Clase 1: IB Adaptado de: Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 1: IB 2014. Adaptado de: Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic"

Transcripción

1 Clase 1: IB 2014 Adaptado de: Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

2 Por qué estudiar MOS y CMOS? Dispositivos MOS y circuitos CMOS: Los transistores MOS (MOSFETs) son la cosa más fabricada por la humanidad, ~1019 trans por año (~263) Toda la electrónica digital está basada en transistores MOS, en lógica complementaria (CMOS). Buena parte de la analógica también. Intel Pentium 1993, Primer procesador, INTEL 4004 (4 bits), transistores, 0,5um, 100MHz, 1971, transistores, 740kHz, 10um, 290mm2. 630mW, 12mm2 Intel Core i7 2013, 109 transistores, 22nm, 2-3GHz, mm2.

3 Ley de Moore Moore, 1965 (co-fundador de intel) Cada 18 meses se duplica el número de transistores en un circuito integrado. Luego se reformuló, se duplica el número de dispositivos cada dos años

4 Dispositivos en un proceso CMOS comercial.

5 Diodo en procesos CMOS B A Al SiO2 A n p- B diode symbol Cross-section of pn-junction in an IC process Elemento parásito en la mayor parte de los ICs digitales Algunos usos por e.g. en protección ESD, sensores de temp., etc

6 Formación de la zona de deserción Electric field hole diffusion electron diffusion p (a) Current flow. n hole drift electron drift Charge Density ρ + x Distance - Electrical Field Potential ξ x (c) Electric field. 0= T ln N A. N D. n 2 i V ψ0 -W 1 (b) Charge density. W2 x (d) Electrostatic potential.

7 Corriente del diodo.

8 Capacitancia de juntura La capacitancia de inversa de junturas P-N aparece en Cdb, y esta dependencia está modelada en SPICE.

9 El transistor MOS, modelo naif Fresh MOSFET: OFF state VG1 ~ 0* OFF state VG2< VT0 ON state VG3> VT0 POLY (G) POLY (G) POLY (G) VS = 0 VD > 0 (S) n+ (D) n+ VS = 0 VD > 0 (S) n (S) n (D) n+ + (B) Si p- (B) Si pinverse junctions, depletion zones (D) n + VD > 0 VS = 0 Depletion zone (B) Si pdepletion zone Conductive invertion zone

10 Capacitor MOS

11 Modos de polarización [MIT Open courses]

12 Transistor MOS, corte y layout

13 Sección real de un transistor XFAB mixed signal 0.8um

14 Símbolos MOSFETs canal n canal p

15 Corriente de drain.

16 Corriente de Drain

17 Corriente de Drain.

18 Saturación de corriente de drain

19 Modulación de Id con Vds Al variar Vds la región de pinch off se alarga igual que una juntura PN en inversa:

20

21 I-Vs en un viejo transistor de canal largo... 6 x 10-4 VGS= 2.5 V 5 Resistive Saturation 4 I D (A) VGS= 2.0 V 3 VDS = VGS - VT 2 VGS= 1.5 V 1 0 Quadratic Relationship VGS= 1.0 V V DS (V) 2 2.5

22 Relaciones I-V para canal largo

23 Modelo para análisis manual

24 I-Vs para transistores de canal largo pero no tanto. 2.5 x 10-4 VGS= 2.5 V Early Saturation 2 VGS= 2.0 V I D (A) 1.5 VGS= 1.5 V VGS= 1.0 V V DS (V) Linear Relationship

25 υ n (m/s) Saturación de velocidad de portadores υ sat = 10 5 Constant velocity Constant mobility (slope = µ) ξc = 1.5 ξ (V/µm)

26 Perspectiva ID Long-channel device VGS = VDD Short-channel device V DSAT VGS - V T VDS

27 ID versus VGS -4 6 x x linear quadratic ID (A) I D (A) quadratic VGS (V) Long Channel VGS (V) Short Channel 2 2.5

28 Curvas Id vs Vgs proceso 0,5um

29 C5: ID versus VDS Long Channel Short Channel

30 IBM 90nm, curvas IV 98µA 91µA 84µA 77µA 70µA 63µA 56µA 49µA 42µA 35µA 28µA 21µA 14µA 7µA 0µA 0.0V Id(M1) Id(M1) 77µA 70µA 63µA 56µA 49µA 42µA 35µA 28µA 21µA 14µA 0.1V 0.2V 0.3V 0.4V 0.5V 0.6V 0.7V 0.8V 0.9V 1.0V 7µA 0µA 0.0V Id(M1) e-005 1e-006 1e-007 1e-008 1e V 0.1V corriente subumbral 0.2V 0.3V 0.4V 0.5V 0.6V 0.7V 0.8V 0.9V 1.0V 0.1V 0.2V 0.3V 0.4V 0.5V 0.6V 0.7V 0.8V 0.9V 1.0V

31 Modelo simple vs SPICE 2.5 x 10-4 VDS=VDSAT 2 Velocity Saturated I D (A) 1.5 Linear 1 VDSAT=VGT 0.5 VDS=VGT Saturated V DS (V) 2 2.5

32 El transistor como switch IDI VGS V T VVGS ==VVD D GS DD D R on S RRmid mid D RR x 10 VVDS DS VVDD/2/2 DD 6 4 eq R (Ohm) V DD (V) VVDD DD

33 Capacitancias de pequeña señal en transistores MOS.

34 Dynamic Behavior of MOS Transistor G CGS CGD D S CGB CSB B CDB

35 Capacitancia del gate. Polysilicon gate Source xd n+ xd Ld W Drain n+ Gate-bulk overlap Top view Gate oxide tox n+ L Cross section n+

36 Capacitancia del gate. G G CGC D S Cut-off G CGC CGC D S Resistive D S Saturation Most important regions in digital design: saturation and cut-off

37 Capacitancia de gate, mejor modelo. CG C WLC ox WLC ox 2 CGC B C G CS = CG CD VG S WLC ox CG C 2WLC ox CG CS WLC ox 2 3 CGCD 0 VDS /( VG S-VT) 1 Capacitance as a function of VGS Capacitance as a function of the degree of saturation (with VDS = 0)

38 Capacitancia de difusión. Channel-stop implant NA 1 Side wall Source ND W Bottom xj Side wall LS Channel SubstrateN A

39 Junction Capacitance

40 Linearizing the Junction Capacitance Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

41 Capacitancias en 0.5 µ m ON semi Cox ff/um2 Cov ff/um Cj ff/um mj Cjsw ff/um NMOS PMOS

42 Conducción subumbral. -2 The Slope Factor 10 qv GS Linear -4 I D ~ I 0e 10-6 Quadratic CD, n=1 C ox S is VGS for ID2/ID1 =10 I D (A) 10 nkt Exponential VT VGS (V) Typical values for S: mv/decade

43 Sub-Threshold ID vs VGS qv GS I D=I 0 e nkt 1 e qv DS kt

44 Summary of MOSFET Operating Regions Strong Inversion VGS > VT Linear (Resistive) VDS < VDSAT Saturated (Constant Current) VDS VDSAT Weak Inversion (Sub-Threshold) VGS VT Exponential in VGS with linear VDS dependence

45 Latch-up

46 Proceso ON semi C5 TRANSISTOR PARAMETERS W/L MINIMUM Vth 3.0/0.6 SHORT Idss Vth Vpt 20.0/0.6 WIDE Ids0 20.0/0.6 LARGE Vth Vjbkd Ijlk Gamma 50/50 K' (Uo*Cox/2) Low-field Mobility N-CHANNEL P-CHANNEL UNITS volts ua/um volts volts < 2.5 < 2.5 pa/um < volts volts pa V^ ua/v^2 cm^2/v*s

47 Proceso ON semi C5 FOX TRANSISTORS Vth GATE Poly PROCESS PARAMETERS N+ Sheet Resistance 83.1 Contact Resistance 58.9 Gate Oxide Thickness 141 PROCESS PARAMETERS Sheet Resistance Contact Resistance N+ACTIVE >15.0 P POLY M N\PLY 807 P+ACTIVE <-15.0 PLY2_HR 1103 COMMENTS: N\POLY is N-well under polysilicon. N_W 801 UNITS volts POLY M UNITS ohms/sq ohms M UNITS ohms/sq ohms angstrom

48 Proceso ON semi C5 CAPACITANCE PARAMETERS Area (substrate) Area (N+active) Area (P+active) Area (poly) Area (poly2) Area (metal1) Area (metal2) Fringe (substrate) Fringe (poly) Fringe (metal1) Fringe (metal2) Overlap (N+active) Overlap (P+active) N P+ 721 POLY POLY2 M M M N_W 92 UNITS af/um^2 af/um^2 af/um^2 af/um^2 af/um^2 af/um^2 af/um^2 af/um af/um af/um af/um af/um af/um

Introducción a VLSI EAMTA 2006

Introducción a VLSI EAMTA 2006 Introducción a VLSI EAMTA 2006 Introducción a VLSI Clase 2: Layers y layout Programa El Transistor MOS Layers y Layout Lógica Combinacional Lógica Secuencial y Subsistemas Organización Elementos de Software

Más detalles

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica Introducción a la Electrónica Transistores de efecto de campo Introducción a la Electrónica Características La corriente es controlada a travez de un campo eléctrico establecido por el voltaje aplicado

Más detalles

Cox = 6.9 x 10-8 F/cm 2. Vt = 0.65 Volts VGS = 5 V. ID (sat) = 4 ma > > > W = 11.8 µm

Cox = 6.9 x 10-8 F/cm 2. Vt = 0.65 Volts VGS = 5 V. ID (sat) = 4 ma > > > W = 11.8 µm EL TRANSISTOR COMO ELEMENTO DE CIRCUITO Transistor MOS canal N L = 1.25 µm, µn = 650 cm 2 /Vs Cox = 6.9 x 10-8 F/cm 2 Vt = 0.65 Volts VGS = 5 V ID (sat) = 4 ma > > > W = 11.8 µm La capacidad de manejo

Más detalles

Operación y Modelado del Transistor MOS para el Diseño Analógico

Operación y Modelado del Transistor MOS para el Diseño Analógico Operación y Modelado del Transistor MOS para el Diseño Analógico Rev. 1.2 Curso CMOS AD. Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la República, Montevideo, Uruguay Curso

Más detalles

TEMA 2. Dispositivos y modelos MOS.

TEMA 2. Dispositivos y modelos MOS. Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 20110/11 Resumen TEMA 2. Dispositivos y modelos MOS. 2.1 MOSFETs para VLSI: diseño físico-geométrico. Estructura del transistor

Más detalles

MOSFET Conceptos Básicos

MOSFET Conceptos Básicos MOSFET Conceptos Básicos Profesor: Ing. Johan Carvajal Godínez Introducción FET = Field Effect Transistor Unipolar = solo un tipo de portador de carga Controlado por voltaje ID=F (VGS) D Zonas de agotamiento

Más detalles

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET BIBLIOGRAFÍA Tema 3: EL TRANSISTOR FET.1 Introducción. El Mosfet de acumulación Funcionamiento y curvas características Polarización.3 El Mosfet de deplexión Funcionamiento y curvas características.4 El

Más detalles

S. Hambley, Electrónica, Prentice Hall, 2001.

S. Hambley, Electrónica, Prentice Hall, 2001. Tema 6. El transistor MOS Bibliografía A.S. Sedra, K.C. Smith, Circuitos Microelectrónicos, Oxford University Press, 004. S. Hambley, Electrónica, Prentice Hall, 00. Índice del Tema 6 ESTRUCTURA FÍSCA

Más detalles

Fundamentos del transitor MOSFET

Fundamentos del transitor MOSFET Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 ITCR - Elementos Activos I 2011 Objetivos El transistor de efecto de campo MOSFET y la tecnología CMOS (6 semanas) Construcción, símbolo, clasificación.

Más detalles

EL TRANSISTOR DE EFECTO DE CAMPO. Dispositivos unipolares

EL TRANSISTOR DE EFECTO DE CAMPO. Dispositivos unipolares Diapositiva 1 Concepto Su funcionamiento se basa en el control de la corriente mediante un campo eléctrico. Dispositivos unipolares La corriente depende únicamente del flujo de portadores mayoritarios

Más detalles

Tecnología de Computadores

Tecnología de Computadores Tecnología de Computadores TEMA 4: Caracterización y modelado de dispositivos MOS Curso 2004-05 Grupo de Tecnología a de Computadores. DATSI-FI FI-UPM, Consuelo Gonzalo Martín n (GRUPO 22M) Índice 4.1

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 10: Transistores de Efecto de Campo (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Septiembre de 2009

Más detalles

Seccion 6.11: Complementary MOSFET (CMOS)

Seccion 6.11: Complementary MOSFET (CMOS) 68 Seccion 6.11: Complementary MOSFET (CMOS) Si construimos un p-channel y un n-channel MOSFET en el mismo substrate obtenemos un circuito logico. A esta configuracion se le conoce como complementary MOSFET

Más detalles

FACULTAD de INGENIERIA

FACULTAD de INGENIERIA Dr. Andres Ozols Laboratorio de Sólidos Amorfos (Depto. de Física) Grupo de Biomateriales para Prótesis GBP (Instituto de Ingeniería Biomédica) aozols@fi.uba.ar www.fi.uba.ar/~aozols TRANSISTOR DE EFECTO

Más detalles

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura:

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura: EL TRANSISTOR MOSFET * Las siglas MOSFET corresponden a la descripción de su estructura: METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR TRANSISTOR DE EFECTO DE CAMPO METAL OXIDO SEMICONDUCTOR. * En

Más detalles

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura:

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura: EL TRANSISTOR MOSFET * Las siglas MOSFET corresponden a la descripción de su estructura: METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR TRANSISTOR DE EFECTO DE CAMPO METAL OXIDO SEMICONDUCTOR. * En

Más detalles

PARTE II. TÉCNICAS DE DISEÑO DE CIRCUITOS INTEGRADOS A NIVEL DE LAYOUT

PARTE II. TÉCNICAS DE DISEÑO DE CIRCUITOS INTEGRADOS A NIVEL DE LAYOUT PARTE II. TÉCNICAS DE DISEÑO DE CIRCUITOS INTEGRADOS A NIVEL DE LAYOUT TEMA 4. Caracterización y modelado de dispositivos MOS Curso 04/05 1 Tema 4: Caracterización y modelado de dispositivos MOS 4.0 Introducción

Más detalles

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET I. FET vs BJT Su nombre se debe a que el mecanismo de control de corriente está basado en un campo eléctrico establecido por el voltaje aplicado al terminal de control, es decir, a diferencia del BJT,

Más detalles

Dispositivos de las tecnologías CMOS

Dispositivos de las tecnologías CMOS Dispositivos de las tecnologías CMOS MOSFET: canal N y canal P (únicos dispositivos en chips digitales) BJT: PNP de mala calidad (dispositivos parásitos. Se usan como diodos) Resistencias Condensadores

Más detalles

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA 18 de abril de 2015 TEMA 3.1 MOSFET Introducción Regiones de operación Efecto Early Efecto Body 2 TEMA 3.1 MOSFET Introducción Regiones

Más detalles

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación.

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Lecturas recomendadas: Circuitos Microelectrónicos, 4ª ed. Cap.5, Sedra/Smith. Ed. Oxford Circuitos Microelectrónicos,

Más detalles

V T V GS V DS =3V =V GS

V T V GS V DS =3V =V GS Guía de Ejercicios Nº4 Transistor MOS Datos generales: ε o = 8.85 x 10-12 F/m, ε r(si) = 11.7, ε r(sio 2) = 3.9 1) En un transistor n-mosfet, a) La corriente entre Source y Drain es de huecos o de electrones?

Más detalles

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones TRANSISTOR MOSFET MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones Estructura

Más detalles

Dispositivos de las tecnologías CMOS

Dispositivos de las tecnologías CMOS Dispositivos de las tecnologías CMOS MOSFET: canal N y canal P (únicos dispositivos en chips digitales) JT: PNP de mala calidad (dispositivos parásitos. Se usan como diodos) Resistencias Condensadores

Más detalles

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

MOSFET de Potencia. 1. Introducción. 2. Estructura. 3. Física de la operación del dispositivo y características estáticas de funcionamiento.

MOSFET de Potencia. 1. Introducción. 2. Estructura. 3. Física de la operación del dispositivo y características estáticas de funcionamiento. de Potencia 1. Introducción. 2. Estructura. 3. Física de la operación del dispositivo y características estáticas de funcionamiento. 4. Modelo. 5. Hoja de datos y Simulación. 6. Proceso de Hard-Switching.

Más detalles

Ecuaciones Transistor MOS

Ecuaciones Transistor MOS arámetros generales: Ecuaciones Transistor MOS Rev 1, Fernando Silveira, Mayo 8 µ: Movilidad de los portadores (electrones para nmos y huecos para pmos) C ox : Capacidad del óxido por unidad de área (igual

Más detalles

Seminario de Electrónica PLANIFICACIONES Actualización: 2ºC/2018. Planificaciones Seminario de Electrónica

Seminario de Electrónica PLANIFICACIONES Actualización: 2ºC/2018. Planificaciones Seminario de Electrónica Planificaciones 6648 - Seminario de Electrónica Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT

CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT CDg 14 1 TRANSISTORES MOSFET: Un transistor MOSFET de enriquecimiento consta de 2 terminales (dreno y fuente) de un tipo de dopado, inmersas en un sustrato

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

TEMA 7. Tecnología y fabricación de CIs. G. Fabricación de dispositivos: Etapa CMOS

TEMA 7. Tecnología y fabricación de CIs. G. Fabricación de dispositivos: Etapa CMOS TEMA 7 Tecnología y fabricación de CIs G. Fabricación de dispositivos: Etapa CMOS http://jas.eng.buffalo.edu/education/fab/invfab/index.html http://www.usna.edu/ee/ee452/lecturenotes/02-_cmos_process_steps/08_simple_cmos_fab.ppt#3

Más detalles

VLSI System Design. INEL 6080 Introduction 8/21/2015

VLSI System Design. INEL 6080 Introduction 8/21/2015 Objetivos: Desarrollar el conocimiento y las destrezas fundamentales para el análisis, diseño simulación y fabricación de circuitos integrados a gran escala (conocidos en inglés como CMOS VLSI circuits

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

MODULO Nº12 TRANSISTORES MOSFET

MODULO Nº12 TRANSISTORES MOSFET MODULO Nº12 TRANSISTORES MOSFET UNIDAD: CONVERTIDORES CC - CC TEMAS: Transistores MOSFET. Parámetros del Transistor MOSFET. Conmutación de Transistores MOSFET. OBJETIVOS: Comprender el funcionamiento del

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I de Salida Característica de Transferencia Circuitos

Más detalles

Introducción a la fabricación de Circuitos Integrados

Introducción a la fabricación de Circuitos Integrados Introducción a la Fabricación de Circuitos Integrados Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Laboratorio de Elementos Activos Introducción a la fabricación de Circuitos Integrados

Más detalles

Transistor de Efecto de Campo xido-semiconductor MOSFET

Transistor de Efecto de Campo xido-semiconductor MOSFET Transistor de Efecto de Campo Metal-Óxido xido-semiconductor MOSFET Dr. Andres Ozols FIUBA 2007 Dr. A. Ozols 1 ESTRUCTURA MOS de DOS TERMINALES Dr. A. Ozols 2 Capacitor metal-óxido-sc MOS Estructura del

Más detalles

Transistores de Efecto de Campo

Transistores de Efecto de Campo Transistores de Efecto de Camo Rev. 1.2 Curso Electrónica 1 Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la Reública, Montevideo, Uruguay Curso Electrónica 1 1 Field Effect

Más detalles

TEMA I INTRODUCCIÓN A LA MICROELECTRÓNICA

TEMA I INTRODUCCIÓN A LA MICROELECTRÓNICA TEMA I INTRODUCCIÓN A LA MICROELECTRÓNICA La Microelectrónica se puede definir como el conjunto de ciencias y técnicas con las que se realizan y fabrican circuitos electrónicos, sobre una pastilla de un

Más detalles

normalmente abiertos N M O S V TN > 0 P M O S V TP < 0

normalmente abiertos N M O S V TN > 0 P M O S V TP < 0 Transistores de Efecto de Campo de Compuerta Aislada IGFET o MOSFET enriquecimiento normalmente abiertos P M O S V TP < 0 N M O S V TN > 0 enriquecimiento NMOS V T > 0 PMOS V T < 0 zona resistiva i D =

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el campo eléctrico el que controla el flujo de cargas El

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 5 CARACTERIZACIÓN DEL

Más detalles

2.3. Modelado de los transistores MOS.

2.3. Modelado de los transistores MOS. Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 2010/11 Resumen TEMA 2. Dispositivos y modelos MOS. 2.3. Modelado de los transistores MOS. Modelos SPICE del transistor MOS. No

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

Figura Nº 4.1 (a) Circuito MOS de canal n con Carga de Deplexion (b) Disposición como Circuito Integrado CI

Figura Nº 4.1 (a) Circuito MOS de canal n con Carga de Deplexion (b) Disposición como Circuito Integrado CI Tecnología Microelectrónica Pagina 1 4- FABRICACIÓN DEL FET Describiendo el proceso secuencia de la elaboración del NMOS de acumulación y de dispositivos de deplexion, queda explicada la fabricación de

Más detalles

ELECTRONICA GENERAL. Tema 7. Transistores de Efecto de Campo

ELECTRONICA GENERAL. Tema 7. Transistores de Efecto de Campo Tema 7. Transistores de Efecto de Campo 1.- Un JFET de canal n tiene una V GSOFF = 3 V y una I DSS = 10 ma. Si le aplicamos una tensión V GS = 1,5 V. Calcular la corriente I D que circula por el dispositivo

Más detalles

Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica

Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica Prof. Tony Castillo Símbolos Electrónicos Símbolo de un FET de canal

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS 1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS

Más detalles

Transistor de Efecto de Campo con Gate aislado Es unipolar con canal tipo n o tipo p Gate = polisilicio >> dopado sustrato

Transistor de Efecto de Campo con Gate aislado Es unipolar con canal tipo n o tipo p Gate = polisilicio >> dopado sustrato TRANSISTOR MOS Transistor de Efecto de Campo con Gate aislado Es unipolar con canal tipo n o tipo p Gate = polisilicio >> dopado sustrato Consideraciones El sustrato o Bulk es la base donde se construyen

Más detalles

Revista Argentina de Trabajos Estudiantiles

Revista Argentina de Trabajos Estudiantiles Circuito Integrado para Conversión Serie Paralelo 1 S. Sondón, L. Stefanazzi, M. Di Federico, P. Julian, P. S. Mandolesi Universidad Nacional del Sur, Bahía Blanca Resumen Un conversor Serie-Paralelo/Paralelo-Serie

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA. Facultad de Ingeniería. Electrónica Análoga. 1

UNIVERSIDAD NACIONAL DE COLOMBIA. Facultad de Ingeniería. Electrónica Análoga. 1 UNIVERSIDAD NACIONAL DE COLOMBIA. Facultad de Ingeniería. Electrónica Análoga. 1 El transistor Mosfet: Aplicación en circuitos digitales y caracterización Boyacá. Yeison; Rosas. Jhonatan; Sierra, Michel.

Más detalles

Tecnologías Digitales

Tecnologías Digitales Tecnologías Digitales Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid Contenidos.Familia CMOS 2.Familia TTL 3.Características de las familias CMOS y TTL 4.Tipos

Más detalles

Introducción TEMA 1 TECNOLOGÍA DE LOS CI. ME Tema 1 Lección 1 Aspectos generales sobre diseño microelectrónico 1

Introducción TEMA 1 TECNOLOGÍA DE LOS CI. ME Tema 1 Lección 1 Aspectos generales sobre diseño microelectrónico 1 Introducción TEMA 1 TECNOLOGÍA DE LOS CI 1 ÍNDICE TEMA 1 ASPECTOS GENERALES SOBRE DISEÑO MICROELECTRONICO Evolución del diseño electrónico Proceso de fabricación y métricas de diseño Estrategias de diseño

Más detalles

TRANSISTORES DE EFECTO DE CAMPO

TRANSISTORES DE EFECTO DE CAMPO Tema 7 TRANSISTORES DE EFECTO DE CAMPO 1.- Introducción. 2.- Transistores de unión de efecto de campo (JFET). 2.1.- Estructura Básica. 2.2.- Símbolos. 2.3.- Principio de funcionamiento. 2.3.1.- Influencia

Más detalles

Seminario de Dispositivos Semiconductores 2do Cuatrimestre de Fig. 1 M1 VDD. Fig. 2

Seminario de Dispositivos Semiconductores   2do Cuatrimestre de Fig. 1 M1 VDD. Fig. 2 Guía de Ejercicios Nº7 CMOS 1) Cómo son las tensiones V DS en el circuito de dos transistores n-mosfet de la Fig. 1? V DS1 = V DS2 V DS1 > V DS2 V DS1 < V DS2 M1 VDD VG M2 Fig. 1 2) A qué tensión final

Más detalles

15/01/2015 AMPLIFICADORES CON BJT INTRODUCCIÓN

15/01/2015 AMPLIFICADORES CON BJT INTRODUCCIÓN AMPLIFICADORES CON BJT INTRODUCCIÓN 1 CONCEPTOS BASICOS SOBRE AMPLIFICADORES Red de Dos Puertos ZTH = Zo = E TH = A VNL Vi Ro 2 Circuito Equivalente de la Red de Dos Puertos Input Impedance, Zi: Output

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

El Transistor MOS: Estructura Física y Modelos de Circuito

El Transistor MOS: Estructura Física y Modelos de Circuito El Transistor MOS: Estructura Física y Modelos de ircuito B.1-1 Estructura del Transistor NMOS Transistor NMOS de enriquecimiento: B.1-1 aracterísticas físicas Transistor NMOS ox Leff L LD, ox t ox B.1-3

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO De la ecuación que define el umbral VDS = VGS -Vth

Más detalles

Universidad de Costa Rica. Experimento 3

Universidad de Costa Rica. Experimento 3 Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0308 Laboratorio Eléctrico I I ciclo 2014 Anteproyecto 3 Efrén Castro Cambronero,B11602 Marco Jara Jiménez, B2 Oldemar

Más detalles

Generador de Tensión de polarización

Generador de Tensión de polarización 16 al 1 de Septiembre de 007 Córdoba, Argentina Generador de Tensión de polarización 1.1 Descripción La tensión de polarización se extrae de una referencia de corriente comúnmente atribuida a Widlar [1,].

Más detalles

Física y Modelado de MOSFETs

Física y Modelado de MOSFETs Capítulo 3 Física y Modelado de MOSFETs Los MOSFETs (metal-oxide-semiconductor field-effect transistor) son los dispositivos de conmutación usados en circuitos integrados CMOS. 3.1 Características Básicas

Más detalles

MASTER DEGREE: Industrial Systems Engineering

MASTER DEGREE: Industrial Systems Engineering PAC- Performance-centered Adaptive Curriculum for Employment Needs Programa ERASMUS: Acción Multilateral - 517742-LLP-1-2011-1-BG-ERASMUS-ECUE MASTER DEGREE: Industrial Systems Engineering ASIGNATURA ISE3:

Más detalles

MOSFET: caracteristicas I-V 14 de Abril de 2010

MOSFET: caracteristicas I-V 14 de Abril de 2010 66.25 - Dispositivos Semiconductores - 1er Cuat. 2010 Clase 10-1 Clase 9 1 - MOSFET (I) MOSFET: caracteristicas I-V 14 de Abril de 2010 Contenido: 1. MOSFET: corte seccional, layout, símbolos 2. Descripción

Más detalles

TRANSISTOR DE EFECTO DE CAMPO (FET)

TRANSISTOR DE EFECTO DE CAMPO (FET) TRANSISTOR DE EFECTO DE CAMPO (FET) 1 METAL OXIDO SEMICONDUCTOR (MOSFET) P G B V GB Al SiO Si Capacitor de Placas Paralelas Q = C V GB 0 < V GS < V TH Q movil = 0 D N V TH Tension umbral V DS G V GS S

Más detalles

Informe de la Práctica 5: El MOSFET en pequeña

Informe de la Práctica 5: El MOSFET en pequeña Informe de la Práctica 5: El MOSFET en pequeña Edy Catalina Sánchez López. Laboratorio Electrónica Análoga II, Escuela de Mecatrónica, Facultad de Minas Universidad Nacional de Colombia Sede Medellín Resumen

Más detalles

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Lógica de resistencia transistor La lógica de resistencia-transistor RTL es una clase de circuitos digitales

Más detalles

INFORME DE. puntos de medición

INFORME DE. puntos de medición UNIVERSIDADD SIMON BOLIVAR Departamento de Electrónica y Circuitos EC 1113 Circuitos Electrónicos (Laboratorio) INFORME DE PRACTICAA Nº2 Verificar Conceptos Teóricos Relacionados con: Características Corriente-Voltaje

Más detalles

Dispositivos de Potencia

Dispositivos de Potencia Dispositivos semiconductores de potencia Transistor bipolar de potencia (BJT): simbología y estructuras C C B Flujo de Corriente B Flujo de Corriente E Estructura sencilla (mayor corriente de base) E Estructura

Más detalles

CURSO: ELECTRÓNICA INDUSTRIAL UNIDAD 1: EL FET TEORÍA PROFESOR: JORGE POLANÍA 1. EL JFET

CURSO: ELECTRÓNICA INDUSTRIAL UNIDAD 1: EL FET TEORÍA PROFESOR: JORGE POLANÍA 1. EL JFET CURSO: ELECTRÓNICA INDUSTRIAL UNIDAD 1: EL FET TEORÍA PROFESOR: JORGE POLANÍA En la electrónica moderna se usan algunos dispositivos semiconductores diferentes al diodo de unión y al transistor bipolar

Más detalles

Clase Electrostática de la estructura Metal-Óxido-Semiconductor (I) Abril de 2018

Clase Electrostática de la estructura Metal-Óxido-Semiconductor (I) Abril de 2018 86.03/66.25 - Dispositivos Semiconductores Clase 7-1 Clase 7 1 - Electrostática de la estructura Metal-Óxido-Semiconductor (I) Abril de 2018 Contenido: 1. Introducción a la estructura MOS 2. Electrostática

Más detalles

Planificaciones Seminario de Electrónica. Docente responsable: LIPOVETZKY JOSE. 1 de 5

Planificaciones Seminario de Electrónica. Docente responsable: LIPOVETZKY JOSE. 1 de 5 Planificaciones 6648 - Seminario de Electrónica Docente responsable: LIPOVETZKY JOSE 1 de 5 OBJETIVOS El objetivo fundamental de esta materia estudiar el diseño de circuitos integrados digitales y analógicos

Más detalles

TTL GATES. INEL4207 Digital Electronics

TTL GATES. INEL4207 Digital Electronics TTL GATES INEL4207 Digital Electronics Simple pseudo-ttl Inverter V CC =+5V R R C v O v IN Q 1 V CC =+5V V CC =+5V R R C i B1 R i E1 i C2 R C Q 1 v O =V L + 0.7V - Q 1 i B2 + 0.7V - v O =V L v IN =V H

Más detalles

Nacimiento de la Microelectrónica ENIAC. Tecnología Planar 1958. Circuito Integrado 1946-1954. W. Shockley J. Bardeen W. Brattain

Nacimiento de la Microelectrónica ENIAC. Tecnología Planar 1958. Circuito Integrado 1946-1954. W. Shockley J. Bardeen W. Brattain Nacimiento de la Microelectrónica ENIAC 1946-1954 1947 ELECTRONIC NUMERICAL INTEGRATOR AND COMPUTER es considerada la fecha de nacimiento de la Microelectrónica W. Shockley J. Bardeen W. Brattain Descubrieron

Más detalles

Fundamentos de Dispositivos Electrónicos

Fundamentos de Dispositivos Electrónicos Curso propedéutico de Electrónica INAOE 2010 Fundamentos de Dispositivos Electrónicos Profesores: Dr. Joel Molina Reyes Oficina 2105 e-mail: jmolina@inaoep.mx Dra. Claudia Reyes Betanzo Oficina 2107 e-mail:

Más detalles

Caracterización eléctrica de transistores MOSFET comerciales

Caracterización eléctrica de transistores MOSFET comerciales Caracterización eléctrica de transistores MOSFET comerciales Dr. Rodolfo Zola García Lozano Centro Universitario UAEM Ecatepec. Ecatepec, Edo. de Méx.,México zolagarcia@yahoo.com Dr. Jesús Ezequiel Molinar

Más detalles

Diseño de Circuitos Integrados CMOS Analógicos y Mixtos Analógico - Digitales

Diseño de Circuitos Integrados CMOS Analógicos y Mixtos Analógico - Digitales Diseño de Circuitos Integrados CMOS Analógicos y Mixtos Analógico - Digitales Fernando Silveira Pablo Aguirre F. Silveira Univ. de la República Curso CMOS AD 2014 1 Objetivos Formación en diseño de CIs

Más detalles

Tema IV. Compuertas Lógicas. Contenido. Circuitos básicos, Características eléctricas, retardos de propagación.

Tema IV. Compuertas Lógicas. Contenido. Circuitos básicos, Características eléctricas, retardos de propagación. Circuitos Digitales I Tema IV Compuertas ógicas uis Taraza, UNEXPO arquisimeto E-3213 Circuitos Digitales I - 2004 100 Ctenido! Definicies de parámetros de corriente y voltaje.! Compuertas lógicas CMOS

Más detalles

Universidad de Las Palmas de Gran Canaria Escuela Universitaria de Ingenieros Técnicos de Telecomunicación

Universidad de Las Palmas de Gran Canaria Escuela Universitaria de Ingenieros Técnicos de Telecomunicación Universidad de Las Palmas de Gran Canaria Escuela Universitaria de Ingenieros Técnicos de Telecomunicación SIMULACIÓN Y MODELADO DE LA INFLUENCIA DE LA TEMPERATURA EN UN TRANSISTOR N-MOS EN ESTÁTICA Tutor

Más detalles

EL652: Seminario de Diseño de Circuitos Integrados Análogos. Apunte de Clase, Parte 1

EL652: Seminario de Diseño de Circuitos Integrados Análogos. Apunte de Clase, Parte 1 EL652: Seminario de Diseño de Circuitos Integrados Análogos Apunte de Clase, Parte 1 Introducción La tecnología CMOS (complementary metal oxide semiconductor) ha dominado en el ámbito de la fabricación

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 12: Transistores de Efecto de Campo (3) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 10 de Septiembre de 2009

Más detalles

ÍNDICE TEMA 3 DISEÑO CMOS. El inversor CMOS Diseño CMOS estático Diseño CMOS dinámico Diseño CMOS de bajo consumo Bibliografía

ÍNDICE TEMA 3 DISEÑO CMOS. El inversor CMOS Diseño CMOS estático Diseño CMOS dinámico Diseño CMOS de bajo consumo Bibliografía ÍNDICE TEM 3 ÍNDICE DISEÑO CMOS El inversor CMOS Diseño CMOS estático Diseño CMOS dinámico Diseño CMOS de bajo consumo ibliografía ESTRUCTURS LÓGICS CMOS 1 EL INVERSOR CMOS Se trata del elemento básico

Más detalles

Clase Conclusiones generales de Dispositivos Semiconductores. 26 de noviembre de Conclusiones generales del curso

Clase Conclusiones generales de Dispositivos Semiconductores. 26 de noviembre de Conclusiones generales del curso 66.48 - Dispositivos Semiconductores - 2o Cuat. 2008 Lecture 26-1 Clase 26 1 - Conclusiones generales de Dispositivos Semiconductores 26 de noviembre de 2008 Contenido: 1. Conclusiones generales del curso

Más detalles

Implementación de un circuito integrado orientado a la enseñanza del proceso de diseño de circuitos analógicos básicos con tecnología CMOS.

Implementación de un circuito integrado orientado a la enseñanza del proceso de diseño de circuitos analógicos básicos con tecnología CMOS. 1 Implementación de un circuito integrado orientado a la enseñanza del proceso de diseño de circuitos analógicos básicos con tecnología CMOS. Gustavo. Patiño y José E. edo, Grupo de Microelectrónica y

Más detalles

CAPÍTULO 5. Amplificadores de circuitos integrados de una etapa

CAPÍTULO 5. Amplificadores de circuitos integrados de una etapa CAPÍTULO 5 Amplificadores de circuitos integrados de una etapa. Introducción 269 5.5 El amplificador diferencial Introducción 295 5.1 Filosofía del diseño de Circuito 5.5.2 El par diferencial MOS 296 Integrado

Más detalles

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación

Más detalles

Universidad de Costa Rica. Experimento X

Universidad de Costa Rica. Experimento X Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0308 Laboratorio Eléctrico I II ciclo 2013 Reporte Nombre1, Carné1 Nombre2, Carné2 Grupo 02 Profesor: 29 de marzo de 2014

Más detalles

Transistores de Efecto de Campo: MOSFET

Transistores de Efecto de Campo: MOSFET 1- Estructura MIS Transistores de Efecto de Campo: MOSFET Si bien la terminología MOS se utiliza para designar al sistema Metal-Óxido-Silicio, en el cual el óxido generalmente es dióxido de silicio (SiO

Más detalles

DISEÑO DE CURRENT CONVEYORS MEDIANTE TÉCNICAS DE BAJO VOLTAJE

DISEÑO DE CURRENT CONVEYORS MEDIANTE TÉCNICAS DE BAJO VOLTAJE DISEÑO DE CURRENT CONEYORS MEDIANTE TÉCNICAS DE BAJO OLTAJE Carlos Muñiz Montero * y Alejandro Díaz Sánchez ** *, ** Instituto Nacional de Astrofísica Óptica y Electrónica Coordinación de Electrónica,

Más detalles

Compuertas Lógicas. Contenido. Tema IV. Definiciones de parámetros de corriente y voltaje (2) Definiciones de parámetros de corriente y voltaje

Compuertas Lógicas. Contenido. Tema IV. Definiciones de parámetros de corriente y voltaje (2) Definiciones de parámetros de corriente y voltaje Tema IV Circuitos Digitales I Compuertas ógicas Ctenido! Definicies de parámetros de corriente y voltaje.! Compuertas lógicas CMOS Circuitos básicos, Características eléctricas, retardos de propagación.!

Más detalles

MATERIAL COMPLEMENTARIO TEMA I Niveles de abstracción en la descripción de sistemas digitales

MATERIAL COMPLEMENTARIO TEMA I Niveles de abstracción en la descripción de sistemas digitales MATERIAL COMPLEMENTARIO TEMA I Niveles de abstracción en la descripción de sistemas digitales Niveles de Abstracción en la Descripción de Sistemas Digitales 1 Metodologías de Diseño y Herramientas de CAD

Más detalles

Unidad 2. Circuitos electrónicos y familias lógicas

Unidad 2. Circuitos electrónicos y familias lógicas Unidad 2. Circuitos electrónicos y familias lógicas Circuitos Electrónicos Digitales E.T.S.. nformática Universidad de Sevilla Sept. 25 Jorge Juan 225 You are free to copy, distribute

Más detalles

Tema 8. Tecnología y Fabricación de CIs

Tema 8. Tecnología y Fabricación de CIs TEMA 8 Tecnología y fabricación de CIs G. Fabricación de dispositivos http://jas.eng.buffalo.edu/education/fab/pn/diodeframe.html http://jas.eng.buffalo.edu/education/fab/nmos/nmos.html 1 I. Fabricación

Más detalles