PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato"

Transcripción

1 PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato 1. (Junio 1997 ) a) Describe el funcionamiento óptico de un microscopio y analiza las características de sus imágenes. Deduce la expresión de su aumento. 2. (Septiembre 1997) Dónde se debe colocar un objeto para que un espejo cóncavo forme imágenes virtuales? Qué tamaño tiene estas imágenes? Ayúdate de las construcciones geométricas necesarias para su explicación. 3. (Septiembre 1997) Un objeto de 10 mm de altura, colocado perpendicularmente al eje óptico de una lente esférica delgada, está situado a una distancia de 30 cm delante de la misma. Si el valor absoluto de la distancia focal de la lente es de 10 cm, calcular la posición, tamaño y naturaleza de la imagen formada en los siguientes casos: a) La lente es convergente. b) La lente es divergente. c) Efectuar las construcciones geométricas en los dos casos. SOL: a) s2 = 15 cm; y2 = - 5 mm; b) s2 = -7,5 cm; y2 = - 2,5 mm 4. (Curso 97-98) Un rayo de luz monocromática que se propaga en el aire incide sobre una sustancia transparente con un ángulo de 58º respecto a la normal. Se observa que los rayos reflejado y refractado son mutuamente perpendiculares: a) Cuál es el índice de refracción de la sustancia transparente para esa luz? b) Cuál es el ángulo límite para la reflexión total interna en esa sustancia, si la luz se propagase desde ella hacia el aire?. SOL: n = 1,6; il= 38,7º 5. (Junio 1998) a) Indicar las diferencias que existen entre los fenómenos de refracción y dispersión de la luz. b) Puede un haz de luz monocromática sufrir ambos fenómenos?. c) Por que no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras plano paralelas? 6. (Junio 1998) Un objeto luminoso de 2 mm de altura está situado a 4 m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia focal desconocida, que produce sobre la pantalla una imagen 3 veces mayor que el objeto. a) Determinar la naturaleza de la lente L, así como su posición respecto del objeto y de la pantalla. b) Calcular la distancia focal, la potencia de la lente y efectuar la construcción geométrica de la imagen. SOL: s1 = - 1 m; s2 = 3 m; f2 = 0,75 m; P = 1,3 dioptrías. 7. (Septiembre 1998) En qué posición debe colocarse un objeto delante de una lente esférica convergente para producir una imagen virtual?. Obtener gráficamente la imagen. 8. (Septiembre 1998) El ángulo de desviación mínima de un prisma óptico es de 30º. Si el ángulo del prisma es de 50º y éste está situado en el aire, determinar: a) El ángulo de incidencia para que se produzca la desviación mínima del rayo. b) El índice de refracción del prisma. SOL: i = 40º; n = 1,52 9. (Curso ) Calcular a qué distancia debe colocarse un objeto a la izquierda del vértice de un espejo cóncavo cuyo radio de curvatura es de 12 cm para que su imagen sea 3 veces mayor que el objeto. Interpretar los posibles resultados y efectuar las construcciones geométricas correspondientes. SOL: a) s1 = - 4 cm; s2 = 12 cm;b) s1= - 8 cm; s2 = - 24 cm 10. (Junio 1999) Un rayo de luz blanca incide desde el aire sobre una lámina de vidrio con un ángulo de incidencia de 30º. a) Qué ángulo formarán entre sí en el interior del vidrio los rayos rojo y azul, componentes de la luz blanca, si los valores de los índices de refracción del vidrio para estos colores son nrojo= 1,612 y nazul = 1,671. b) Cuáles serán los valores de la frecuencia y de la longitud de onda correspondientes a cada una de las radiaciones en el vidrio, si las longitudes de onda en el vacío son, respectivamente, rojo = 653,3 nm y azul = 486,1 nm?. Dato: velocidad de la luz en el vacío = m/s. SOL: 0,66º; azul= 6, Hz; rojo= 4, Hz; azul = 290 nm; rojo= 405 nm 11. (Septiembre 1999) Una fuente luminosa emite luz monocromática de longitud de onda en el vacío 0 = m ( luz roja) que se propaga en el agua de índice de refracción 1,34. Determinar: a) La velocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de la luz en el agua. 1

2 Dato: velocidad de la luz en el vacío = m/s. SOL: 2, m/s; = Hz; = 450 nm. 12. (Septiembre 1999) Sobre la cara lateral de un prisma de vidrio de índice de refracción 1,4 y ángulo en el vértice 50º, incide un rayo de luz con un ángulo de 20º. Determinar: a) El ángulo de desviación sufrido por el rayo. b) El ángulo de desviación mínima que corresponde a este prisma. Se supone que el prisma se encuentra situado en el aire. SOL: a) 25,1º; b) min = 22,6º 13. (Junio 2000) a) Un rayo luminoso que se propaga en el aire incide sobre el agua de una estanque con un ángulo de 30º. Qué ángulo forman entre sí los rayos reflejado y refractado?. b) Si el rayo luminoso se propagase desde el agua hacia el aire, a partir de qué valor del ángulo de incidencia se presentará el fenómeno de la reflexión total? Dato: índice de refracción del agua = 4/3. SOL: 128º; il= 48,6º 14. (Junio 2000) Un objeto luminoso está situado a 6 m de una pantalla. Una lente, cuya distancia focal es desconocida, forma sobre la pantalla una imagen real, invertida y 4 veces mayor que el objeto. a) Cuál es la naturaleza y posición de la lente?. b) Cuál es el valor de su distancia focal?. c) Se desplaza la lente de manera que se obtenga sobre la misma pantalla una imagen nítida, pero de tamaño diferente al obtenido anteriormente. Cuál es la nueva posición de la lente y el nuevo valor del aumento?. SOL: a) s1 = -1,2 m; s2 = 4,8 m; b) f2=0,96 m; P =1,04 diop; c) s1 = -4,8 m; s2 = 1,2 m; AL = - 0, (Curso ) Qué tipo de imagen se obtiene con un espejo esférico convexo? Y con una lente esférica divergente?. Efectuar las construcciones geométricas adecuadas para justificar las respuestas. El objeto se supone real en ambos casos. 16. (Junio 2001) Un rayo de luz monocromática que se propaga en un medio de índice de refracción 1,58 penetra en otro medio de índice de refracción 1,23 formando un ángulo de incidencia de 15 º (respecto a la normal) en la superficie de discontinuidad entre ambos medios. a) Determinar el ángulo de refracción correspondiente al ángulo de incidencia anterior. Hacer un dibujo esquemático. b) Definir ángulo límite y calcular su valor para este par de medios. SOL: i = 19,42º; il = 51,12º desde 1 a (Junio 2001) Un objeto luminoso de 3 cm de altura está situado a 20 cm de una lente divergente de potencia -10 dioptrías. Determinar: a) La distancia focal de la lente. b) La posición de la imagen. c) La naturaleza y tamaño de la imagen. d) La construcción geométrica de la imagen. SOL: f2 = -10 cm; s2 = - 6,67 cm; y2 = 1 cm; virtual. 18. (Curso ) Explicar mediante construcciones geométricas qué posiciones debe ocupar un objeto, delante de una lente delgada convergente, para obtener: a) Una imagen real de tamaño menor, igual o mayor que el objeto. b) Una imagen virtual. Cómo está orientada esta imagen y cuál es su tamaño en relación con el objeto?. 19. (Junio 2002) Un objeto luminoso se encuentra delante de un espejo esférico cóncavo. Efectuar la construcción geométrica de la imagen e indicar su naturaleza si el objeto está situado a una distancia igual, en valor absoluto, a : a) La mitad de la distancia focal del espejo. b) El triple de la distancia focal del espejo. SOL: a) Virtual, mayor y derecha; b) Real, menor e invertida. 20. (Junio 2002) Un sistema óptico centrado está formado por dos lentes delgadas convergentes de igual distancia focal (f2= 10 cm) separadas 40 cm. Un objeto lineal de altura 1 cm se coloca delante de la primera lente a una distancia de 15 cm. Determinar: a) Posición, tamaño y naturaleza de la imagen formada por la primera lente. b) La posición de la imagen final del sistema, efectuando su construcción geométrica. SOL: s2a = 30 cm; y2a = - 2 cm; s2b = 21. (Septiembre 2002) Una superficie de discontinuidad plana separa dos medios de índice de refracción n 1 y n2. Si un rayo índice desde el medio de índice n1, razonar si las siguientes afirmaciones son verdaderas o falsas: a) Si n1 > n2 el ángulo de refracción es menor que el ángulo de incidencia. 2

3 b) Si n1 < n2 a partir de cierto ángulo de incidencia se produce el fenómeno de reflexión total. 22. (Septiembre 2002) Una lente delgada convergente proporciona de un objeto situado delante de ella una imagen real, invertida y de doble tamaño que el objeto. Sabiendo que dicha imagen se forma a 30 cm de la lente, calcular: a) La distancia focal de la lente. b) La posición y naturaleza de la imagen que dicha lente formará de un objeto situado 5 cm delante de ella, efectuando su construcción geométrica. SOL: a) s1 = - 15 cm; f2 = 10 cm; b) s2 = - 10 cm, virtual. 23. (Curso ) Un rayo de luz monocromática que se propaga en el aire penetra en el agua de un estanque: a) Qué fenómeno luminoso se origina al pasar la luz del aire al agua?. Enuncie las leyes que se verifican en este fenómeno. b) Explique si la velocidad, la frecuencia y la longitud de onda cambian al pasar la luz de un medio a otro. 24. (Curso ) Una lente convergente de 10 cm de distancia focal se utiliza para formar la imagen de un objeto luminoso lineal colocado perpendicularmente a su eje óptico y de tamaño 1 cm. a) Dónde hay que colocar el objeto para que su imagen se forme 14 cm por detrás de la lente?. Cuál es la naturaleza y tamaño de esta imagen?. b) Dónde hay que colocar el objeto para que su imagen se forme 8 cm por delante de la lente?. Cuál es la naturaleza y el tamaño de esta imagen?. c) Efectúe la construcción geométrica en ambos casos. SOL: a) s1 = - 35 cm; y2 = 0,4 cm, real; b) s1 = - 4,44 cm; y2 = 1,8 cm, virtual. 25. (Junio 2003) Un haz luminoso está constituido por dos rayos de luz superpuestos: uno azul de longitud de onda 450 nm y otro rojo de longitud de onda 650 nm. Si este haz incide desde el aire sobre la superficie plana de un vidrio con un ángulo de incidencia de 30º, calcule: a) El ángulo que forman entre sí los rayos azul y rojo reflejados. b) El ángulo que forman entre sí los rayos azul y rojo refractados. Datos: Índice de refracción del vidrio para el rayo azul nazul = 1,55 Índice de refracción del vidrio para el rayo rojo nrojo = 1,40 SOL: 0º; 2,1º 26. (Junio 2003) Un objeto de 1 cm de altura se sitúa a 15 cm delante de una lente convergente de 10 cm de distancia focal. a) Determine la posición, tamaño y naturaleza de la imagen formada, efectuando su construcción geométrica. b) A qué distancia de la lente anterior habría que colocar una segunda lente convergente de 20 cm de distancia focal para que la imagen final se formara en el infinito?. SOL: s2 = 30 cm; y2 = - 2 cm, real; d = 50 cm 27. (Septiembre 2003) a) Explique qué son una lente convergente y una divergente. Cómo están situados los focos objeto e imagen en cada una de ellas?. B) Qué es la potencia de una lente y en qué unidades se suele expresar?. 28. (Septiembre 2003) Por medio de un espejo cóncavo se quiere proyectar la imagen de un objeto de tamaño 1 cm sobre una pantalla plana, de modo que la imagen sea invertida y de tamaño 3 cm. Sabiendo que la pantalla ha de estar colocada a 2 m del objeto, calcule: a) Las distancias del objeto y de la imagen al espejo, efectuando la construcción geométrica. b) El radio del espejo y la distancia focal. SOL: s1 = - 1 m; s2 = - 3 m; R = - 1,5 m; f = - 0,75 m 29. (Curso ) a) Qué combinación de lentes constituye un microscopio?. Explique mediante un esquema gráfico su disposición en el sistema. B) Dibuje la marcha de los rayos procedentes de un objeto a través del microscopio, de manera que la imagen final se forme en el infinito. 30. (Curso ) Un espejo esférico convexo proporciona una imagen virtual de un objeto que se aproxima a él con una velocidad constante. El tamaño de dicha imagen es igual a 1/10 del tamaño del objeto cuando éste se encuentra a 8 m del espejo. a) A qué distancia del espejo se forma la correspondiente imagen virtual? b) Cuál es la curvatura del espejo? c) Un segundo después, el tamaño de la imagen formada por el espejo es 1/5 del tamaño del objeto. A qué distancia del espejo se encuentra ahora el objeto? d) Cuál es la velocidad del objeto? SOL: a) 0,8 m; b) 16/9 m; c) s1 = 32/9 m; s2 = 0,7 m; d) 4,5 m/s 3

4 31. (Junio 20004) a) Qué tipo de imagen se obtiene con un espejo esférico convexo?. Y con una lente esférica divergente?. Efectúe las construcciones geométricas adecuadas para justificar las respuestas. El objeto se supone real en ambos casos. 32. (Junio 2004) Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio de índice de refracción n = 2. El ángulo del prisma es de 60º. Determinar: a) El ángulo de emergencia a través de la segunda cara si el ángulo de incidencia es de 30º. Efectúe el esquema gráfico de la marcha del rayo. b) El ángulo de incidencia para que el ángulo de emergencia del rayo sea de 90º. SOL: i3 = 63,6º; i1 = 21,15º 33. (Septiembre 2004) a) Defina el concepto de ángulo límite y determine su expresión para el caso de dos medios de índices de refracción n1 y n2, si n1 > n2. b) Sabiendo que el ángulo límite definido entre un medio material y el aire es de 60º, determine la velocidad de la luz en ese medio. Velocidad de la luz en el vacío = m/s. SOL: 2, m/s 34. (Septiembre 2004) Un objeto luminoso de 2 cm de altura está situado a 4 m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada, de distancia focal desconocida, que produce sobre la pantalla una imagen tres veces mayor que el objeto. Determine: a) La posición del objeto respecto a la lente y la clase de lente necesaria. b) La distancia focal de la lente y efectúe la construcción geométrica de la imagen. SOL: s1 = - 1 m; s2 = 3 m; f2 = 0,75 m 35. (Curso ) Delante de una lente convergente se coloca un objeto perpendicularmente a su eje óptico. a) A qué distancia de la lente debe colocarse para obtener una imagen de igual tamaño e invertida?. Cuál es la naturaleza de esta imagen? b) A qué distancia de la lente debe colocarse para obtener una imagen de doble tamaño y derecha?. Cuál es la naturaleza de esta imagen? c) Efectúe la construcción geométrica en ambos apartados. SOL: a) s1 = - 2 f2; b) s1 = - f2/2 36. (Curso ) Se tiene tres medios transparentes de índices de refracción n1, n2 y n3 separados entre sí por superficies planas y paralelas. Un rayo de luz de frecuencia Hz incide desde el primer medio (n1 = 1,5 ) sobre el segundo formando un ángulo de 30º con la normal a la superficie de separación. a) Sabiendo que el ángulo de refracción en el segundo medio es de 23,5º, cuál será la longitud de la onda de la luz en este segundo medio?. b) Tras atravesar el segundo medio el rayo llega a la superficie de separación con el tercer medio. Si el índice de refracción del tercer medio es n3 = 1,3 cuál será el ángulo de emergencia del rayo? Velocidad de la luz en el vacío = m/s. SOL: a) n2 = 1,88; = 266 nm; b) 35,2º 37. (Junio 2005) Sobre una lámina transparente de índice de refracción 1,5 y de 1 cm de espesor, situada en el vacío, incide un rayo luminoso formando un ángulo de 30º con la normal a la cara. Calcule: a) El ángulo que forma con la normal el rayo que emerge de la lámina. Efectúe la construcción geométrica correspondiente. b) La distancia recorrida por el rayo dentro de la lámina. SOL: i = 30º; 1,06 cm. 38. (Septiembre 2005) Se tiene un prisma óptico de índice de refracción 1,5 inmerso en el aire. La sección el prisma es un triángulo rectángulo isósceles. Un rayo luminoso incide perpendicularmente sobre uno de los catetos AB del prisma. B a) Explique si se produce o no reflexión total en la hipotenusa BC del prisma. b) Haga un esquema gráfico de la trayectoria seguida por el rayo a través del prisma. Cuál es la dirección del rayo emergente?. SOL: il = 42º, si reflexión total, sale perpendicular al otro cateto. 39. (Septiembre 2005) Un sistema óptico está formado por dos lentes delgadas convergentes de distancias focales 10 cm la primera y 20 cm la segunda, separadas una distancia de 60 cm. Un objeto luminoso de 2 mm de altura está situado 15 cm delante de la primera lente. a) Calcule la posición y tamaño de la imagen final del sistema. b) Efectúe la construcción geométrica de la imagen mediante el trazado de los rayos correspondiente. SOL: s2b = 60 cm; y2b = 8 mm 40. (Curso ) Un objeto de 1 mm de altura se coloca a una distancia de 1 cm delante de una lente convergente de 20 dioptrías. 4

5 a) Calcule la posición y tamaño de la imagen formada efectuando su construcción geométrica. b) Se podría recoger esta imagen en una pantalla?. Qué instrumento óptico constituye la lente convergente utilizada de esta forma?. SOL: s2 = - 1,25 cm; y2 = 1,25 mm; No, por ser imagen virtual; Lupa. 41. (Curso ) Delante de un espejo cóncavo de 1 m de radio y a una distancia de 0,75 m se coloca un objeto luminoso de tamaño 10 cm. a) Determine la posición, naturaleza y el tamaño de la imagen formada por el espejo. b) Si desde la posición anterior el objeto se acerca 0,5 m hacia el espejo, calcule la posición, la naturaleza y el tamaño de la imagen formada por el espejo en este caso. c) Efectúe la construcción geométrica en ambos casos. SOL: a) s2 = - 1,5 m; y2 = - 20 cm, real; b) s2 = 0,5 m; y2 = 20 cm, virtual. 42. (Junio 2006) Explique dónde debe estar situado un objeto respecto una lente delgada para obtener una imagen virtual y derecha: a) Si la lente es convergente. b) Si la lente es divergente. c) Realice en ambos casos las construcciones geométricas e indique si la imagen es mayor o menor que el objeto. 43. (Junio 2006) Sobre un prisma de ángulo ^B = 60º, situado en el vacío, incide un rayo luminoso monocromático que forma un ángulo de 41,3º con la normal a la cara AB. Sabiendo que en el interior del prisma el rayo es paralelo a la base AC: B a. Calcule el índice de refracción del prisma. b. Realice el esquema gráfico de la trayectoria seguida por el rayo a través del prisma. c. Determine el ángulo de desviación del rayo a través del prisma. d. Explique si la frecuencia y la longitud de onda correspondientes al rayo luminoso son distintas o no, dentro y fuera del prisma. A C SOL: n = 1,32; min = 22,6º; 44. (Septiembre 2006) Un buceador enciende una linterna debajo del agua, (índice de refracción 1,33) y dirige el haz luminoso hacia arriba formando un ángulo de 40º con la vertical. a) Con qué ángulo emergerá la luz del agua? b) Cuál es el ángulo de incidencia a partir del cual no saldrá la luz del agua? Efectúe esquemas gráficos en la explicación de ambos apartados. SOL: a) i2 = 58,7º; b) ilim = 48,75º 45. (Septiembre 2006) Se tiene un espejo cóncavo de 20 cm de distancia focal. a) Dónde se debe situar un objeto para que su imagen sea real y doble que el objeto? b) Dónde debe situarse el objeto para que la imagen sea doble que el objeto pero tenga carácter virtual? Efectúe la construcción geométrica en ambos casos. SOL: a) s1 = - 30 cm; b) s1 = - 10 cm 46. (Curso ) Determine el tipo de imagen y el aumento lateral que se obtiene al situar un objeto delante de una lente divergente en los siguientes casos: a) El objeto se sitúa a una distancia igual al doble de la distancia focal. b) El objeto se sitúa a una distancia igual a la mitad de la distancia focal de la lente. Efectúe la construcción geométrica en ambos casos. SOL: a) AL = 1/3; b) AL = 2/3; siempre virtual 47. (Junio 2007) Una superficie plana separa dos medios de índice de refracción n1 y n2. Un rayo de luz incide desde el medio de índice n1. Razone si son verdaderas o falsas las afirmaciones siguientes: a) El ángulo de incidencia es mayor que el ángulo de reflexión. b) Los ángulos de incidencia y refracción son siempre iguales. c) El rayo incidente, el reflejado, y el refractado están en el mismo plano. d) Si n1 es mayor que n2 se produce reflexión total para cualquier ángulo de incidencia. 48. (Junio 2007) Una lente convergente forma, de un objeto real, una imagen también real, invertida y aumentada 4 veces. Al desplazar el objeto 3 cm hacia la lente, la imagen que se obtiene es virtual, derecha y con el mismo aumento en valor absoluto. Determine: a) La distancia focal imagen y potencia de la lente. b) Las distancias del objeto a la lente en los dos casos citados. c) Las respectivas distancias imagen. d) Las construcciones geométricas correspondientes. SOL: f2 = 6 cm; P = 16,67 diop; s1 = - 7,5 cm; s2 = 30 cm; s1 = - 4,5 cm; s2 = - 18 cm 5

6 49. (Septiembre 2007) Una lente convergente tiene una distancia focal de 20 cm. Calcule la posición y aumento de la imagen que produce dicha lente para un objeto que se encuentra delante de ella a las siguientes distancias a) 50 cm ; b) 15 cm. Realice el trazado de rayos en ambos casos. SOL: a) s2 = 33,3 cm; AL = - 2/3, real; b) s2 = - 60 cm; AL= 4, virtual 50. (Septiembre 2007) Un espejo esférico cóncavo tiene un radio de 10 cm. a) Determine la posición y el tamaño de la imagen de un objeto de 5 cm de altura que se encuentra frente al mismo, a la distancia de 15 cm. Cómo es la imagen obtenida?. Efectúe la construcción geométrica de dicha imagen. b) Un segundo objeto de 1 cm de altura se sitúa frente al espejo, de manera que su imagen es del mismo tipo y tiene el mismo tamaño que la imagen del objeto anterior. Determine la posición que tiene el segundo objeto respecto al espejo. SOL: a) s2 = - 7,5 cm; y2 = - 2,5 cm, real; b) s1 = - 7 cm 51. (Curso ) Puede un espejo cóncavo producir una imagen virtual, derecha y menor que el objeto?. Puede una lente convergente producir una imagen real, invertida y mayor que el objeto? Justifique en cada caso la respuesta mediante un diagrama de rayos. 52. (Curso ) Se construye un prisma óptico de ángulo A con un vidrio de índice n = 2. Sabiendo que el rayo que incide perpendicularmente en la primera cara lateral del prisma tiene un ángulo de emergencia de 90º a través de la segunda cara lateral y que el prisma está inmerso en el aire, determine: a) El ángulo A del prisma. b) El valor del ángulo de desviación mínima. Dibuje la marcha del rayo en ambos casos. SOL: a) = 45º; b) min = 20,5º; 53. (Junio 2008) Una lámina de vidrio (índice de refracción n = 1,52) de caras planas y paralelas y espesor d se encuentra entre el aire y el agua. Un rayo de luz monocromática de frecuencia Hz incide desde el agua en la lámina. Determine: a) Las longitudes de onda del rayo en el agua y en el vidrio. b) El ángulo de incidencia en la primera cara de la lámina a partir del cual se produce reflexión total interna en la segunda cara. Datos: nagua= 1,33; c = m/s. SOL: a) 0 = 600 nm; agua = 451 nm; vidrio = 395 nm; b) i1= 48,75º; (ilim= 41,14 en la 2ª cara) 54. (Junio 2008) Un sistema óptico está formado por dos lentes: la primera es convergente y con distancia focal de 10 cm; la segunda, situada a 50 cm de distancia de la primera, es divergente y con 15 cm de distancia focal. Un objeto de tamaño 5 cm se coloca a una distancia de 20 cm delante de la lente convergente. a) Obtenga gráficamente mediante el trazado de rayos la imagen que produce el sistema óptico. b) Calcule la posición de la imagen producida por la primera lente. c) Calcule la posición de la imagen producida por el sistema óptico. d) Cuál es el tamaño y la naturaleza de la imagen final formada por el sistema óptico? SOL: s2a = 20 cm, real; s2b = - 10 cm, vitual; y2b = - 5/3 cm 55. ( Septiembre 2008) Un microscopio consta de dos lentes convergentes (objetivo y ocular). a) Explique el papel que desempeña cada lente. b) Realice un diagrama de rayos que describa el funcionamiento del microscopio. 56. (Curso ) Si un objeto se sitúa a una distancia de 2 cm delante de una lente convergente o delante de un espejo cóncavo, ambos de distancia focal 5 cm en valor absoluto, a) cómo están relacionados los aumentos laterales y las posiciones de las imágenes que la lente y el espejo producen de dicho objeto? b) Realice el trazado de rayos en ambos casos. SOL: Espejo: s2 = 10/3 cm; AL = 5/3; Lente: s2 = - 10/3 cm; AL = 5/3; 57. (Curso )Sobre una lámina de vidrio de caras planas y paralelas de 3 cm de espesor y situada en el aire incide un rayo de luz monocromática con un ángulo de incidencia de 35º. La velocidad de propagación del rayo en la lámina es (2/3)c, siendo c la velocidad de la luz en el vacío. a) Determine el índice de refracción de la lámina. b) Compruebe que el rayo emergerá de la lámina y determine el ángulo de emergencia. c) Dibuje la marcha del rayo a través de la lámina. d) Calcule la distancia recorrida por el rayo dentro de la lámina. SOL: a) n = 1,5; b) si emerge (ilím= 41,81º), i3 = 35º; dab = 3,25 cm 58. (Junio 2009) a) Explique la posibilidad de obtener una imagen derecha y mayor que el objeto mediante un espejo cóncavo, realizando un esquema con el trazado de rayos. Indique si la imagen es real o virtual. c) Dónde habría que colocar un objeto frente a un espejo cóncavo de 30 cm de radio para que la imagen sea derecha y de doble tamaño que el objeto? 6

7 SOL: b) A 7,5 cm a la izquierda del espejo. 59. (Septiembre 2009) La distancia focal de un espejo esférico es de 20 cm en valor absoluto. Si se coloca un objeto delante del espejo a una distancia de 10 cm de él, determine la posición y naturaleza de la imagen formada en los dos casos siguientes: a) El espejo es cóncavo. b) El espejo es convexo. Efectúe la construcción geométrica de la imagen en ambos casos. SOL: a) s2 = 20 cm, virtual; b) s2 = 20/3 cm, virtual 60. (Septiembre 2009) Un rayo de luz roja que se propaga en el aire tiene una longitud de onda de 650 nm. Al incidir sobre la superficie de separación de un medio transparente y penetrar en él, la longitud de onda del rayo pasa a ser de 500 nm. a) Calcule la frecuencia de la luz roja. b) Calcule el índice de refracción del medio transparente para la luz roja. c) Si el rayo incide desde el aire con un ángulo de 30º respecto a la normal, cuál será el ángulo de refracción en el medio transparente?. d) Si el rayo se propagara por el medio transparente en dirección hacia el aire, cuál sería el ángulo de incidencia a partir del cual no se produce refracción? Dato: c = m/s. 7

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

ENUNCIADOS. Cuestiones

ENUNCIADOS. Cuestiones ENUNCIADOS Cuestiones 1 a) Enuncie las Leyes de la reflexión y de la refracción de la luz y efectúe los esquemas gráficos correspondientes. b) Defina el concepto de ángulo límite y explique el fenómeno

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 24 septiembre 2013.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 24 septiembre 2013. 2013-Septiembre B. Pregunta 3.- Se tiene un prisma rectangular de vidrio de indice de refracción 1,48. Del centro de su cara A se emite un rayo que forma un ánguto α con el eje vertical del prisma, como

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 5 julio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 5 julio 2018 2018-Julio B. Pregunta 4.- Un material transparente de índice de refracción n = 2 se encuentra situado en el aire y limitado por dos superficies planas no paralelas que forman un ángulo α. Sabiendo que

Más detalles

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1 FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1 1. Los índices de refracción absolutos del agua y el vidrio para la luz amarilla del sodio son 1,33 y 1,52 respectivamente. a) Calcula la velocidad de

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

Problemas de Óptica I. Óptica física 2º de bachillerato. Física

Problemas de Óptica I. Óptica física 2º de bachillerato. Física Problemas de Óptica I. Óptica física 2º de bachillerato. Física 1. Calcular la energía de un fotón de luz amarilla de longitud de onda igual a 5,8.10 3 A. Solución: 3,43.10-19 J. 2. Una de las frecuencias

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013 2014-Modelo A. Pregunta 4.- Utilizando una lente convergente delgada que posee una distancia focal de 15 cm, se quiere obtener una imagen de tamaño doble que el objeto. Calcule a qué distancia ha de colocarse

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

El ángulo de desviación es el que forma el rayo incidente con el rayo emergente. 19, 46º

El ángulo de desviación es el que forma el rayo incidente con el rayo emergente. 19, 46º Prisma y láminas plano parlelas PROBLEMAS RESUELTOS SOBRE ÓPTICA GEOMÉTRICA. Sobre un prisma de vidrio de 30º e índice de refracción,5 incide un rayo de luz monocromática perpendicularmente a una de las

Más detalles

JUNIO 2000 (CUESTIONES)...

JUNIO 2000 (CUESTIONES)... BLOQUE III. ÓPTICA. Convocatorias 1. JUNIO 1994... 3 1.1. PROBLEMA... 3 1.2. CUESTIÓN... 3 2. SEPTIEMBRE 1994... 3 2.1. CUESTIÓN... 3 2.2. CUESTIÓN... 3 3. JUNIO 1995... 3 3.1. CUESTIÓN... 3 4. SEPTIEMBRE

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

Ejercicios de Óptica

Ejercicios de Óptica Ejercicios de Óptica 1. a) Los rayos X, la luz visible y los rayos infrarrojos son radiaciones electromagnéticas. Ordénalas en orden creciente de sus frecuencias e indica algunas diferencias entre ellas.

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua.

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua. Capítulo 1 SEMINARIO 1. Un teléfono móvil opera con ondas electromagnéticas cuya frecuencia es 1, 2 10 9 Hz. a) Determina la longitud de onda. b) Esas ondas entran en un medio en el que la velocidad de

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

b) El tamaño mínimo de la pantalla para que se proyecte entera la imagen del objeto.

b) El tamaño mínimo de la pantalla para que se proyecte entera la imagen del objeto. 01. Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite. Determine: a) El valor del ángulo límite en la superficie de separación. b) El valor

Más detalles

n = 7, s 1 λ = c ν = , = 4, m

n = 7, s 1 λ = c ν = , = 4, m . (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores

Más detalles

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?

Más detalles

v 2 10 AIRE f Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio con índice de

v 2 10 AIRE f Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio con índice de 01. Dos espejos planos están colocados perpendicularmente entre sí. Un rayo que se desplaza en un plano perpendicular a ambos espejos es reflejado primero en uno y después en el otro espejo. Cuál es la

Más detalles

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp 01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com ÓPTICA 1- a) Explique la marcha de rayos utilizada para la construcción gráfica de la imagen formada por una lente convergente y utilícela para obtener la imagen de un objeto situado entre el foco y la

Más detalles

ÓPTICA. b.- El objeto se encuentra a una distancia del espejo menor que la distancia focal.

ÓPTICA. b.- El objeto se encuentra a una distancia del espejo menor que la distancia focal. ÓPTICA. JUNIO 1997: 1.- Qué se entiende por límite o poder de resolución de un instrumento óptico? 2.- Una lente convergente forma la imagen de un objeto muy lejano (haces de luz incidentes paralelos),

Más detalles

Óptica. PAU Andalucía

Óptica. PAU Andalucía Óptica. PAU Andalucía Cuestiones 1. a) (12) Modelos corpuscular y ondulatorio de la luz; caracterización y evidencia experimental. b) Ordene de mayor a menor frecuencia las siguientes regiones del espectro

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

TEMA 6.- Óptica CUESTIONES

TEMA 6.- Óptica CUESTIONES TEMA 6.- Óptica CUESTIONES 51.- a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema, las características de la imagen formada.

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Óptica

FÍSICA 2º Bachillerato Ejercicios: Óptica 1(8) Ejercicio nº 1 Entre las frecuencias del rojo 4 3.10 14 Hz y la del violeta 7 5.10 14 Hz se encuentran todos los colores del espectro visible. Cuáles son su período y su longitud de onda? Ejercicio

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Problemas de Óptica. PAU-PAEG-EVAU

Problemas de Óptica. PAU-PAEG-EVAU 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

Profr. Jonathan Torres Barrera 5 de Abril de 2017

Profr. Jonathan Torres Barrera 5 de Abril de 2017 FISICA 4. UNIDAD II: Sistemas ópticos. 51.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Hertz: Huygens: Young: Newton: Planck: Einstein:

Más detalles

FÍSICA. 2º BACHILLERATO BLOQUE IV: ÓPTICA. Examen 1

FÍSICA. 2º BACHILLERATO BLOQUE IV: ÓPTICA. Examen 1 Examen 1 1. Un rayo de luz incide sobre una lámina de caras paralelas de vidrio de n = 3/2, formando un ángulo de 45º con la normal. A) Cuál es el ángulo de refracción? B) Cuál es el ángulo de salida al

Más detalles

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia

Más detalles

A-PDF Manual Split Demo. Purchase from to remove the watermark

A-PDF Manual Split Demo. Purchase from  to remove the watermark 0 A-PD Manual Split Demo. Purchase from www.a-pd.com to remove the watermark 86 ÓPTIA GEOMÉTRIA j Sigue practicando. a) onstruya gráficamente la imagen obtenida en un espejo cóncavo de un objeto situado

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

I.E.S. El Clot Dto. Física y Química Curso

I.E.S. El Clot Dto. Física y Química Curso I.E.S. El Clot Dto. Física y Química Curso 2014-15 PROBLEMAS Y CUESTIONES SELECTIVO. ÓPTICA. 60º 1cm 1) (P Jun94) Determinad el desplazamiento paralelo de un rayo de luz al atravesar una lámina plana de

Más detalles

ÓPTICA FÍSICA MODELO 2016

ÓPTICA FÍSICA MODELO 2016 ÓPTICA FÍSICA MODELO 2016 1- Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite. Determine: a) El valor del ángulo límite entre los medios

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1 Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1. Los índices de refracción de un dioptrio esférico cóncavo, de 20,0 cm de radio, son 1,33 y 1,54 para el primero y el segundo medios.

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE LA LUZ. OPTICA. José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE LA LUZ. OPTICA. José Mª Martín Hernández Generalidades: 1. (103-S11) La estrella más cercana a la Tierra dista 4 años-luz y puede observarse con un telescopio. a) Si en la estrella citada se produce una explosión, se daría cuenta de ello inmediatamente

Más detalles

FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS

FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS GUÍA DE PROBLEMAS PROPUESTOS Y RESUELTOS ONDAS Y ÓPTICA GEOMÉTRICA Problema Nº 1 La

Más detalles

ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES

ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES 80 0 ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES j Actividades. Define los siguientes conceptos: dioptrio, eje óptico, radio de curvatura, imagen real y centro óptico. Dioptrio: conjunto formado por dos medios

Más detalles

FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS

FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS 1. a) Si un rayo parte del punto A = (0,1,0), se refleja en el espejo plano

Más detalles

CUESTIONES DE ÓPTICA

CUESTIONES DE ÓPTICA CUESTIONES DE ÓPTICA 2017 1) Utilizando diagramas de rayos, construya la imagen de un objeto real por una lente convergente si está situado: i) a una distancia 2f de la lente, siendo f la distancia focal;

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

Ejercicios Física PAU Comunidad de Madrid 2000-2016. Enunciados enrique@fiquipedia.es. Revisado 23 septiembre 2015.

Ejercicios Física PAU Comunidad de Madrid 2000-2016. Enunciados enrique@fiquipedia.es. Revisado 23 septiembre 2015. 2016-Modelo B. Pregunta 4.- Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite.determine: a) El valor del ángulo límite entre los medios aceite

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

0,20. y n s 0,80. la imagen es virtual, derecha y mayor para hacer la construcción gráfica hay que saber los valores de las distancias focales

0,20. y n s 0,80. la imagen es virtual, derecha y mayor para hacer la construcción gráfica hay que saber los valores de las distancias focales 0. Un dioptrio esférico cóncavo de 0 cm de radio tiene un índice de refracción,6 y está rodeado de aire. Un objeto de 3 cm de altura se coloca a una distancia de 0 cm del vértice del dioptrio. Calcular

Más detalles

Ejercicios Repaso Tema 5: Óptica geométrica

Ejercicios Repaso Tema 5: Óptica geométrica Cuestiones y Problemas Ejercicios Repaso Tema 5: Óptica geométrica Dpto. de Física 1. Una esfera de vidrio de paredes delgadas y radio R está llena de agua. A una distancia 3R de su superficie se coloca

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA La óptica es la parte de la física que estudia los fenómenos de la luz. Se divide en tres ramas: Óptica Geométrica: estudia la naturaleza particular de la luz desde el punto de vista corpuscular,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1) Un rayo

Más detalles

Ejercicio 1. y el ángulo de refracción será:

Ejercicio 1. y el ángulo de refracción será: Ejercicio 1 Un rayo de luz que se propaga en el aire entra en el agua con un ángulo de incidencia de 45º. Si el índice de refracción del agua es de 1,33, cuál es el ángulo de refracción? Aplicando la ley

Más detalles

Guía Óptica. Área de Físico-Química. 4to año 2016

Guía Óptica. Área de Físico-Química. 4to año 2016 Guía Óptica Área de Físico-Química 4to año 2016 Pág. 1 de 10 Espejos Reflexión de la luz: Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. En este fenómeno

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1)

Más detalles

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Introducción a la óptica geométrica 2. Óptica de la reflexión. Espejos planos y esféricos 3. Óptica de

Más detalles

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos Óptica Geométrica La Óptica estudia las propiedades y la naturaleza de la luz y sus interacciones con la materia. La luz se puede propagar en el vacío o en otros medios. La velocidad a la que se propaga

Más detalles

Física 2n de Batxillerat IES El Cabanyal València

Física 2n de Batxillerat IES El Cabanyal València Dr JM yensa 07 Óptica geométrica. 0/0/07 UESTIONES ísica n de atxillerat IES El abanyal alència Tiempo de la prueba 6 min.- Un objeto de 0. cm de altura, que está situado a 0 cm de un espejo cóncavo, produce

Más detalles

2. En qué condiciones un espejo cóncavo nos dará una imagen virtual? El objeto ha de estar situado entre el foco y el espejo: f < s < 0.

2. En qué condiciones un espejo cóncavo nos dará una imagen virtual? El objeto ha de estar situado entre el foco y el espejo: f < s < 0. Problemas de Física º Bachillerato (PAU) Óptica geométrica. Espejos y lentes 6/04/08 0 0 0 0 0. Dónde se debe situar un objeto para que un espejo cóncavo forme imágenes virtuales? Qué tamaño tienen estas

Más detalles

La luz. Óptica geométrica. J.M.L.C. - Chena Física 2 o Bachillerato

La luz. Óptica geométrica. J.M.L.C. - Chena  Física 2 o Bachillerato Óptica geométrica J.M.L.C. - Chena chenalc@gmail.com www.iesaguilarycano.com Física 2 o Bachillerato Conceptos Los fenómenos relacionados con la reflexión y refracción de la luz pueden justificarse prescindiendo

Más detalles

Óptica Geométrica. Física III - Primer Semestre de Fernando Cuturrufo - Karina Ávalos

Óptica Geométrica. Física III - Primer Semestre de Fernando Cuturrufo - Karina Ávalos Óptica Geométrica - Primer Semestre de 2018 Fernando Cuturrufo - Karina Ávalos 1. Un espejo cóncavo tiene un radio de curvatura con un valor absoluto de 20 cm. Halle por medios gráficos la imagen de un

Más detalles

1 1 1 s s 10 14s. Problema 95

1 1 1 s s 10 14s. Problema 95 Problema 95 Una lente convergente de de distancia focal se utiliza para formar la imagen de un objeto luminoso lineal colocado perpendicularmente a su eje óptico y de tamaño y = 1. a) Dónde hay que colocar

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

Descripción geométrica de movimientos ondulatorios

Descripción geométrica de movimientos ondulatorios Física 2 (Físicos) c DF, FCEyN, UBA Descripción geométrica de movimientos ondulatorios Fermat, Snell 1. a) Si un rayo parte del punto A = (0, 1, 0), se refleja en el espejo plano (x, 0, z) y pasa por el

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Junio 2001 Opción 2 8. Qué se entiende por difracción y en qué condiciones se produce?. ( 1 punto)

Junio 2001 Opción 2 8. Qué se entiende por difracción y en qué condiciones se produce?. ( 1 punto) Página 1 Junio 1998 1. Una lupa produce imágenes directas de objetos cercanos e invertidas de los lejanos. Utilizando trazado de rayos, dónde está el límite de distancia del objeto a la lente entre ambos

Más detalles

FÍSICA. BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA 2º CURSO

FÍSICA. BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA 2º CURSO BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA El estudio de la Óptica Geométrica, se restringe al marco de la aproximación paraxial. Las ecuaciones de los sistemas ópticos se presentan desde un punto de vista

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

Óptica Geométrica. Física III - Segundo Semestre de Fernando Cuturrufo - Karina Ávalos

Óptica Geométrica. Física III - Segundo Semestre de Fernando Cuturrufo - Karina Ávalos Óptica Geométrica - Segundo Semestre de 2017 Fernando Cuturrufo - Karina Ávalos 1. Un espejo cóncavo tiene un radio de curvatura con un valor absoluto de 20 cm. Halle por medios gráficos la imagen de un

Más detalles

Ley de reflexión y refracción de la luz.

Ley de reflexión y refracción de la luz. Física 1 Químicos - Óptica Geométrica Ley de reflexión y refracción de la luz. 1. (a) Un haz de luz se propaga en cierto tipo de vidrio. Sabiendo que la velocidad de la luz es c = 3 10 8 m/s, la longitud

Más detalles

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE IV ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE En estas páginas ofrecemos, resueltas, una selección de las actividades más representativas de las unidades que componen este bloque. No debes consultar estas

Más detalles

UNIVERSIDAD NACIONAL DE MISIONES

UNIVERSIDAD NACIONAL DE MISIONES OPTICA GEOMÉTRICA PROBLEMAS PROPUESTOS 1: Un rayo que se propaga por el aire incide en la superficie de un bloque de hielo transparente (n h =1,309) formando un ángulo de 40º con la normal a dicha superficie.

Más detalles

Unidad 5: Óptica geométrica

Unidad 5: Óptica geométrica Unidad 5: Óptica geométrica La óptica geométrica estudia los fenómenos luminosos utilizando el concepto de rayo, sin necesidad de considerar el carácter electromagnético de la luz. La óptica geométrica

Más detalles

Ondas y Óptica Cuestiones y Problemas PAU Física 2º Bachillerato

Ondas y Óptica Cuestiones y Problemas PAU Física 2º Bachillerato Ondas y Óptica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato 1. a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema,

Más detalles

Código FS-14. Guía Cursos Anuales. Física Luz. Plan COMÚN

Código FS-14. Guía Cursos Anuales. Física Luz. Plan COMÚN Código FS-14 Guía Cursos Anuales Física 2005 Luz Plan COMÚN Ciencias Plan Común Introducción A través de la ejecución de la presente guía el alumno deberá desarrollar y aplicar los siguientes aprendizajes

Más detalles

Reflexión y refracción en superficies planas y curvas

Reflexión y refracción en superficies planas y curvas Física II (Biólogos y Geólogos) SERIE 1 Reflexión y refracción en superficies planas y curvas 1. Considere un conjunto de 10 superficies planas paralelas separadas entre sí por la misma distancia d. Cada

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica

Más detalles

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2 MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA PROBLEMA. Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio, de índice de refracción n =. El ángulo

Más detalles

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten La luz se comporta a la vez como onda y partícula. Algunos fenómenos se explican más mejor suponiendo que la luz es una onda (reflexión, refracción, interferencia, difracción) en tanto que otros fenómenos,

Más detalles