T 1 Atenuador BNC 1:10 (sólo en los Analizador de espectro eléctrico 2 Medidores de potencia óptica (uno con acoplo POF) Generador de funciones Latiguillo de fibra de plástico puestos con generador GF-1000) Carrete de fibra de plástico de ~50m 1 polímetro + 2 bananas 1 adaptador BNC 50 (o un segundo BNC en T y un terminador de 50 ) IV.1. Objetivos: RESPUESTA EN MODULACIÓN ANALÓGICA Estudiar el espectro en frecuencia de la señal de salida en un sistema con modulación analógica, y analizar el efecto del punto de polarización del láser sobre la linealidad de la respuesta. Método de medida: Se aplicará una señal sinusoidal al driver del láser, superponiéndola a diferentes puntos de polarización continua. Se observará la respuesta temporal en el osciloscopio, y se medirá simultáneamente su espectro en un analizador de espectro eléctrico. Procedimiento experimental: IV.1.A. Seleccione en el generador de funciones 200 khz (sinusoidal) y visualice la señal en el osciloscopio. Ajuste la amplitud a 50mV pp. Si la señal obtenida es mayor atenúe la señal según el generador que disponga en su puesto. Con el GF1000 coloque un atenuador de 10dB a la salida del mismo. El GF232 dispone de una atenuación de 20dB opcional, que debería encontrársela activada. Para ajustar la amplitud del generador mida la señal con el generador conectado simultáneamente a la caja de emisores. IV-2

3 Práctica 4: Respuesta en frecuencia Montaje del Apartado IV.1 IV.1.B. Asegúrese de que el mando de potencia del diodo láser está al mínimo y que el conmutador CORR/POT está en la posición CORR. Utilizando el medidor de potencia, ajuste la potencia de salida del láser a 50 µw. Mida y anote la corriente por el láser. IV.1.C. Sin variar la amplitud ni frecuencia del generador, realice el montaje de la figura, seleccionando la posición AN en el conmutador AN/DIG del LD y la posición Comparadores OFF (Digital-Out OFF) en la caja de detectores. No utilice el adaptador de 50 en el osciloscopio (la entrada del analizador ya es de 50 ) IV.1.D. Visualice la señal de salida en el osciloscopio y su espectro en el analizador. Con el fin de familiarizarse con los mandos del analizador se recomienda comenzar con las siguientes posiciones: escala de frecuencias 0.1 MHz/div video filter OFF bandwidth 20 khz (ventana de integración de la medida) marker OFF IV-3

4 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica Sitúe el origen de frecuencias (componente continua de la señal) en el extremo izquierdo de la pantala; para elo deberá ajustar el mando de frecuencia central a 0.5 MHz (este mando varia la frecuencia representada en el centro de pantalla). Active el marcador y muévalo por la pantalla comprobando los valores de frecuencia correspondiente a la componente continua, al fundamental (200 khz) y a sus armónicos, si los hubiere. Como es sabido, la presencia de armónicos se debe a la no-idealidad de la forma de onda sinusoidal generada y en este caso, su visualización, o no, dependerá del nivel de ruido existente. Dibuje esquemáticamente la señal observada en la pantalla del AEE. V.1.E. Disminuya la corriente de polarización del láser mientras visualiza su espectro hasta que las amplitudes de los armónicos aumenten bruscamente. Anote la corriente a la que se produce este cambio. Observe la forma de onda de la señal en el osciloscopio y analice las causas del aumento de amplitud de los armónicos. Para realizar este análisis se recomienda dibujar la forma de onda observada en el osciloscopio sobre la curva P-I típica de un láser. Dibuje esquemáticamente la pantalla del AEE y sabiendo que la escala vertical es siempre 10 db/div, determine la diferencia, en db, entre la amplitud de la frecuencia fundamental (200 KHz) y el armónico de mayor amplitud. El AEE representa en pantalla la potencia de la señal de entrada en unidades arbitrarias (db), salvo que se proceda a calibrarlo con lo que se conocería su verdadero valor en dbm. Cuando se quieren comparar dos señales diferentes, o la relación S/N, la posición de la traza en vertical debe mantenerse constante. Continúe disminuyendo la corriente de polarización, y analice la relación entre forma de onda en tiempo y su espectro. Al finalizar, sitúe el mando de potencia de salida del láser al mínimo, y no desmonte el montaje experimental. Justifique lo observado, y estime la corriente umbral del láser. IV-4

5 Práctica 4: Respuesta en frecuencia IV.2. Objetivos: RESPUESTA EN MODULACIÓN DIGITAL Analizar el espectro eléctrico de la señal transmitida en un sistema con modulación digital, empleando señal de reloj y señal de datos seudoaleatorios. Método de medida: Se utilizará el mismo esquema de medida del apartado anterior, empleando como emisor un LED con driver digital, y como señal el reloj o los datos de la caja de generadores. Procedimiento experimental: IV.2.A. Realice el montaje de la figura. Seleccione la posición 7 (5 MHz), en la caja de generadores. Seleccione la posición DIG en el conmutador AN/DIG del LED y la posición Digital-Out OFF (Conmutadores OFF) en la caja de detectores. IV.2.B. Visualice la señal de salida en el osciloscopio. Visualice su espectro. Se recomienda seleccionar las siguientes posiciones en los controles: escala de frecuencias 5 MHz/div video filter OFF bandwidth 400 khz marker OFF. Ajuste la frecuencia central a 25 MHz. Con un rango de frecuencia en pantalla de 50 MHz observará en el extremo izquierdo de la pantalla la componente continua. Active el marcador y muévalo por la pantalla para determinar valores de frecuencia. Mida con el osciloscopio la frecuencia de la señal cuadrada de salida, y localice con el marcador del analizador de espectro la frecuencia fundamental y sus sucesivos armónicos. Anote la secuencia de intensidades entre armónicos pares e impares y razone los resultados obtenidos. IV.2.C. Sustituya la salida de reloj del generador por la salida de datos, sin cambiar su frecuencia ni los mandos del analizador. Visualice el espectro. Observará una envolvente con mínimos en los múltiplos de la frecuencia de reloj. Dibuje esquemáticamente la pantalla del AEE. Deduzca si el código empleado en la señal seudoaleatoria de datos es RZ o NRZ. IV-5

6 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica Montaje del Apartado IV.2 IV.2.D Mida con el analizador la componente espectral más baja, que será la frecuencia de repetición de la señal seudoaleatoria de datos. Para ello cambie el ancho de banda a 20 khz, escogiendo la escala y frecuencia central adecuadas. A partir de esa frecuencia y de la frecuencia de reloj, deduzca N, el número de bits empleado para generar la secuencia seudo-aleatoria. [Nota: la señal seudoaleatoria se repite cada 2 N -1 pulsos de reloj]. Si la componente espectral más baja no está entre 50 y 100 khz, repita las medidas. IV.3. Objetivos: TRANSMISIÓN DE SEÑAL ANALÓGICA EN FIBRA DE PLÁSTICO En este apartado se transmitirá una portadora en un sistema de fibra de plástico, se analizará la señal de salida, y se estimará la máxima distancia de transmisión. Previamente se medirá la atenuación óptica de la POF en continua. IV-6

7 Práctica 4: Respuesta en frecuencia Método de medida: Se utilizará un LED de 650 nm modulado analógicamente por una señal sinusoidal; se medirá la potencia eléctrica de la señal en recepción, y se comparará con el nivel de ruido. A partir de la relación S/N se estimará la longitud máxima que podría alcanzar el enlace sin emplear repetidores. Procedimiento experimental IV.3.A. Mida la atenuación de la fibra de plástico empleando el LED de 650 nm en continua, el latiguillo de fibra de plástico (3m. aprox), el carrete de aproximadamente 50 m, y el medidor de potencia con acoplo para fibra de plástico. Si el valor obtenido es muy diferente al marcado en su carrete, repita las medidas. Montaje del Apartado IV.3 IV-7

8 Laboratorio de Comunicaciones Ópticas Dpto. Tecnología Fotónica IV.3.B. Seleccione en el generador de funciones 1 MHz (sinusoidal) y visualice la señal en el osciloscopio. IV.3.C. Realice el montaje de la figura, seleccionando la posición AN. en el conmutador AN./DIG. del LED y la posición Comparadores OFF (Digital-Out OFF) en la caja de detectores. IV.3.D. Visualice la señal de salida en el osciloscopio y en el analizador de espectro. Se recomienda utilizar en éste la escala 0.5 MHz/div, con ventana de 20 khz. Ajuste la amplitud del generador y la polarización del LED para obtener máxima amplitud de salida con mínima distorsión. Compruebe que el analizador no está saturado (al atenuar 10 db con sus atenuadores internos, la amplitud debe disminuir 10 db). Mida en el analizador de espectro la amplitud relativa (en db) de la señal de 1 MHz. En medidas de amplitud relativa, debe tomar una referencia fija e igual para todas las medidas. Tome, por ejemplo, la línea superior de la carátula del AEE. IV.3.E. Sustituya el latiguillo de fibra por un carrete de aproximadamente 50 m. Sin variar la amplitud del generador, ni el punto de polarización del LED, ni la escala vertical del analizador de espectro, determine la pérdida de señal eléctrica, en db, causada por la atenuación en la fibra. A partir del resultado, determine la atenuación de la fibra de plástico (db/m). Si el valor es muy diferente al obtenido en el apartado anterior, revise sus medidas o sus cálculos. Tenga en cuenta que el AEE mide db eléctricos, no ópticos. IV.3.F. Determine el valor aproximado del fondo de ruido que observa en el analizador a la frecuencia de señal, y determine su origen. Para ello apague sucesivamente, bien el generador de señal, bien el emisor, bien la caja de detectores (el interruptor está en la parte trasera), mientras observa los espectros de salida. Para la determinación del nivel de ruido debe tener en cuenta que el valor medido corresponde al ancho de banda de la ventana utilizada en el analizador, 20 khz en este caso, con lo que la potencia de ruido que se mide es proporcional a este ancho de banda. La potencia de ruido a una determinada frecuencia y ancho de banda de medida, se estima observando el valor en db, respecto a la referencia fijada, de los picos máximos del ruido. IV-8

9 Práctica 4: Respuesta en frecuencia IV.3.G.Suponga ahora que desea transmitir una señal con ancho de banda de 20 khz sobre portadora de 1MHz. Determine la longitud máxima del enlace que permite obtener una relación portadora/ruido de al menos 10 db. Como el ancho de banda de la ventana de medida es precisamente 20 khz, la potencia de ruido corresponderá a la que ha medido anteriormente. La potencia de señal en recepción dependerá de la longitud del enlace. POR FAVOR, AL ACABAR LA PRÁCTICA RECOJAN TODO Y DÉJENLO COMO ESTABA AL PRINCIPIO. SUS COMPAÑEROS SE LO AGRADECERÁN. IV-9

III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace

III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace III. Práctica 3: Tiempos de Respuesta de los Componentes de un Enlace En esta Práctica se medirá el ancho de banda de un sistema óptico. Se estudiarán diferentes enlaces variando los elementos que lo componen

Más detalles

III. Práctica 3: Balances de Tiempo y de Potencia en un Enlace

III. Práctica 3: Balances de Tiempo y de Potencia en un Enlace III. Práctica 3: Balances de Tiempo y de Potencia en un Enlace En esta Práctica se medirá el ancho de banda de un sistema óptico. Se estudiarán diferentes enlaces variando los elementos que lo componen

Más detalles

V. Práctica 5: Caracterización de un Sistema de Transmisión Digital y sus componentes pasivos

V. Práctica 5: Caracterización de un Sistema de Transmisión Digital y sus componentes pasivos V. Práctica 5: Caracterización de un Sistema de Transmisión Digital y sus componentes pasivos En esta práctica se empleará el método del diagrama de ojo para analizar las características de portadoras

Más detalles

Práctica 1: Elementos básicos de un enlace de Comunicaciones Ópticas

Práctica 1: Elementos básicos de un enlace de Comunicaciones Ópticas I Práctica 1: Elementos básicos de un enlace de Comunicaciones Ópticas El objetivo de esta práctica es que el alumno caracterice la respuesta en continua de los elementos básicos de un enlace de comunicaciones

Más detalles

Práctica 1: Elementos básicos de un enlace de Comunicaciones Ópticas

Práctica 1: Elementos básicos de un enlace de Comunicaciones Ópticas I Práctica 1: Elementos básicos de un enlace de Comunicaciones Ópticas El objetivo de esta práctica es que el alumno caracterice la respuesta en continua de los elementos básicos de un enlace de comunicaciones

Más detalles

(2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación. Javier Ramos y Fernando Díaz de María

(2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación. Javier Ramos y Fernando Díaz de María Com unic ac iones Analógic as PRÁCTICA 5 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación Javier Ramos y Fernando Díaz de María PRÁCTICA 5 Comunicaciones

Más detalles

II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos

II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos En esta práctica se estudiará el comportamiento dinámico de los emisores y receptores ópticos y el comportamiento de la fibra

Más detalles

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º

Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º Máster Universitario en Ingeniería de Telecomunicación Tecnología Fotónica Curso Académico 2014/2015 Curso 1º Cuatrimestre 2º PRÁCTICA 1. 2 Contenido 1 OBJETIVOS... 4 2 CONCEPTOS TEÓRICOS... 4 2.1 Propiedades

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

Práctica 4: Respuesta en frecuencia

Práctica 4: Respuesta en frecuencia Práctica 4: Respuesta en frecuencia En esta práctica se analizará la respuesta en frecuencia eléctrica de diversos sistemas de Comunicaciones Ópticas, empleando tanto modulación analógica como digital,

Más detalles

Objetivo. 1. Fundamentos teóricos. 2. El Analizador de Espectro. Asignatura: Comunicaciones

Objetivo. 1. Fundamentos teóricos. 2. El Analizador de Espectro. Asignatura: Comunicaciones ETSIIT Universidad de Cantabria Asignatura: Curso 2017-2018 Objetivo Esta primera práctica tiene por objeto el conocimiento y la calibración de los instrumentos de disponibles en el Laboratorio de Radiocomunicaciones

Más detalles

Laboratorio 1 El analizador de espectros y el espectro radioeléctrico

Laboratorio 1 El analizador de espectros y el espectro radioeléctrico INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA LABORATORIO DE TEORÍA ELECTROMAGNÉTICA II PROF.: ING. William Marín M. Laboratorio 1 El analizador de espectros y el espectro radioeléctrico

Más detalles

Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 5: Transmisión y análisis RF. Curso 2008/2009

Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 5: Transmisión y análisis RF. Curso 2008/2009 Comunicaciones en Audio y Vídeo Laboratorio Práctica 5: Transmisión y análisis RF Curso 2008/2009 Práctica 5. Transmisión y análisis RF 1 de 9 1 EL ANALIZADOR DE ESPECTROS RF La medida de espectros (estimación

Más detalles

PRÁCTICA 2: MODULACIONES ANGULARES. Modulación FM

PRÁCTICA 2: MODULACIONES ANGULARES. Modulación FM PRÁCTICA 2: MODULACIONES ANGULARES Modulación FM Práctica 2: Modulaciones Angulares - Modulación FM Pag 2 1.- OBJETIVOS: Modulación de Frecuencia: FM Modulación de Frecuencia Comprobar el funcionamiento

Más detalles

4. El diodo semiconductor

4. El diodo semiconductor 4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 02 NOMBRE DE LA PRACTICA: Diodo de Unión Bipolar LUGAR DE EJECUCIÓN:

Más detalles

Tema: Modulación de Amplitu d - Primera Parte. Objetivos. Equipos y materiales. Introducción teórica. Sistemas de Comunicación I.

Tema: Modulación de Amplitu d - Primera Parte. Objetivos. Equipos y materiales. Introducción teórica. Sistemas de Comunicación I. 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Modulación de Amplitu d - Primera Parte. Objetivos Observar la forma de una señal AM en el dominio del tiempo y

Más detalles

Tema: Modulación por amplitud de pulso P.A.M.

Tema: Modulación por amplitud de pulso P.A.M. Tema: Modulación por amplitud de pulso P.A.M. Sistemas de comunicación II. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación II Contenidos Modulación por amplitud

Más detalles

Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos

Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos II Práctica 2: Comportamiento dinámico de los dispositivos optoelectrónicos En esta práctica se estudiará el comportamiento dinámico de los emisores y receptores ópticos y el comportamiento de la fibra

Más detalles

Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 4: Modulaciones Analógicas. Curso 2008/2009

Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 4: Modulaciones Analógicas. Curso 2008/2009 Comunicaciones en Audio y Vídeo Laboratorio Práctica 4: Modulaciones Analógicas Curso 2008/2009 Práctica 4. Modulaciones Analógicas 1 de 8 1 ENTRENADOR DE COMUNICACIONES PROMAX EC-696 EMISOR RECEPTOR El

Más detalles

Tema: Parámetros del Cableado Coaxial

Tema: Parámetros del Cableado Coaxial Tema: Parámetros del Cableado Coaxial Contenidos Impedancia característica. Velocidad de propagación. Onda reflejada. Línea de transmisión terminada con cargas. Objetivos Específicos Fundamentos de Cableado

Más detalles

Fibra óptica (Calculos) Ing. Waldo Panozo

Fibra óptica (Calculos) Ing. Waldo Panozo Fibra óptica (Calculos) Ing. Waldo Panozo Cálculos de enlace - Requerimientos Ancho de banda: La fibra óptica proporciona un ancho de banda significativamente mayor que los cables de pares (UTP / STP)

Más detalles

PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS

PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS 1 Espectro de una señal GSM 2 CONOCIMIENTOS PREVIOS: Estructura de un receptor heterodino, mezcla, factor de ruido,

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS

CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS INTEGRADOS DE PUERTAS LÓGICAS CIRCUITOS COMBINACIONALES INTEGRADOS CIRCUITOS INTEGRADOS SECUENCIALES: FLIP-FLOPS, REGISTROS Y CONTADORES CONSEJOS PARA LA ELABORACIÓN DE DIAGRAMAS LÓGICOS DE CIRCUITOS

Más detalles

Tema: Perdidas en Cableado Coaxial

Tema: Perdidas en Cableado Coaxial Tema: Perdidas en Cableado Coaxial Contenidos Características del cableado coaxial Terminales Coaxiales Perdidas por sobrecarga de redes coaxiales Objetivos Específicos Materiales y Equipo Fundamentos

Más detalles

MEDICION DEL ESPECTRO DE UNA SEÑAL

MEDICION DEL ESPECTRO DE UNA SEÑAL FACULAD NACIONAL DE INGENIERIA INGENIERIA ELECRICA-ELECRONICA LABORAORIO DE ELECOMUNICACIONES MAERIA: ELECOMUNICACIONES I (EL 363) LABORAORIO 1 1. INRODUCCION MEDICION DEL ESPECRO DE UNA SEÑAL Una señal

Más detalles

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones Grado en Ingeniería de Tecnologías de Telecomunicación ETSIIT Universidad de Cantabria Asignatura: Comunicaciones Curso 2015-2016 Práctica 1: Medida del espectro de señales Objetivo Esta primera práctica

Más detalles

Medida de la característica estática de un diodo

Medida de la característica estática de un diodo Práctica 4 Medida de la característica estática de un diodo Índice General 4.1. Objetivos................................ 39 4.2. Introducción teórica.......................... 40 4.3. Medida de la Característica

Más detalles

Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica.

Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica. Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica. 5.1 Introducción. En este capítulo se describen los resultados experimentales

Más detalles

Teoría de la Comunicación

Teoría de la Comunicación Teoría de la Comunicación Práctica 4: Comunicaciones Analógicas Curso Académico 09/10 Objetivos En esta práctica el alumno aprenderá a: Manejar el emisor de un entrenador de comunicaciones. Realizar medidas

Más detalles

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN En este capítulo se presenta una técnica fotónica que permite medir la potencia de reflexión en una antena microstrip, como resultado de las señales de

Más detalles

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua.

PRÁCTICA Nº1. DIODOS. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. PRÁCTICA Nº1. DIODOS CURVA CARACTERÍSTICA DEL DIODO. 1.- Toma un diodo rectificador 1N4007 y realiza el montaje de la figura 1 utilizando una fuente de continua. Figura 1. Montaje eléctrico para polarizar

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 1 CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL OBJETIVOS * Realizar montajes de circuitos

Más detalles

η = V / Hz b) Calcular la T eq de ruido del cuadripolo Datos: ancho de banda =100 khz, temperatura de trabajo = 300 ºK, k = 1.

η = V / Hz b) Calcular la T eq de ruido del cuadripolo Datos: ancho de banda =100 khz, temperatura de trabajo = 300 ºK, k = 1. 2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es v s = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η =

Más detalles

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos

Más detalles

Experiencia P45: Modos resonantes y velocidad del sonido Sensor de voltaje, Salida de potencia

Experiencia P45: Modos resonantes y velocidad del sonido Sensor de voltaje, Salida de potencia Sensor de voltaje, Salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P45 Speed of Sound 2.DS P36 Speed of Sound P36_MACH.SWS Equipo necesario Cant. Equipo necesario Cant

Más detalles

Tema 2: modulaciones analógicas y ruido (sol)

Tema 2: modulaciones analógicas y ruido (sol) TEORÍA DE LA COMUNICACIÓN Tema 2: modulaciones analógicas y ruido (sol) 2.1 La señal x(t), cuyo espectro se muestra en la figura p.1(a), se pasa a través del sistema de la figura p.1(b) compuesto por dos

Más detalles

PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS

PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS 1 Espectro de una señal GSM Las señales radiadas son susceptibles de ser interceptadas y analizadas. EJ. Monitorización

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

Transmisión. Transmision de Datos

Transmisión. Transmision de Datos Transmisión Transmision de Datos 1 El éxito en la transmisión depende fundamentalmente de dos factores La calidad de la señal Las características del medio de transmisión 2 Medio de Transmisión No guiado

Más detalles

MEDICION DEL ESPECTRO DE UNA SEÑAL

MEDICION DEL ESPECTRO DE UNA SEÑAL FACULAD NACIONAL DE INGENIERIA INGENIERIA ELECRICA-ELECRONICA LABORAORIO DE ELECOMUNICACIONES MAERIA: ELECOMUNICACIONES I (EL 363) LABORAORIO 1 1. INRODUCCION MEDICION DEL ESPECRO DE UNA SEÑAL Una señal

Más detalles

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.

Más detalles

MODULACIONES DIGITALES

MODULACIONES DIGITALES Práctica 4: Modulaciones digitales Pág : 1 MODULACIONES DIGITALES OBJETIVOS: Analizar las modulaciones digitales. Analizar las modulaciones digitales diferenciales. Analizar tanto los moduladores como

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN ELECTRÓNICA Y BIOMÉDICA CICLO: 01-2013 GUIA DE LABORATORIO # 3 Nombre de la Práctica: Optoelectrónica Lugar de Ejecución: Laboratorio

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

3. En la Figura se aprecia parte del espectro magnitud de un tono puro modulado en FM. A partir de este espectro calcule:

3. En la Figura se aprecia parte del espectro magnitud de un tono puro modulado en FM. A partir de este espectro calcule: 3. En la Figura se aprecia parte del espectro magnitud de un tono puro modulado en FM. A partir de este espectro calcule: Figura 2 Magnitud del Espectro de la señal de FM Figura 3. Modulador de FM. Si

Más detalles

SISTEMAS DE RADIOCOMUNICACIONES. Práctica # 4: SISTEMA DE TV NTSC

SISTEMAS DE RADIOCOMUNICACIONES. Práctica # 4: SISTEMA DE TV NTSC UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ LAB. DE TELECOMUNICACIONES Sección de Comunicaciones SISTEMAS DE RADIOCOMUNICACIONES Práctica # 4: SISTEMA

Más detalles

CARACTERIZACIÓN DE LÁSERES DE DIODO

CARACTERIZACIÓN DE LÁSERES DE DIODO Física del láser CARACTERIZACIÓN DE LÁSERES DE DIODO OBJETIVOS A Estudio de la potencia de salida en función del bombeo. B Estudio del estrechamiento espectral. C Estudio de la coherencia temporal. MATERIAL

Más detalles

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular.

3. Operar un generador de señales de voltaje en función senoidal, cuadrada, triangular. Objetivos: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER Al terminar la práctica el alumno estará capacitado para: 1. El manejo de los controles del osciloscopio (encendido, ajuste de intensidad, barrido vertical,

Más detalles

Prueba experimental. Absorción de luz por un filtro neutro.

Prueba experimental. Absorción de luz por un filtro neutro. Prueba experimental. Absorción de luz por un filtro neutro. Objetivo Cuando un haz de luz de intensidad I 0 incide sobre una de las caras planas de un medio parcialmente transparente, como un filtro de

Más detalles

LABORATORIO DE COMUNICACIONES ÓPTICAS CONVOCATORIA ORDINARIA, 14 DE JUNIO DE 2005

LABORATORIO DE COMUNICACIONES ÓPTICAS CONVOCATORIA ORDINARIA, 14 DE JUNIO DE 2005 Departamento de Comunicaciones ETSI Telecomunicación Plan 96 Nombre: LABORATORIO DE COMUNICACIONES ÓPTICAS CONVOCATORIA ORDINARIA, 14 DE JUNIO DE 25 NOTAS: El alumno dispone de 1 hora y 3 min. para realizar

Más detalles

Figura Amplificador inversor

Figura Amplificador inversor UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL

Más detalles

PRÁCTICA 11. MODULACIÓN FM. 1 Objetivo. 2 Introducción.

PRÁCTICA 11. MODULACIÓN FM. 1 Objetivo. 2 Introducción. PRÁCTICA. MODULACIÓN FM. Objetivo. Construir un oscilador controlado por tensión (VCO) basado en el circuito integrado 566 y un circuito en bucle cerrado de enganche de fase (PLL) basado en el C.I. 565.

Más detalles

(600 Ω) (100 v i ) T eq = 1117 o K

(600 Ω) (100 v i ) T eq = 1117 o K 2. UIDO Y DISTOSION (Jun.94) 1. a) Calcular la relación s/n a la salida del cuadripolo, si la entrada es = 10-3 sin (10 4 t). El ruido propio del cuadripolo a la entrada viene caracterizado por η = 10-18

Más detalles

MEDICIONES EN CORRIENTE ALTERNA (AC)

MEDICIONES EN CORRIENTE ALTERNA (AC) UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 5 MEDICIONES EN CORRIENTE ALTERNA (AC) Objetivos Usar adecuadamente los diversos

Más detalles

1. Medidor de potencia óptica

1. Medidor de potencia óptica En este anexo se va a hablar del instrumental de laboratorio más importante utilizado en la toma de medidas. Este instrumental consta básicamente de tres elementos: el medidor de potencia óptica, el osciloscopio

Más detalles

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard.

CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL. * Realizar montajes de circuitos electrónicos sobre el protoboard. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 5 Objetivos CONFIGURACIONES BASICAS DEL AMPLIFICADOR OPERACIONAL * Realizar montajes de circuitos electrónicos

Más detalles

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 4 Objetivos CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN * Familiarizar al estudiante con el

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

INSTRUMENTOS Y MEDICIONES

INSTRUMENTOS Y MEDICIONES LABORATORIO N 1: Incertidumbre en la medición 1. A partir de los valores hallados experimentalmente, determinar la incertidumbre estándar y expandida de medición para un t-student de 2.262 y 3.250. (ver

Más detalles

Laboratorio 1 Medidas Eléctricas - Curso 2018

Laboratorio 1 Medidas Eléctricas - Curso 2018 Objetivo: Laboratorio 1 Medidas Eléctricas - Curso 2018 El objetivo de esta práctica es familiarizarse con el manejo del osciloscopio y los principios fundamentales de su funcionamiento. Materiales del

Más detalles

2011 Práctica 04. Circuito tanque

2011 Práctica 04. Circuito tanque 2011 Práctica 04. Circuito tanque MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 2 3 Objetivos: 1. Implementar físicamente un circuito tanque. 2. Obtener la curva

Más detalles

TEMA 2: MOCULACION PCM. Dado un sistema PCM de 24 canales vocales telefónicos, como el indicado en la figura 6.1, se pide:

TEMA 2: MOCULACION PCM. Dado un sistema PCM de 24 canales vocales telefónicos, como el indicado en la figura 6.1, se pide: TEMA 2: MOCULACION PCM PROBLEMA 1 Dado un sistema PCM de 24 canales vocales telefónicos, como el indicado en la figura 6.1, se pide: Figura 6.1 a. Frecuencia de corte del filtro paso bajo, previo al muestreador,

Más detalles

Redes y Comunicaciones

Redes y Comunicaciones Departamento de Sistemas de Comunicación y Control Redes y Comunicaciones Solucionario Tema 3: Datos y señales Tema 3: Datos y señales Resumen La información se debe transformar en señales electromagnéticas

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales descritas en los instrumentos de medición para AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 7 INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Objetivos Interpretar las

Más detalles

PRÁCTICA 1. OSCILOSCOPIO VIRTUAL

PRÁCTICA 1. OSCILOSCOPIO VIRTUAL PRÁCTICA 1. OSCILOSCOPIO VIRTUAL 1.1. CARACTERÍSTICAS Y FUNCIONAMIENTO DEL OSCILOSCOPIO Objetivos. El principal objetivo de esta práctica es aprender a utilizar el osciloscopio analógico para visualizar

Más detalles

Generador de Impulsos Inductivo

Generador de Impulsos Inductivo OSCILOSCOPIO SENSORES Generador de Impulsos Inductivo Está constituido por una corona dentada con ausencia de dos dientes, denominada rueda fónica, acoplada en la periferia del volante o polea, y un captador

Más detalles

Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 3: Modulaciones Digitales Multinivel. Curso 2008/2009

Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 3: Modulaciones Digitales Multinivel. Curso 2008/2009 Comunicaciones en Audio y Vídeo Laboratorio Práctica 3: Modulaciones Digitales Multinivel Curso 2008/2009 Práctica 3. MODULACIONES DIGITALES MULTINIVEL 1 de 10 1 ESQUEMA DE UN SISTEMA DE TRANSMISIÓN DIGITAL

Más detalles

UNAM Facultad de ingeniería Laboratorio de sistemas de comunicaciones Análisis de señales deterministicas Práctica numero 2 Ramírez Ríos Fermín

UNAM Facultad de ingeniería Laboratorio de sistemas de comunicaciones Análisis de señales deterministicas Práctica numero 2 Ramírez Ríos Fermín UNAM Facultad de ingeniería Laboratorio de sistemas de comunicaciones Análisis de señales deterministicas Práctica numero 2 Ramírez Ríos Fermín Nombre del profesor de laboratorio: Fonseca Chávez Elizabeth

Más detalles

Modulador RF Nova Plus Estéreo

Modulador RF Nova Plus Estéreo Modulador RF Nova Plus Estéreo DESCRIPCIÓN DEL PRODUCTO El modulador Nova Plus Estéreo está diseñado para los canales de televisión deb/d/n en el rango WHFI. Cumple las normas B/D/L/M/N en el rango VHFIII+S2

Más detalles

Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte.

Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte. 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte. Objetivos Medir el porcentaje de modulación de una señal de AM. Medir y constatar

Más detalles

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC.

INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Interpretar las características nominales de los instrumentos de medición AC. UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 2286 PRACTICA Nº 7 Objetivos INSTRUMENTOS DE MEDICIÓN PARA CORRIENTE ALTERNA (AC) Usar adecuadamente

Más detalles

Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias

Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física FI2003-6 Métodos Experimentales Laboratorio N 3 Estudio de Corriente Alterna y de Inductancias Integrantes: Carlos

Más detalles

MULTIPLEX PCM DE 4 CANALES CON CODIFICACION DE LINEA AMI/HDB3/CMI Módulo T20F-E/EV

MULTIPLEX PCM DE 4 CANALES CON CODIFICACION DE LINEA AMI/HDB3/CMI Módulo T20F-E/EV MULTIPLEX PCM DE 4 CANALES CON CODIFICACION DE LINEA AMI/HDB3/CMI Módulo T20F-E/EV TEORIA Y EJERCICIOS INDICE 1. ASPECTOS GENERALES del PCM 1.1 OBJETIVOS 1.2 NOCIONES TEORICAS 1.2.1 Introducción 1.2.2

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

Ejercicios del Tema 3: Transmisión de señales

Ejercicios del Tema 3: Transmisión de señales jercicios del Tema 3: Transmisión de señales Parte A: Modulaciones analógicas jercicio 1 Un canal de comunicaciones tiene un ancho de banda de 100 khz. e quiere utilizar dicho canal para transmitir una

Más detalles

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS APLICACIONES DEL AMPLIFICADOR OPERACIONAL

Más detalles

Transmisión de una señal por fibra óptica

Transmisión de una señal por fibra óptica PRÁCTICA 6 Transmisión de una señal por fibra óptica 1º INTRODUCCIÓN. En esta práctica haremos uso diversos tipos de fibra óptica para transmitir luz entre un fotoemisor y un fotodetector. Con este fin

Más detalles

6 Emisor Receptor AM. 6.1 Objetivo de la práctica. 6.2 Introducción teórica.

6 Emisor Receptor AM. 6.1 Objetivo de la práctica. 6.2 Introducción teórica. 6 Emisor Receptor AM 6.1 Objetivo de la práctica El objetivo de esta práctica es que el alumno utilice los dispositivos electrónicos estudiados a lo largo de la asignatura para la realización de circuitos

Más detalles

1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro.

1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro. PRÁCTICA 2 NOMBRE: NOMBRE: NOMBRE: GRUPO: FECHA: 1 Puente de Wheatstone. Uso del polímetro como voltímetro y como amperímetro. 1.1 Objetivos Se pretende comprobar la ley de equilibrio de un puente de Wheatstone.

Más detalles

Experimento 3: Circuitos rectificadores con y sin filtro

Experimento 3: Circuitos rectificadores con y sin filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Johan Carvajal, Ing. Adolfo Chaves, Ing. Eduardo Interiano, Ing. Francisco Navarro Laboratorio de Elementos Activos

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador.

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. Práctica 2. Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. A. Objetivos Medir la resistencia dinámica del diodo de unión. Determinación

Más detalles

Tema 5: Ruido e interferencias en modulaciones analógicas TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS

Tema 5: Ruido e interferencias en modulaciones analógicas TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS PROBLEMA 1 En un sistema de modulación en FM, la amplitud de una señal interferente detectada varía proporcionalmente con la frecuencia f i. Mediante

Más detalles

Tema: Componentes Opto electrónicos

Tema: Componentes Opto electrónicos 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Componentes Opto electrónicos Objetivos - Definir el funcionamiento de los diodos emisores de luz (LED)

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

Experimento 3: Circuitos Rectificadores con y sin Filtro

Experimento 3: Circuitos Rectificadores con y sin Filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 I Objectivo

Más detalles

Práctica 4 Detector de ventana

Práctica 4 Detector de ventana Práctica 4 Detector de ventana Objetivo de la práctica Analizar el comportamiento de un detector de ventana Al terminar esta práctica, el discente será capaz de: Comprender el funcionamiento de un circuito

Más detalles

Generador de funciones HM de HAMEG

Generador de funciones HM de HAMEG Generador de funciones HM8030-3 de HAMEG Figura 1. HM8030-3: Generador de ondas de Hameg. Este dispositivo es un generador de funciones bastante versátil y cómodo de usar para el usuario. Es un dispositivo

Más detalles

1. PRESENTANDO A LOS PROTAGONISTAS...

1. PRESENTANDO A LOS PROTAGONISTAS... Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión

Más detalles

Instructivo de Laboratorio 2 Introducción al analizador de espectros y al generador de RF

Instructivo de Laboratorio 2 Introducción al analizador de espectros y al generador de RF Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Laboratorio de Teoría Electromagnética II Prof. Ing. Luis Carlos Rosales Instructivo de Laboratorio 2 Introducción al analizador de

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico 5 Ruido Pasabanda Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil. Además puede

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #8. Antenas de Microcinta - Enlace de Microondas

Laboratorio de Microondas, Satélites y Antenas. Práctica #8. Antenas de Microcinta - Enlace de Microondas Laboratorio de Microondas, Satélites y Antenas Práctica #8 Antenas de Microcinta - Enlace de Microondas Objetivo Evaluar la ganancia y ancho de haz de una antena de micro-strip Entender los factores determinantes

Más detalles

Experimento 4: Circuitos Recortadores y Sujetadores con Diodos

Experimento 4: Circuitos Recortadores y Sujetadores con Diodos Tecnológico de Costa Rica I Semestre 2012 Escuela de Ingeniería Electrónica Laboratorio de Electrónica Analógica Profesor: Ing. Javier Pérez R. I Experimento 4: Circuitos Recortadores y Sujetadores con

Más detalles

MODULADOR BALANCEADO

MODULADOR BALANCEADO MODULADOR BALANCEADO PROYECTO FINAL COMUNICACION Y ELECTRONICA Este proyecto analizará los comportamientos de un Modulador Balanceado en sus diferentes amplitudes como Modulador de Doble Banda Lateral,

Más detalles

Fundamentos Físicos de la Informática. Prácticas de Laboratorio curso

Fundamentos Físicos de la Informática. Prácticas de Laboratorio curso Práctica 2ª Introducción al Manejo del Generador de Funciones y el Osciloscopio Hoja de Respuestas Apellidos:...Nombre:... Apellidos:...Nombre:... Grupo de Prácticas:... Puesto:... A. Medida de amplitudes.

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

Practicas de INTERFACES ELECTRO-ÓPTICOS PARA COMUNICACIONES

Practicas de INTERFACES ELECTRO-ÓPTICOS PARA COMUNICACIONES Practicas de INTERFACES ELECTROÓPTICOS PARA COMUNICACIONES Francisco Javier del Pino Suárez Práctica 1. Fotorresistencias Objetivos Esta práctica está dedicada al estudio de las fotorresistencias. A partir

Más detalles