TOPOLOGIA I Hoja 7 Soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TOPOLOGIA I Hoja 7 Soluciones"

Transcripción

1 UNIVERSIDAD DE ZARAGOZA FAULTAD DE IENIAS Sección de Matemáticas urso 003/004 TOPOLOGIA I Hoja 7 Soluciones [1] a) En primer lugar, si B πb, entonces B = B 1 B donde B 1 B X y B B Y, es decir, ambos son abiertos y por lo tanto abiertos del producto. Dado que B p := {U 1 U U 1 τ X, U τ Y } es una base de X Y, basta probar que para todo (x, y) U 1 U existe B 1 B B tal que (x, y) B 1 B U 1 U. Esto es claro ya que si x U 1 y B x es base de X existe B 1 B x tal que x B 1 U 1 y análogamente para y U, con lo cual (x, y) B 1 B U 1 U. b) Probaremos primero que B = {U 1 U N ( ) X n Un τ n n N, N N} n>n también es una base de la topología producto. Observemos antes que nada que se cumple λ Λ (U λ V λ ) = ( λ Λ U ) ( λ λ Λ V λ). Veamos que B p = B. ( ) Si denotamos Σ p la subbase standar de la topología producto, se tiene que todo elemento de B es intersección finita de elementos de Σ p y por tanto esta en B p ( ) ( ) U 1 U... U n ( i>n X i ) = U 1 ( i>1 X i ) (... X 1 X... X n 1 U n ( ) X i ). X 1 U ( i> X i ) ( ) Utilizando λ Λ (U λ V λ ) = ( λ Λ U ) ( λ λ Λ V λ) vemos que B es cerrado por intersección, es decir, que si U := U 1 U... U n1 ( i>n 1 X i ) B y V := V 1 V... V n ( i>n X i ) B, entonces tomando n = máx{n 1, n } se tiene que U V = (U 1 V 1 ) (U V )... (U n V n ) ( i>n X i) B, donde U m1 := X m1 y V m := X m si m 1 > n 1 o m > n. omo además Σ p B, entonces las intersecciones finitas de miembros de Σ p son miembros de B y por tanto los elementos de B p están en B. 1 i>n

2 Análogamente al caso del producto de dos espacios topológicos (apartado a)) probaremos que B es base de X (para ello utilizaremos que B es base de X), es decir que B B y x B existe B B tal que x B B. Sea x = (x n ) n B := U 1 U N ( n>n X n). Dado que Bn es base de X n, entonces B n B n con x n B n U n para cualquier n = 1,..., N y así B := B 1 B N ( n>n X n) B y cumple que x B B. [] onsideremos f : X Z homeomorfismo. La aplicación F := f 1 Y : X Y Z Y es claramente una biyección. Así pues, basta comprobar que F (B) es una base de Z Y. Sabemos que f(b X ) es base de abiertos de Z y por el ejercicio anterior π(f(b X ), B Y ) := {B 1 B B 1 f(b X ), B B Y } es base de abiertos de Z Y. omo π(f(b X ), B Y ) = F (B) esto prueba que F es homeomorfismo. [3] a) omo B p es base de τ p, entonces (x, y) A B si y sólo si (U 1 U ) (A B) para cualquier U 1 U B p tal que (x, y) U 1 U. Esto equivale a que U 1 A y U B para todo U 1 τ X y U τ Y tal que x U 1 e y U, es decir, x A e y B y por tanto (x, y) A B. b) omo B es base de τ X, entonces x := (x n ) i n A n si y sólo si U ( n A n) para cualquier U = U 1 U... U N ( k>n X k ) B p tal que x U. Esto equivale a que U n A n para todo U n τ n n = 1,..., N N N tal que x n U n, es decir, x n A n n = 1,..., N N N y por tanto x n A n. [4] onsideremos la aplicación F : X X Y x (x, f(x)). Dicha aplicación es continua ya que π 1 F = 1 X y π F = f son ambas continuas. Veamos que F es abierta sobre la imagen. Sea U τ X, entonces F (U) = {(x, f(x)) x U} = π 1 1 (U) F (X) por ser F aplicación. Así pues, como F es inyectiva y F (X) = Γ f se tiene que X F (X)

3 [5] Elijamos un elemento y 0 Y. onsideremos la aplicación η : X X Y, definida por η(x) := (x, y 0 ) Obsérvese que p 1 η es la identidad en X (que es una aplicación continua) y que p η es la aplicación constante a y 0 (que también es una aplicación continua). Por lo tanto η es una aplicación con valores en un espacio producto; de manera que la composición de η con las proyecciones del producto son aplicaciones continuas; por tanto por una propiedad conocida de los espacios productos podemos afirmar que η es una aplicación continua. Veamos que η es abierta sobre su imagen. Para ello tomemos U X abierto, entonces η(u) = η(x) p 1 1 (U) y por lo tanto es un abierto relativo en η(x). Por último, η es obviamente inyectiva. Así pues, η es un homeomorfismo sobre su imagen. 3 [6] onsideremos el siguiente diagrama: X π Rh X/R h h h X π R X/R Demostremos primero la existencia de la aplicación h. La aplicación π R h cumple que (π R h)(x) = (π R h)(y), es decir, π R (h(x)) = π R (h(y)), si y sólo si h(x) h(y), R es decir, si y sólo si x R h y. Por lo tanto π R h factoriza por π Rh de manera biyectiva. Es decir, existe h biyectiva de modo que π R h = h π Rh. Por ejemplo, podemos definir h del siguiente modo: tomemos z X/R h, entonces existe x X tal que z = [x] h (donde [ ] h denota la clase de x respecto de la relación R h ). Entonces definimos h(z) := [h(x)]. Basta ver que h no depende del representante x elegido, es decir, si x X cumple que [x ] h = [x] h, entonces x R h x, es decir, h(x ) R h(x), lo cual equivale a que [h(x )] = [h(x)] = h(z). Es inmediato comprobar que h es biyectiva. Obsérvese que h π Rh = π R h es continua y que X/R h tiene la topología cociente respecto π Rh. Veamos que h es continua. Sea V τ R ; veamos que h 1 (V ) τ Rh, lo cual equivale a que π 1 R h (h 1 (V )) τ, es decir, que (h π Rh ) 1 (V ) = (π R h) 1 (V ) τ, lo cual es cierto porque π R h es continua. Así pues h es continua. Veamos por último que h 1 es también continua. omo π Rh h 1 = (h) 1 π R y como X/R posee la topología cociente respecto π R, entonces se deduce que h 1 es continua. Por lo tanto h es homeomorfismo.

4 4 [7] Hecho en clase [8] Puesto que R es homeomorfo a R >0 (por ejemplo por la aplicación exponencial y = e x ) entonces basta probar que R >0 S 1 es homeomorfo a (R ). Para ello consideremos la aplicación P : R >0 R (R ) definida por (ρ, θ) (ρ cos(πθ), ρ sen(πθ)). Esta aplicación es continua por ser restricción de una aplicación continua de R en R y es abierta ya que la imagen de un rectángulo abierto (ρ 1, ρ ) (θ 1, θ ) es el sector circular abierto determinado por las circunferencias ρ = ρ 1 y ρ = ρ y por las rectas θ = θ 1 y θ = θ. Dado que los rectángulos abiertos (ρ 1, ρ ) (θ 1, θ ) forman una base del producto, entonces acabamos de probar que P es abierta. Además P (ρ 1, θ 1 ) = P (ρ, θ ) si y sólo si ρ 1 = ρ y θ 1 θ Z. Por tanto P factoriza por la proyección pr : R >0 R R >0 S 1. En otras palabras, P = h pr. Además h : R >0 S 1 (R ) es continua y biyectiva (el argumento es similar al del ejercicio anterior). Veamos por último que h es abierta. Sea U abierto de R >0 S 1, entonces pr 1 (U) es abierto de R >0 R (ya que pr es continua). Por tanto P (pr 1 (U)) = h (U) es abierto de (R ) (P es abierta). Así pues h es continua, abierta y biyectiva, por tanto h es homeomorfismo. [9] Hay que probar que P 1 es homeomorfo a S 1. onsideremos la aplicación (h ) 1 : (R ) R S 1 que se ha probado en el ejercicio [8] que es un homeomorfismo. onsideremos R con la relación de equivalencia t t t t Z (denotaremos R/ 1 el espacio cociente). Dada la aplicación f : R R dada por t 1t; entonces f induce la relación de equivalencia f dada por t f t t t Z y el cociente R/ f es S 1. Por tanto, por el ejercicio [6] queda inducido un homeomorfismo f 1 : S 1 R/ 1 [ ] las clases en S 1 = R/Z y por [ ] 1 onsideremos también la aplicación cociente p 1 dado por [t] [ 1t] 1 (donde denotamos por las clases en R/ 1Z) : S 1 = R/ R/ 1 que identifica dos puntos z, z R/Z si tienen dos representantes en el intervalo [0, 1) a distancia 1 ; esto es, si z = [t] y z = [t ] con t, t [0, 1) entonces z z t t = 1. Si definimos la composición h = pr (Id p 1 ) h 1 obtenemos que h factoriza a través del cociente P 1 en una aplicación h. En efecto, dado x (R ), en términos de sus coordenadas polares pueden expresarse de froma única como x = ( ρ(x) cos πθ(x), ρ(x) sin πθ(x) ) con ρ(x) > 0 y 0 < θ(x) < 1.

5 Por tanto dos puntos x, x (R ) están relacionados si y sólo si están en el mismo rayo que pasa por el origen o lo que es lo mismo tan(πθ(x)) = tan(πθ(x)); es decir: x π x R tan(πθ(x)) = tan(πθ(x)) πθ(x) πθ(x ) = nπ θ(x) θ(x ) = n Z θ(x) θ(x ) [θ(x)] 1 = [θ(x )] 1 Luego podemos definir h(x) := h(x) = [θ(x)] 1 que es una aplicación bien definida y biyectiva. Se tiene el diagrama: P 1 π R (R ) h h R/ 1 Z omo h 1 es homeomorfismo, (Id p 1 ) es cociente y pr es abierta se tiene que h es una aplicación de identificación, y como π R es una aplicación cociente entonces puede deducirse de forma análoga que en el ejercicio [6] que h es un homeomorfismo. omo f 1 : R/ 1 Z R/Z = S1 es un homeomorfismo se tiene que f 1 1 h es un homeomorfismo de P 1 en S 1. 5

Ejercicio Demuestra que T R es efectivamente una topología.

Ejercicio Demuestra que T R es efectivamente una topología. 88 7. CONSTRUCCIÓN DE TOPOLOGÍAS Tema 3. Topologías finales: cociente Una situación análoga a la del Tema 1 se plantea cuando ciertas operaciones de conjuntos (como el cociente por una relación de equivalencia)

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Construcción de topologías

Construcción de topologías CAPíTULO 7 Construcción de topologías Por construir topologías queremos decir lo siguiente. Supongamos que un conjunto A (no espacio topológico) está relacionado de alguna manera con un espacio topológico

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Algunos resultados de Topología I. Rafael López Departamento de Geometría y Topología Universidad de Granada

Algunos resultados de Topología I. Rafael López Departamento de Geometría y Topología Universidad de Granada Algunos resultados de Topología I Rafael López Departamento de Geometría y Topología Universidad de Granada 2 Índice general 1 Espacios topológicos 5 1.1 Definición, bases de topología y de entornos..............

Más detalles

Operaciones extendidas de conjuntos

Operaciones extendidas de conjuntos 234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.

Más detalles

Algunas Propiedades que se Preservan Bajo el Producto Topológico

Algunas Propiedades que se Preservan Bajo el Producto Topológico Algunas Propiedades que se Preservan Bajo el Producto Topológico Alejandro Rodríguez Zepeda Facultad de Ciencias Físico Matemáticas, BUAP Con la dirección de: Fernando Macías Romero y David Herrera Carrasco

Más detalles

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos Topología Segundo cuatrimestre - 2015 Práctica 1 Espacios topológicos Ejemplos 1. Sea (X, τ) un espacio topológico y sea Y X. Muestre que τ Y = U Y : U τ} es una topología sobre Y. Llamamos a τ Y subespacio.

Más detalles

Γ(X, y, z) con α(1) = β(0), entonces definimos la suma de caminos

Γ(X, y, z) con α(1) = β(0), entonces definimos la suma de caminos 120 10. ESPACIOS CONEXOS Tema 3. Conexión por caminos Definiciones 10.3.1. Sea X un espacio topológico. Un camino en X es una aplicación continua α : [0, 1] X (donde [0, 1] se considera como subespacio

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

TOPOLOGÍA. Resumen Curso 2011/2012

TOPOLOGÍA. Resumen Curso 2011/2012 TOPOLOGÍA Resumen Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

TEMA III (PRIMERA PARTE): CONEXI

TEMA III (PRIMERA PARTE): CONEXI TEMA III (PRIMERA PARTE): CONEXIÓN FRANCISCO J. LÓPEZ 1. CONEXIÓN TOPOLÓGICA La conexión es uno de los invariantes topológicos más importantes. A nivel intuitivo, un objeto es conexo si consta de un sólo

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 3.1.- Relación 3. Continuidad Sea G un abierto arbitrario de la recta euclídea. La continuidad de la aplicación X A equivale a ver que H = X

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Universidad de Las Palmas de Gran Canaria

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Universidad de Las Palmas de Gran Canaria Soluciones a los ejercicios propuestos: Matemáticas III. Curso 10 11 1 Universidad de Las Palmas de Gran Canaria Departamento de Métodos Cuantitativos en Economía y Gestión Matemáticas III Ejercicios propuestos

Más detalles

Variedades diferenciables

Variedades diferenciables Capítulo VII Variedades diferenciables 1. Preliminares topológicos En esta sección vamos a recordar algunas nociones básicas de topología, relativas a las topologías iniciales y a las topologías finales,

Más detalles

ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA

ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA Curso 2008/2009 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición

Más detalles

Universidad Nacional Pedro Ruiz Gallo Facultad de Ciencias Físicas y Matemáticas Escuela Profesional de Matemática

Universidad Nacional Pedro Ruiz Gallo Facultad de Ciencias Físicas y Matemáticas Escuela Profesional de Matemática Universidad Nacional Pedro Ruiz Gallo Facultad de Ciencias Físicas y Matemáticas Escuela Profesional de Matemática TEOREMAS DE ELEVACIÓN EN EL GRUPO FUNDAMENTAL DE ESPACIOS RECUBRIDORES Tesis presentada

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

Función inversa Diferencial de la inversa. Tema 11

Función inversa Diferencial de la inversa. Tema 11 Tema 11 Función inversa Como segundo resultado fundamental del cálculo diferencial, estudiaremos ahora la posible existencia, así como la diferenciabilidad, de la función inversa de una función diferenciable.

Más detalles

Topología El grupo fundamental y el teorema de Seifert-van Kampen

Topología El grupo fundamental y el teorema de Seifert-van Kampen El grupo fundamental y el teorema de Seifert-van Kampen C. Eugenio Echagüe; Gisela Tartaglia Facultad de Ciencias Exactas, Universidad Nacional de La Plata 25 de julio de 2008 1 Índice 1. Homotopía de

Más detalles

ESPACIOS RECUBRIDORES FRANCISCO URBANO

ESPACIOS RECUBRIDORES FRANCISCO URBANO ESPACIOS RECUBRIDORES FRANCISCO URBANO 1. Introducción y ejemplos Definición 1. Un espacio topológico X es localmente arco-conexo si todo punto posee una base de entornos arco-conexos, esto es si para

Más detalles

Formulaciones equivalentes del Axioma de Elección

Formulaciones equivalentes del Axioma de Elección Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea V un c.a.a.

Más detalles

Continuidad de funciones reales y vectoriales de variable vectorial

Continuidad de funciones reales y vectoriales de variable vectorial Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :

Más detalles

Axiomas de recubrimiento

Axiomas de recubrimiento CAPíTULO 8 Axiomas de recubrimiento Dedicaremos este capítulo a un nuevo tipo de propiedades topológicas: aquellas que se refieren a la posibilidad de extraer subrecubrimientos de cardinal finito o numerable

Más detalles

Ejercicios de Álgebra Básica. Curso 2014/15

Ejercicios de Álgebra Básica. Curso 2014/15 Ejercicios de Álgebra Básica. Curso 2014/15 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

José Luis Navarro Departamento de Matemáticas Universidad de Zaragoza

José Luis Navarro Departamento de Matemáticas Universidad de Zaragoza TOPOLOGÍA GENERAL II José Luis Navarro Departamento de Matemáticas Universidad de Zaragoza (1) Introducción (2) Topología Producto (3) Topología Cociente (4) Separación (5) Compacidad (6) Conexión (7)

Más detalles

Funciones de R m R n

Funciones de R m R n Funciones de R n R m Funciones de R m R n Una funcion f : R n R m es una función cuyo dominio es un subconjunto Ω R n. Denotada por f : Ω R m donde a cada x R n f le asigna un vector f(x) R m. Ejemplo.-

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 1

ÁLGEBRA LINEAL I Soluciones a la Práctica 1 ÁLGEBRA LINEAL I Soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2015 2016) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar} Hallar:

Más detalles

CONJUNTOS Y NÚMEROS. HOJA 2

CONJUNTOS Y NÚMEROS. HOJA 2 CONJUNTOS Y NÚMEROS. HOJA 2 Conjuntos 1) Vamos a demostrar que, dado un conjunto B de n búhos, todos los búhos de B son del mismo color. Lo haremos por inducción sobre n. a) Si n = 1 sólo hay un búho,

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

Topologías de Alexandroff: tres puntos de vista diferentes

Topologías de Alexandroff: tres puntos de vista diferentes Topologías de Alexandroff: tres puntos de vista diferentes Jose Edilberto Robles Castro Licenciado en Matemáticas Código: 830263 Universidad Nacional de Colombia Facultad de Ciencias Departamento de Matemáticas

Más detalles

Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.)

Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.) Tarea 1. (Teoría de Conjuntos.) Estos no son obligatorios, pero sería bueno que los hicieran, si es que son ciertos. a) Ley Asociativa. Sea I conjunto y {J i } familia de conjuntos. Si K := J i, entonces

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Descomposiciones de Heegaard

Descomposiciones de Heegaard Descomposiciones de Heegaard Jair Remigio Juárez Universidad Juárez Autónoma de Tabasco 09-12 de diciembre de 2013 Jair Remigio (DACB-UJAT) Descomposiciones de Heegaard 09-12/12/2013 1 / 87 Introducción

Más detalles

Espacios Conexos Espacio Conexo

Espacios Conexos Espacio Conexo Capítulo 4 Espacios Conexos Una forma natural de construir nuevos espacios topológicos es pegando en forma disjunta, es decir. Sean (X,T X ),(Y,T Y ) dos espacios topológicos, luego definimos Z = X {0}

Más detalles

Función inversa Diferencial de la inversa. Tema 11

Función inversa Diferencial de la inversa. Tema 11 Tema 11 Función inversa Como segundo resultado fundamental del cálculo diferencial, estudiaremos ahora la posible existencia, así como la diferenciabilidad, de la función inversa de una función diferenciable.

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 4.1.- Relación 4. Compacidad. Conexión Supongamos que A es compacto y sea A α Λ B α un recubrimiento de A por bolas abiertas. Entonces, como

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

PROBLEMAS DE TOPOLOGÍA Licenciatura de Matemáticas, curso Espacios topológicos

PROBLEMAS DE TOPOLOGÍA Licenciatura de Matemáticas, curso Espacios topológicos PROBLEMAS DE TOPOLOGÍA Licenciatura de Matemáticas, curso 2006-07 Espacios topológicos 1.- Determinar el número de topologías distintas en un conjunto de tres elementos. 2.- Sobre un conjunto X, consideremos

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Acciones de grupos sobre espacios topológicos

Acciones de grupos sobre espacios topológicos Acciones de grupos sobre espacios topológicos Santiago Biec Amigo Trabajo académicamente dirigido por Elena Martín Peinador 1 Introducción Este trabajo está dividido en cuatro capítulos. El primero introduce

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

Un elemento de un monoide se dice que es inversible si tiene elemento inverso.

Un elemento de un monoide se dice que es inversible si tiene elemento inverso. Tema 1: Semigrupos 1 Tema 1: Semigrupos 1. Semigrupos: Conceptos fundamentales. Recordemos que un sistema algebraico es un conjunto S con una o varias operaciones sobre él, siendo una operación ó ley de

Más detalles

Algebra I (Doble Grado Matemáticas-Informática)

Algebra I (Doble Grado Matemáticas-Informática) Algebra I (Doble Grado Matemáticas-Informática) Relación 1 Curso 2017-2018 Conjuntos y aplicaciones. Ejercicio 1. Construir todas las aplicaciones del conjunto X = {a, b, c} en el conjunto Y = {1, 2} y

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea Z un conjunto

Más detalles

Segundo Cuatrimestre 2005 Práctica 4

Segundo Cuatrimestre 2005 Práctica 4 Topología Segundo Cuatrimestre 2005 Práctica 4 Compacidad. 1) Sea X un espacio topológico. Probar que son equivalentes: a) X es cuasi-compacto. b) Para todo espacio topológico Y, y para todo abierto W

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2016 2017) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar}

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos:

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: TEMA 1 Teoría de Conjuntos Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: i) A = { }, B = {{ }} ii) A = {, { }}, B = {, {, { }}} iii) A = {{ }, {, { }}}, B = {{ }} Ejercicio 1.2. Dar

Más detalles

Teoría de la Dimensión

Teoría de la Dimensión Capítulo II Teoría de la Dimensión En este capítulo introduciremos una de las propiedades más importantes que tienen los espacios vectoriales: la dimensión. Dos son los modos posibles de llegar a la noción

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Axiomas de separación

Axiomas de separación CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y

Más detalles

A mis padres: José Vicente Vargas López María Rutilia Martínez Morales. A mis hermanos: Cristina, Humberto, Liliana y Nely.

A mis padres: José Vicente Vargas López María Rutilia Martínez Morales. A mis hermanos: Cristina, Humberto, Liliana y Nely. Dedico esta tesis de licenciatura especialmente: A mis padres: José Vicente Vargas López María Rutilia Martínez Morales A mis hermanos: Cristina, Humberto, Liliana y Nely. A mi novio: Francisco Vázquez

Más detalles

Introducción a la topología

Introducción a la topología Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.

Más detalles

Problemas resueltos del Boletín 1

Problemas resueltos del Boletín 1 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2014 2015) 3. Sea f : X Y una aplicación, y sean A, B dos subconjuntos de X. Decidir razonadamente si las siguientes

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre Topología Segundo cuatrimestre - 2012 Práctica 1 Topologías Ejemplos de topologías 1. Sea X un conjunto. (a) Sea τ = {U P(X) : X \ U es finito} { }. Probar que τ es una topología sobre X, a la que llamamos

Más detalles

TEMA II: APLICACIONES ENTRE ESPACIOS TOPOLÓGICOS 1. INTRODUCCIÓN

TEMA II: APLICACIONES ENTRE ESPACIOS TOPOLÓGICOS 1. INTRODUCCIÓN TEMA II: APLICACIONES ENTRE ESPACIOS TOPOLÓGICOS FRANCISCO J. LÓPEZ 1. INTRODUCCIÓN Las aplicaciones continuas son las transformaciones naturales entre espacios topológicos. Hablando sin excesivo rigor,

Más detalles

EL GRUPO FUNDAMENTAL FRANCISCO URBANO

EL GRUPO FUNDAMENTAL FRANCISCO URBANO EL GRUPO FUNDAMENTAL FRANCISCO URBANO 1. Espacios conexos por arcos Definición 1. Un arco o camino (continuo) en un espacio topológico X es una aplicación continua f : [a, b] X, siendo [a, b] el intervalo

Más detalles

Pauta 11 : Conjuntos Infinitos

Pauta 11 : Conjuntos Infinitos MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Varios de numerabilidad] a) Considere el conjunto Pauta 11 : Conjuntos Infinitos 2 de junio del 2017 C = {..., 16,

Más detalles

Espacios fuertemente T 1

Espacios fuertemente T 1 Revista INTEGRACIÓN Universidad Industrial de Santander Escuela de Matemáticas Vol. 16, No 2, p. 87 100, julio diciembre de 1998 Espacios fuertemente T 1 Néstor Raúl Pachón Rubiano * Resumen Las topologías

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Álgebra Básica C Grado en Matemáticas Examen 1

Álgebra Básica C Grado en Matemáticas Examen 1 Álgebra Básica C Grado en Matemáticas Examen 1 Lee detenidamente las preguntas antes de contestarlas. Justifica todas tus respuestas. Evita los cálculos innecesarios y las repeticiones. Nombre y apellido(s):

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Figura 1.7 Además, para poliedros específicos puede ser muy fácil establecer una correspondencia adecuada entre sus puntos y los de la esfera. Por eje

Figura 1.7 Además, para poliedros específicos puede ser muy fácil establecer una correspondencia adecuada entre sus puntos y los de la esfera. Por eje 1.2 Equivalencia topológica Existen diversas demostraciones del teorema de Euler. Hemos elegido la anterior por dos razones. La primera, su elegancia; muchas de las restantes demostraciones usan inducción

Más detalles

Semana 09[1/14] Cardinalidad. 25 de abril de Cardinalidad

Semana 09[1/14] Cardinalidad. 25 de abril de Cardinalidad Semana 09[1/14] 25 de abril de 2007 Semana 09[2/14] Conjunto no numerables Vimos cuáles son los conjuntos numerables, una serie de propiedades acerca de ellos, y conocimos varios conjuntos numerables,

Más detalles

Ejercicios de Álgebra Básica. Curso 2017/18

Ejercicios de Álgebra Básica. Curso 2017/18 Ejercicios de Álgebra Básica. Curso 2017/18 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio.1.- Relación. Espacios topológicos. Operadores Sea X un conjunto y x 0 X. Queremos probar que la familia T x0 = {X} {A X;x 0 / A} es una topología

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Tesis de Maestría en Matemática Aplicada Acerca de la Clasificación Topológica y Diferenciable de Superficies Compactas Perteneciente: Asesor: Abanto Silva, Dimas Percy

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2010 2011) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x > 4} C = {x Z x 2 < 20} D = {x N x es primo}

Más detalles

Ampliación de Topología

Ampliación de Topología Ampliación de Topología Problemas. Curso 2003 04 Homotopía de aplicaciones y tipos de homotopía 1. Sea X un espacio, y sea f: S 1 X una aplicación continua. Demostrar que f es homótopa a una aplicación

Más detalles

Funciones Continuas Definiciones y Propiedades

Funciones Continuas Definiciones y Propiedades Capítulo 2 Funciones Continuas 2.1. Definiciones Propiedades Sean (X,T X ) e (Y,T Y ) dos espacios topológicos una función f : X Y. Se dice que f es continua, si sólo si, para todo V T Y, se tiene f 1

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d.

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d. Tema 3: Funciones Primitivas Recursivas Caracterización de clases de funciones: Maneras básicas de definir una clase de funciones C: Descriptiva: C satisface ciertas propiedades. (Ejemplo: la clase GCOMP)

Más detalles

Solución de problemas III 1

Solución de problemas III 1 Solución de problemas III Álgebra II Curso 25-6. Espacio Afín.. Ejercicios Ejercicio.4.3 Encontrar la expresión analítica de las siguientes aplicaciones afines de R 2 : a Giro de centro (, ángulo π/2 b

Más detalles