UNIVERSIDAD DE BUENOS AIRES
|
|
|
- José Luis Correa Torregrosa
- hace 10 años
- Vistas:
Transcripción
1 UNIVERSIDAD DE BUENOS AIRES FACULTAD DE FILOSOFÍA Y LETRAS Departamento de Geografía Climatología Carlos E. Ereño Silvia Núñez Unidad 2.1 Año 2004
2 EL BALANCE DE ENERGIA DE LA TIERRA * EL SOL: FUENTE DE ENERGIA El Sol, principal fuente de energía de nuestro planeta, es la estrella más cercana a la Tierra. El Sol es el cuerpo dominante del sistema solar, constituyendo más del 99% de su masa completa. Es una esfera de gas luminoso de km de diámetro. Su masa es de 1, gramos, unas 743 veces la masa total de todos los planetas del sistema solar o alrededor de veces la masa de la Tierra. El sol genera energía mediante reacciones de fusión nuclear. Aunque la temperatura de su núcleo está cercanas a los K, la temperatura de la superficie del sol (la fotosfera) es de solo unos K. En términos de las temperaturas de las estrellas este es un valor promedio, y el Sol es una estrella media en todo aspecto. Es tan solo una de las 100 mil millones de estrellas de la vía láctea. El Sol es tan macizo que su material constituyente está extremadamente comprimido por la gravedad (la presión del aire es unos 100 mil millones de veces superior a la de la Tierra). Todos los interesantes fenómenos gravitacionales planetarios e interplanetarios son despreciables en comparación con la fuerza ejercida por el Sol. Su estructura es en extremo compleja y es allí donde tienen lugar las reacciones nucleares que son el origen de la energía solar. La energía radiada por el Sol es producida durante la conversión de átomos de hidrógeno (H) a helio (He). Debido a que por el efecto de la intensa presión los átomos están tan estrechamente ligados se funden en una reacción para generar helio y luz, tal como se indica en la próxima figura. Por segundo el Sol gasta toneladas de protones (H) de esta manera y solo una pequeña fracción (0,7%) se convierte en luz. 27
3 La capa más externa del CUERPO SOLAR es la que, prácticamente, emite casi toda la energía observada. Dicha capa, que se conoce con el nombre de FOTOSFERA, tiene un espesor de apenas 200 ó 300 km, esto es, no excede el milésimo del radio solar. Por encima de la fotosfera se extiende la ATMÓSFERA SOLAR, luminosa y transparente. La primera región se denomina CROMOSFERA y ocupa un espesor del orden de los km. En la parte inferior de la cromosfera la temperatura cae a unos 4000 K, para luego volver a aumentar con la altura, a unos 7000 km de altura alcanza una temperatura de unos 8000 K. Durante un eclipse, la cromosfera aparece como un aro rosado. Por encima de la cromosfera y a lo largo de una extensión de varios millones de kilómetros, se halla la envoltura más externa denominada CORONA SOLAR. La corona es tan clara, como un halo, que solamente se puede apreciar durante un eclipse solar, como en la figura siguiente: 28
4 La temperatura de la corona es muy alta, alrededor de un millón de grados, de modo que desde allí se emite radiación de muy corta longitud de onda (rayos X). Aun no es bien sabido a qué se debe este gran aumento de la temperatura. Cómo puede ser posible que la temperatura de la superficie del Sol sea tan baja, solo 6000 K, mientras la atmósfera exterior es tan caliente? Muy probablemente esto tiene que ver con los complicados campos magnéticos solares, pero todavía falta ser demostrado. Desde la corona se emiten corrientes de partículas solares a temperaturas de alrededor de un millón de grados. Se las conoce como VIENTOS SOLARES y se desplazan a una velocidad de unos 450 km/sg. En la superficie de la fotosfera suelen aparecer formaciones oscuras conocidas con el nombre de MANCHAS SOLARES. Ellas indican la presencia de procesos eruptivos en la superficie del Sol, durante los cuales se producen desprendimientos de materia solar (ver figura página anterior). Asimismo, cerca de los bordes del disco solar aparecen formaciones fibrosas y brillantes denominadas FACULAS. En la cromosfera y en la corona solar aparecen formaciones muy variables conocidas como FLOCULOS, prominencias o protuberancias y llamas cromosféricas. El total de todos estos fenómenos, que están muy interconectados entre sí, constituye la ACTIVIDAD SOLAR, altamente variable, pero que obedece a ciclos definidos. 29
5 El Sol es una fuente muy estable de energía; su emisión radiativa sobre la Tierra, llamada constante solar, es de 137 ergios por metro cuadrado por segundo (ergs/m 2 /sg), o 1,98 calorías por centímetro cuadrado por minuto (cal/cm 2 /min) y varía no más del 0,1 %. Superpuesto sobre esta estrella estable, sin embargo, existe un interesante ciclo de actividad magnética de unos 11 años, manifestado por regiones de intensos campos magnéticos transitorios llamados manchas solares. Muchos fenómenos que tienen lugar en la atmósfera están relacionados con modificaciones en la actividad solar, especialmente algunos que se manifiestan en la atmósfera superior, tales como ionización, auroras boreales, tormentas magnéticas, etc. Los distintos procesos que tienen lugar en cada una de las capas solares van acompañados de: (a) emisión corpuscular: se refiere a materia solar que es expulsada fuera del Sol a través de procesos explosivos (erupciones) que tienen lugar en sus capas superficiales, conocidas como "manchas solares". La nube corpuscular se desplaza a una velocidad media de 2000 km/sg; luego, tarda aproximadamente unas 20 horas en recorrer los km que separan a la Tierra del Sol. Ya dentro de la atmósfera terrestre, la trayectoria de la nube corpuscular está definida por el campo geomagnético terrestre: los corpúsculos entran a lo largo de las líneas de fuerza e inciden, finalmente, en ambos polos magnéticos originando, en alturas entre 100 y 1000 km de altura sobre la superficie del planeta, fenómenos tales como las auroras boreales, tormentas geomagnéticas y, además, modificaciones en las capas eléctricas de la atmósfera de manera tal que no hay reflexión de las ondas de radio y se cortan las comunicaciones (radio black out). (b) emisión de energía electromagnética. A la emisión principal que corresponde a la fotosfera, y que es muy similar a la de un cuerpo negro a 5800 K, se superponen la absorción y la emisión de la cromosfera y de la corona solar. La energía electromagnética emitida se propaga por el espacio interplanetario a la velocidad de la luz ( km/s) y, por ende, llega a la Tierra en tan sólo 8 minutos. A esta forma de transmisión de la energía se la denomina RADIACION y se caracteriza por no requerir un medio material para que se lleve a cabo la propagación (entre la Tierra y el Sol existe una mínima cantidad de materia, de allí que la radiación tome una relevancia especial) y por la velocidad de la propagación de la energía. * LAS LEYES DE LA RADIACION ELECTROMAGNETICA 1. El cuerpo negro Cuando la energía electromagnética alcanza a un cuerpo cualquiera, parte de ella es reflejada por el cuerpo, parte es absorbida y parte es transmitida, luego de atravesar el cuerpo. El "cuerpo negro" es un material que absorbe todas las radiaciones incidentes sobre su superficie, es decir, nada de refleja ni se transmite. A su vez, a una temperatura dada, la emisión de un cuerpo negro correspondiente a cada longitud de onda es la máxima posible. La mayor parte de los sólidos y líquidos se comportan como cuerpos negros. Pero no ocurre así con los gases. 2. La ley de Stefan-Boltzman Si E es la energía irradiada por cada centímetro cuadrado de un cuerpo negro (radiador perfecto) durante 1 segundo, y T es la temperatura absoluta de este radiador: 30
6 E ~ T 4 más exactamente: E = σ T 4 (ley de Stefan-Boltzman) donde σ = cal cm -2 K -4 seg -1 = 5, watt m -2 K -4 Ejemplos: E (300 K) = 453 w m -2 E (200 K) = 90,7 w m -2 De aquí es posible deducir que: (a) (b) (c) La energía emitida por un cuerpo negro depende de su temperatura absoluta. Cuanto más caliente está, más emite. A 0 K, la emisión de energía es cero. El espacio interestelar debería tener, entonces, una temperatura de 0 K. Sin embargo, como este espacio está ocupado por un gas de bajísima densidad denominado "gas interestelar", su temperatura es de aproximadamente 3 ó 4 K. Todo cuerpo cuya temperatura supere el 0 K, emite energía electromagnética al medio circundante. 3. La ley de Planck La radiación emitida por un cuerpo negro a una temperatura T, se distribuye sobre distintas longitudes de onda. Su distribución está definida por la ley de Planck: E λ = C 1 λ -5 {EXP[(-C 2 / λ T) - 1]} -1 donde: C 1 y C 2 son constantes λ es la longitud de onda E λ es la energía emitida en la longitud de onda λ Para una temperatura absoluta T, el espectro de emisión del cuerpo negro tiene la forma de la figura de la izquierda. 31
7 4. Variación del espectro de emisión con la temperatura - ley de Wien El espectro de emisión del cuerpo negro depende de su temperatura, como lo muestra el siguiente gráfico: En ella podemos apreciar que: (a) (b) (c) a mayores temperaturas, el espectro de emisión corresponde a longitudes de onda más cortas; la máxima emisión es mayor a temperaturas mayores. la longitud de onda en la cual se produce el pico de emisión es menor a mayores temperaturas: λpico T = cm K (ley de Wien) 5. Emisividad de los cuerpos reales El cuerpo negro es una hipótesis teórica. En la realidad, ningún cuerpo tiene un comportamiento idéntico al negro. A manera de ejemplo, se citan a continuación las emisividades de algunos cuerpos reales, en relación con la del cuerpo negro: SUSTANCIA EMISIVIDAD (%) Agua 92% a 96% Nieve 82% a 99,5% Arena 84% a 95% Bosques 90% Pradera 90% Piel humana 90% Papel de aluminio 1% a 5% CONCLUSIONES: Toda materia que no se encuentra en el cero absoluto de temperatura (0 Kelvin) emite energía hacia el espacio circundante, en forma de ondas electromagnéticas. Esta emisión es directamente proporcional a la temperatura del cuerpo: cuanto más caliente está, más emite. Del mismo modo, las longitudes de onda en las cuales se produce la emisión también son función de la temperatura del cuerpo. Cuanto mayor es la temperatura, tanto menor es la longitud de onda de las ondas electromagnéticas emitidas. 32
8 Si se sabe que la temperatura de la superficie del cuerpo solar es del orden de los 6000 K y la de la superficie de la Tierra es del orden de 288 K, resulta fácil deducir que el Sol irradiará en longitudes de onda más cortas que la Tierra. De allí que la radiación solar sea radiación de onda corta mientras que la radiación terrestre sea radiación de onda larga. La radiación solar presenta un pico en la zona media del espectro (λ = µ) mientras que la radiación terrestre, mucho más débil, tiene un pico de intensidad en λ = 10 µ y su espectro de emisión oscila, aproximadamente, entre 4 µ y 100 µ (infrarrojo C). * ENERGIA SOLAR RECIBIDA POR CADA CM 2 DE LA TIERRA, EN UN DIA Sabemos que la constante solar, S 0, es el flujo de energía proveniente del Sol que llega al tope de la atmósfera, sobre una unidad de superficie (cm 2 ) ubicada en forma perpendicular a la dirección de los rayos solares, en un intervalo de tiempo (min), cuando la Tierra se encuentra a la distancia media Tierra-Sol. Su valor es de aproximadamente 2 cal/min cm 2. La energía recibida por la Tierra es la que captaría un disco de radio igual al terrestre (6400 km), ubicado a la distancia media Tierra-Sol: Energía Recibida por la Tierra = π R 2 T S 0 A su vez, esta energía se distribuye en toda su superficie (esférica). Luego, cada cm 2 recibirá: 2 πr S 2 4πR 2cal / cm 4 min 2 T 0 = en un día (1440 minutos), recibirá: cal/cm 2 T 0,5cal / cm 2 min * DISTRIBUCION ESPECTRAL DE LA ENERGIA SOLAR La energía electromagnética emitida por el Sol cubre un amplio rango de longitudes de onda que se extiende desde cm hasta varias decenas de metros. No obstante, el espectro observado en la superficie terrestre se caracteriza por longitudes de onda que oscilan entre 0,2863 micrones (1 micrón = 1 µ = 10-4 cm) y 3.0 micrones. De este espectro, el 9% corresponde a radiación ultravioleta, 45% a luz visible y el 46% restante al infrarrojo. 33
9 Los rayos gamma consisten en radiación cósmica y corpuscular procedente del Sol y del espacio (estrellas fijas-procesos nucleares). Originan la desintegración del átomo gaseoso en la alta atmósfera, produciendo electrones y mesones de alta velocidad, así como también rayos gamma que representan una radiación secundaria. * LA ATMOSFERA TERRESTRE La atmósfera terrestre es una envoltura gaseosa que rodea a la Tierra y la acompaña en sus movimientos. Esta envoltura se encuentra "sujeta" a nuestro planeta debido a la presencia del campo gravitatorio terrestre. Se trata de una mezcla de gases que, por lo menos hasta unos km de altura sobre el nivel del suelo, conserva la siguiente composición en volumen: Componente Fórmula Concentración (%) Nitrógeno N 2 78,1 Oxígeno O 2 20,9 Argón Ar 0,93 Dióxido de carbono CO 2 0,035 34
10 Componente Fórmula Concentración (%) Neón Ne 0,0018 Helio He 0,0005 Metano CH 4 0,00017 Criptón Kr 0,00011 Hidrógeno H 2 0,00005 Ozono O 3 0, , A esta composición gaseosa, debe sumarse la presencia de partículas sólidas y líquidas en suspensión, que conforman el AEROSOL ATMOSFERICO. * COMPORTAMIENTO DE LA ATMOSFERA FRENTE A LA RADIACION SOLAR La radiación de longitudes de onda inferiores a 0.1 micrón (la cual representa 3 partes en ) es completamente absorbida por la atmósfera a una altura que oscila entre 80 km y 200 km, produciendo allí el fenómeno de fotoionización de los gases atmosféricos. La radiación cuya longitud de onda oscila entre 0.1 micrón y micrones (la cual representa 1 parte en ) es completamente absorbida a alturas que oscilan entre 80 km y 150 km, debido a la fotodisociación del oxígeno molecular. A su vez, entre 30 km y 60 km de altura, tiene lugar la fotodisociación del gas ozono la cual absorbe completamente la radiación de longitudes de onda entre micrones y micrones (la cual representa un 1.75% del total de la energía entrante). Banda del espectro solar Fracción del total de energía Capa donde absorbe Mecanismo de absorción Fracción absorbida λ < 0.1µ 3: km fotoionización Total 0.1 µ λ < µ 1: km fotodisociación O 2 Total µ λ 0,2863 µ 1,75% km fotodisociación 0 3 Total λ > µ 98% 0-10 km vapor de agua 16% A su vez, la radiación solar de longitudes de onda mayores a 0,2863 micrones (la cual representa un 98% de la energía entrante al sistema) sufre una atenuación debido a la absorción moderada del vapor de agua presente en las capas bajas de la atmósfera (en los primeros 10 km de altura sobre la superficie terrestre. El vapor de agua absorbe en la banda de longitudes de onda comprendidas entre 0,2863 y 2,3 micrones, representando esta absorción un 16% de la radiación solar total, aproximadamente. * COMPORTAMIENTO DE LA ATMOSFERA FRENTE A LA RADIACION TERRESTRE La atmósfera terrestre se comporta como un medio: (a) OPACO (absorción total) para: 35
11 Banda Mecanismo de absorción 5.5 µ λ 7.0 µ fuerte banda de absorción del vapor de agua (H 2 O) µ λ 16.0 µ angosta pero intensa banda de absorción del dióxido de carbono (CO 2 ). λ > 24 µ absorción total por vapor de agua (H 2 O). (b) SEMI-TRANSPARENTE (absorción débil o moderada) para: Banda Mecanismo de absorción 4.0 µ λ 5.5 µ absorción por dióxido de carbono (CO 2 ), vapor de agua (H 2 O) y metano (CH 4 ). 7.0 µ λ 8.5 µ absorción por óxido nitroso (N 2 O) y vapor de agua (H 2 O). 11 µ < λ 24 µ absorción por vapor de agua (H 2 O). (c) TRANSPARENTE (no hay procesos de absorción) para las longitudes de onda comprendidas entre 8.5 µ y 11 µ. Esta región del espectro se denomina "ventana de la atmósfera". No obstante, cabe mencionar la presencia de una angosta pero fuerte banda de absorción del ozono de capas bajas, comprendida entre 9 y 10 micrones. Puesto que este gas siempre se ha encontrado en pequeñísimas proporciones en las capas bajas de la atmósfera, su efecto se ha considerado despreciable. No obstante, en las últimas décadas, su aumento por razones antrópicas ha comenzado a disminuir la ventana de la atmósfera. A manera de resumen, podríamos presentar el comportamiento de la atmósfera frente a la radiación solar y terrestre de la siguiente manera: Componente Filtrado completo Componente Filtrado moderado o débil Transparencia O 2, O 3 λ µ CO 2, H 2 O 2.3µ λ 3.0µ H 2 O 5.5µ λ 7.0µ CO 2, H 2 O, CH 4 3.0µ < λ < 5.5µ CO 2 12µ λ 16µ N 2 O, H 2 O 7.0µ < λ < 8.5 µ 8.5 µ λ 11µ H 2 O λ > 24µ H 2 O 11µ < λ < 24µ 36
12 * TOTAL DE ENERGIA IRRADIADA POR LA TIERRA prevé: Considerando a la Tierra un cuerpo negro que emite a 288 k (15 C), la ley de Stefan-Boltzman puesto que un día tiene segundos: E = σ T 4 = * cal cm -2 seg -1 K -4 * K 4 E = σ T 4 = * * cal cm -2 día -1 K -4 * K 4 = = 11.9 * 10-8 * cal cm -2 día -1 = = 11.9 * 10-8 * 69 * 10 8 cal cm -2 día -1 = = 821 cal/cm 2 día Gracias a los procesos de absorción selectiva y re-emisión de sus gases minoritarios (efecto de invernadero), la atmósfera devuelve, aproximadamente, unas 692 cal/cm 2 día. * EL BALANCE DE ENERGIA EN EL SISTEMA TIERRA-ATMOSFERA La radiación solar que llega a la superficie terrestre se encuentra atenuada por diversos procesos que se producen a lo largo de su recorrido a través de la atmósfera terrestre. Estos procesos son: (a) (b) (c) absorción selectiva por los gases atmosféricos (principalmente el oxígeno, el ozono y el dióxido de carbono), el vapor de agua, nubes y partículas en suspensión en el aire; difusión molecular (o de Rayleigh), debida a las moléculas gaseosas y al vapor de agua; reflexión difusa, producida por las irregularidades ópticas de las superficies reflectoras: nubes y suspensiones (aerosoles o turbidez). 37
13 Como consecuencia de estos procesos, la radiación solar que llega a la superficie terrestre es igual a: RADIACION SOLAR GLOBAL = 14% + 26% + 12% = 52% (difusa (directa) (difusa) por nubes) Parte de esta radiación (6%) es reflejada por la superficie de la Tierra, sin producir calentamiento alguno. La proporción reflejada, denominada ALBEDO, depende del tipo de superficie considerada (color y textura): Superficie Tierra Bosques Albedo 8% - 40% (según tipo y estado) 10% - 20% (según tipo de árbol y densidad del follaje) Hierba 25% Ciudades 14% - 18% Arena 35% - 45% Nieve fresca 75% - 95% Nieve vieja 50% Agua en calma 2% - 3% (altura del Sol > 60 ) > 40% (altura del Sol 5 ) El albedo de las nubes depende de su espesor (aumenta con él) y de su tipo. Para una nube de 38
14 300 m de espesor, su albedo puede variar entre 40% y 73%. Debido a esta variación tan grande, es difícil dar un albedo medio para las nubes. Comúnmente, se suele tomar un valor entre 50% y 55%. El albedo del sistema Tierra-Atmósfera: A = A SUELO + A MAR + A NUBES se suele tomar como del 35%, aunque medidas recientes indican que este valor es excesivo y que el mismo debe oscilar alrededor del 30%. La componente mayor corresponde a las nubes y la menor a la superficie sólida de la Tierra. Si aceptamos un albedo medio para la superficie terrestre del 12%: RADIACION SOLAR GLOBAL REFLEJADA POR EL SUELO ALBEDO = X 100 = 12% RADIACION SOLAR GLOBAL INCIDENTE EN EL SUELO entonces: RADIACION SOLAR GLOBAL REFLEJADA POR EL SUELO = 0.12 X 52% = 6% Luego, RADIACION SOLAR EFECTIVA EN LA SUPERFICIE TERRESTRE = 52% - 6% = 46% Si consideramos ahora la radiación de onda larga, o terrestre. ésta resulta ser de 821 cal/cm 2 día, según la ley de Stefan-Boltzman para un cuerpo negro a 288 k (15 C). Si la referimos al 100% de la radiación solar (720 cal/cm 2 día): RADIACION TERRESTRE RADIACION SOLAR = 821 = 114% 720 De este 114%, un 9% se pierde a través de la "ventana de la atmósfera", con lo cual la atmósfera terrestre recibe: TOTAL 159% 105% (radiación terrestre) 19% (radiación solar absorbida por la atmósfera) 4% (radiación solar absorbida por nubes) 24% (calor latente liberado en la condensación del vapor de agua o en la solidificación del agua líquida, en las nubes) 7% (transferencia turbulenta de calor sensible De este porcentaje, un 60% se emite hacia el espacio exterior (emisión de gases - 40% - y nubes -20%) y un 99% se emite en forma de CONTRARRADIACION hacia la superficie terrestre (713 cal/cm 2 día), de donde la cantidad total de energía recibida concuerda con la energía emitida. La superficie de la tierra, por lo tanto, emite 114% y recibe de vuelta desde la atmósfera un 99%, por lo que la radiación neta de onda larga es de 15%, desde la superficie a la atmósfera. 39
15 Luego, en la superficie terrestre tendremos: GANANCIA = 46% (radiación solar efectiva) PERDIDA = 15% (radiación terrestre) + 24% (pérdida de calor latente por evaporación de las aguas y fusión de los hielos) + 7% (transferencia turbulenta de calor sensible) = 46% EL BALANCE RADIATIVO DEL PLANETA LA RADIACIÓN SOLAR SIN EL EFECTO DE LA ATMÓSFERA Veamos, en primer término, cómo se distribuye la radiación solar sobre la superficie terrestre, en ausencia de la atmósfera (o en el límite superior de la atmósfera) en función de la latitud y de las estaciones del año, expresada en calorías/cm 2.día = langley/día. Radiación entrante, como función de la latitud y de las estaciones del año. Los valores están calculados para una superficie horizontal, en el tope de la atmósfera. 40
16 Uno de los elementos fundamentales que determina la cantidad de radiación entrante es la duración del día. Es obvio que cuanto mayor es el tiempo en que luce el sol, mayor es la cantidad de radiación que podrá recibir una determinada porción de la tierra. En el ecuador, por ejemplo, la duración del día se acerca a las12 horas en todos los meses, mientras que en los polos varía entre 0 y 24 horas del invierno al verano. La combinación de todos estos factores se traduce en la configuración de energía solar en la parte superior de la atmósfera que aparece en la figura: 1) la línea "cero" nos indica que, más allá de ella, no hay energía entrante. Allí tendríamos "noche polar", cosa que ocurre en ambos polos durante los meses de invierno; 2) cuando el Sol está en el hemisferio de verano, los polos son los que más radiación solar reciben. CAUSA: duración del día polar = 24 hs; 3) el polo sur recibe, en verano, más que el polo norte. CAUSA: posición aventajada del H.S. durante el perihelio (solsticio estival del H.S.); 4) los dos máximos y los dos mínimos en el ecuador, asociados con los equinoccios (máximos) y con los solsticios (mínimos); Si observamos lo que ocurre en el promedio anual de radiación entrante en cal/cm 2 día (datos correspondientes al HN): Latitud Verano Invierno Suma Notamos que el ecuador recibe prácticamente lo mismo en una estación u otra del año mientras que, en latitudes medias, la energía decrece considerablemente durante el invierno. Esto obedece, sin duda, a la duración del día en los distintos lugares. En el ecuador, durante todo el año, la duración del día y de la noche es de 12 horas, cosa que no ocurre en otras latitudes. Además, el Sol pasa dos veces al año sobre el cenit, durante los equinoccios. En los trópicos, esto ocurre una sola vez al año, durante el solsticio estival de cada hemisferio. En el promedio anual, las latitudes altas (mayores a 60 ) son las que menos reciben, debido a la influencia de la noche polar. CONCLUSIÓN: en ausencia de la atmósfera, el ecuador es la zona del planeta que más radiación solar recibe a lo largo del año. LA RADIACIÓN SOLAR RECIBIDA EN SUPERFICIE Si tenemos en cuenta la existencia de la atmósfera, esta distorsiona la entrada de energía proveniente del Sol a través de los fenómenos de ABSORCION (O 2 en la termosfera, O 3 en la estratosfera, polvo atmosférico, gotas de nubes), DISPERSION (gases atmosféricos, partículas de aerosol, gotas de nubes) y REFLEXION. El efecto global de estos procesos ya ha sido analizado en el capítulo anterior, en la figura siguiente se ilustran las distintas influencias que la atmósfera, las nubes y la superficie de la tierra ejercen en la reflexión y absorción de la radiación solar en las diversas latitudes. 41
17 La radiación recibida en el límite superior de la atmósfera, como ya se puso en evidencia, presenta un máximo en el ecuador y disminuye hacia los polos. La radiación absorbida por la atmósfera también tiene un máximo ecuatorial, pero la absorbida por las nubes es de menor magnitud y no tiene una definida variación con la latitud. La variación latitudinal de la radiación reflejada por las nubes guarda relación con la presencia de estas y la radiación reflejada por la superficie aumenta hacia las regiones polares con mayor albedo. Como resultado de la influencia de todos estos procesos la superficie de la tierra absorbe una cantidad de radiación variable con la latitud, mayor en latitudes bajas y disminuyendo hacia los polos. La nubosidad, si es lo suficientemente espesa y completa, puede formar una importante barrera que impida la penetración de la insolación. La cantidad de radiación solar que se refleja depende de la cantidad de nubes existentes y de su espesor, ver la figura siguiente: 42
18 Además de impedir la transmisión de la insolación el efecto de la nubosidad opera en sentido contrario, ya que una capa de nubes retiene la mayor parte del calor que, de otro modo sería perdido por la tierra en forma de radiación a lo largo del día y de la noche. Este importante papel de las nubes afecta la variación diaria de la temperatura en superficie, evitando máximas altas durante el día y mínimas bajas durante la noche. Ya hemos discutido que distintas partes de la superficie terrestre reciben distintas cantidades de insolación. Un factor que controla este efecto es la época del año: se recibe más insolación en el verano que en el invierno por la mayor altura del sol y la mayor duración de los días. La Figura siguiente nos muestra cómo se distribuye la radiación global (directa más difusa) sobre la superficie terrestre, expresada en kilocalorías/cm 2.año = kilolangley/año. Notemos que son los trópicos los que más reciben en el promedio anual. Ello obedece, fundamentalmente, a la escasez de nubes y turbiedad en los trópicos, con lo cual se reduce la reflexión y absorción por nubes, y la absorción por polvo atmosférico. Si tenemos en cuenta, además, que la tierra emite radiación de onda larga, debemos considerar otros fenómenos adicionales que alteran la ganancia radiativa en la superficie terrestre. La atmósfera terrestre es prácticamente opaca a la radiación de onda larga terrestre. El vapor de agua, el CO 2 y el O 3 son importantes absorbentes selectivos de esta radiación. De este modo, la atmósfera deja pasar a la mayor parte de la radiación solar de onda corta pero captura, e irradia nuevamente hacia la superficie terrestre (CONTRA-RADIACION), la mayor parte de la radiación de onda larga proveniente de la Tierra, generando un efecto protector del enfriamiento denominado EFECTO DE INVERNADERO. Si se balancean la radiación solar entrante y la radiación saliente: Q : radiación efectiva - radiación saliente rad. directa + difusa - albedo rad. terrestre - contra-radiación (onda corta) (onda larga) 43
19 obtendremos la cantidad de energía disponible en la superficie terrestre, para ser empleada en distintos procesos. Los más importantes son : (a) transmisión del calor hacia el centro de la tierra (despreciable en continentes pues la tierra es mala conductora del calor); (b) (c) (d) calentamiento del aire por calor sensible; entrega de calor latente (muy importante en los océanos, donde se produce evaporación); consumo de calor para derretir hielos o nieves. Si observamos la Figura referida al balance de radiación en la superficie terrestre según Budyko, puede notarse: (a) en ambos hemisferios, las latitudes superiores a 45 presentan un balance negativo durante el invierno. CAUSAS: mayor duración de la noche con respecto al día, rayos solares inclinados con respecto al zenit, efecto de contrarradiación pobre debido al bajo contenido de vapor de agua en latitudes altas. (b) la máxima radiación neta se produce en los meses de verano. Durante esta estación del año, los centros de máxima se encuentran sobre los trópicos y no sobre el ecuador. CAUSAS: 1) durante el verano de cada hemisferio, los rayos solares inciden perpendicularmente sobre los trópicos, lo cual no ocurre en las restantes latitudes; 2) la radiación solar directa es más importante sobre los trópicos que sobre el ecuador, debido a la falta de sistemas nubosos. 3) la inmigración aparente del Sol sobre el zenit es relativamente más rápida durante su paso sobre el ecuador, pero su velocidad disminuye a medida que se aproxima a los trópicos. 4) durante el verano de cada hemisferio, los días son más largos en el trópico que en el 44
20 (c) ecuador. sin embargo, en el promedio anual encontramos: Latitud 30º N 0º 30º S Radiación anual (Ly/día) O sea, el ecuador es la región del planeta que, en el promedio anual, tiene mayor ganancia de energía. CAUSAS: 1) importante efecto de la contrarradiación en el ecuador; 2) el "peso" del invierno en los trópicos, con rayos solares más oblicuos y noches más largas que los días. Además, puede observarse en la tabla anterior que, a los 30, el H.S. recibe más que el H.N., debido a su posición preferencial durante el perihelio. Si observamos la Tabla siguiente, la que nos da los promedios anuales de insolación e irradiación para distintas latitudes, en cal/cm 2.min, puede verse que la radiación neta es positiva en latitudes bajas y es negativa en latitudes altas. Autor Latitud N Simpson Baur y Philipps Simpson Baur y Philipps A = INSOLACIÓN (cal cm-2 min-1) B = IRRADIACIÓN (Tierra Atmósfera) Simpson Baur y Philipps DIFERENCIA = A B = Radiación Neta Promedios anuales de la insolación e irradiación en las diferentes latitudes, en (cal.cm -2.min -1 ), según Baur, Philipps y Simpson. Esto parecería indicar que las latitudes bajas deberían estar calentándose continuamente, y las latitudes bajas enfriándose constantemente. Ello no ocurre gracias al transporte meridional de calor desde el ecuador hacia los polos, el cual se realiza fundamentalmente mediante la circulación general y las corrientes marinas. Este efecto puede apreciarse en la Tabla siguiente en la cual se cotejan las temperatura medias anuales que deberían existir en las distintas latitudes de acuerdo al balance de radiación (T. Solar), y las realmente registradas. Puede notarse: (a) que las temperaturas medias anuales reales en latitudes bajas son menores que las temperaturas 45
21 medias anuales solares, en ambos hemisferios; (b) (c). que la temperatura medias anuales reales en latitudes altas son mayores que la temperaturas medias anuales solares, en ambos hemisferios; en general, el H.S. presenta temperaturas medias anuales más bajas que el H.N., a pesar de recibir más radiación neta en el promedio anual; CAUSA: como el H.S. es un hemisferio en el cual predomina las aguas, la cantidad de calor provisto por la radiación neta es empleada, en su mayor parte, en forma de calor latente de vapor de agua, en los procesos de evaporación. Latitud T. Solar (T) H.N. (TN) H.S (TS) (TN+TS)/2-T Temperaturas verdaderas y solares de los círculos de latitud, en el promedio anual, según MILANKOVITCH. En la Figura siguiente se ilustra el monto de transporte requerido para compensar estas diferencias. Este transporte de calor hacia los polos es realizado por medio de la atmósfera y los océanos Ilustración meridiana del equilibrio existente entre la radiación procedente del sol y la emitida por la tierra y la atmósfera (datos de Houghton); las zonas de superávit t déficit constantes se mantienen en equilibrio por el transporte de energía hacia el polo. 46
22 y se estima que la primera transporta aproximadamente dos tercios del total. El transporte horizontal (advección de calor) tiente lugar tanto en la forma de calor latente (es decir, vapor de agua que se condensa luego) como de calor sensible (es decir, masas de aire caliente). Varía en intensidad según la latitud y la estación del año. La última figura muestra la contribución media anual a la transmisión de calor de los tres mecanismos. El coeficiente de transferencia máximo corresponde a la faja situada entre 35º y 45º de lati- A. Balance neto de radiación para la superficie terrestre (radiación entrante procedente del sol menos energía transmitida a la atmósfera en forma de radiación de onda larga); para la atmósfera (radiación entrante procedente del sol menos energía saliente en forma de radiación de onda larga) y para la totalidad del sistema tierra-atmósfera. B. Distribución media anual según la latitud de los componentes del transporte de energía hacia el polo en el sistema tierra-atmósfera (de Sellers) 47
23 tud de ambos hemisferios, aunque las distribuciones para cada componente difieren mucho de uno a otro. El transporte de calor latente, que tiene lugar casi por completo en los dos o tres kilómetros inferiores, es consecuencia de la existencia de cinturones hemisféricos de viento, localizados a ambos lados de las zonas subtropicales de alta presión (se verán detalles más adelante). La más importante transmisión de calor sensible en sentido meridional tiene un doble máximo en sentido latitudinal y también vertical, con un máximo cerca de superficie y a 200 hpa aproximadamente. El transporte en altura es particularmente importante sobre la zona subtropical, mientras que el máximo primario sobre los 50 a 60º N está relacionado con la posición media del frente polar. La intensidad del flujo de energía hacia los polos está estrechamente ligada al gradiente meridional (en dirección Norte Sur) de temperatura. En invierno, este gradiente de temperatura es máximo y, por consiguiente, también resulta máxima la circulación atmosférica de aire. Cabe tener en cuenta que los valores latitudinales medios del balance de calor estudiados sufren grandes variaciones en el espacio, lo que será discutido en detalle más adelante. 48
CAPITULO 3 LA TEMPERATURA
CAPITULO 3 LA TEMPERATURA 1. CONCEPTO: La temperatura de un cuerpo indica en qué dirección se desplazará el calor al poner en contacto dos cuerpos que se encuentran a temperaturas distintas, ya que éste
LA ENERGÍA QUE NOS LLEGA DEL SOL
Tema 6 LA ENERGÍA QUE NOS LLEGA DEL SOL La energía del planeta El energía que fluye en el planeta Tierra procede de dos fuentes: ENERGÍA EXTERNA: proviene del Sol, y es su principal fuente. Permite la
Fundamentos físicos de la teledetección
Tema 1 Fundamentos físicos de la teledetección 1.1 La radiación electromagnética Dada la importancia que la radiación electromagnética tiene como transmisor de información en todas las formas de teledetección,
FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética
Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3
FUNDAMENTOS DEL VUELO
CARGA ACADÉMICA FUNDAMENTOS DEL VUELO CONTENIDOS 02 Hrs. La atmosfera y sus principales características Altura Altitud Nivel de vuelo Principales partes del avión Fundamentos básicos del vuelo La atmósfera
Geometría orbital, cambio climático y Astrocronología
Geometría orbital, cambio climático y Astrocronología Francisco Sierro Sánchez Dpto. de Geología (Paleontología) Universidad de Salamanca. [email protected] Capítulo 5 Página - 1- Vivir en la Tierra es caro,
EL SISTEMA SOLAR. Los componentes del Sistema Solar
Los componentes del Sistema Solar EL SISTEMA SOLAR El Sistema Solar está formado por el Sol y todos los astros que giran en tomo a él: planetas, satélites (que giran alrededor de los planetas), cometas
UNIDAD 8. LA TIERRA EN EL UNIVERSO
UNIDAD 8. LA TIERRA EN EL UNIVERSO 1. EL UNIVERSO, LAS GALAXIAS Y LAS ESTRELLAS 2. EL SISTEMA SOLAR 3. LOS MOVIMIENTOS DE LA TIERRA 4. LAS PARTES DE LA TIERRA 5. LA LUNA: EL SATÉLITE DE LA TIERRA 6. LOS
UNIDAD 3: ELEMENTOS DEL MEDIO NATURAL: CLIMA Y SERES VIVOS
UNIDAD 3: ELEMENTOS DEL MEDIO NATURAL: CLIMA Y SERES VIVOS Lee atentamente: 1. LA ATMÓSFERA La atmósfera es la capa de gases que rodea a la Tierra. La atmósfera mide varios de kilómetros. Esta capa está
Si hay solamente espacio, sin soles o planetas en él, entonces es espacio pierde su esencia. (Buda Gautam)
1 LOS PLANETAS El sistema solar consta de ocho planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno. MERCURIO Mercurio es el planeta más próximo al sol. Pequeño y rocoso. El movimiento
Unidad dos: Procesos geológicos
Unidad dos: Procesos geológicos En la Tierra se producen numerosos cambios naturales (procesos geológicos), que llevan a la continua transformación de las estructuras y los materiales que la forman. Estos
EL SISTEMA SOLAR Y EL UNIVERSO
UNIDAD 8 EL SISTEMA SOLAR Y EL UNIVERSO 1. INTRODUCCIÓN Sabemos que el sistema propuesto por Copérnico no es del todo correcto. Actualmente sabemos que el universo contiene miles de galaxias, formadas
Contenidos Didácticos
INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7
UNIDAD 2: LA TIERRA COMO PLANETA
UNIDAD 2: LA TIERRA COMO PLANETA 1.EL INTERIOR DE LA TIERRA Lee con atención El interior de nuestro planeta está formado por materiales que se encuentran a altas temperaturas. Los materiales que forman
LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO
NETWORK FOR ASTRONOMY SCHOOL EDUCATION LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO Carme Alemany, Rosa M. Ros NASE Introducción Cerca de Quito esta la Mitad del Mundo cuya latitud es 0º 0 0. En este
Instrumentos de medida usados en instalaciones solares fotovoltaicas.
Unidad II Instrumentos de medida usados en instalaciones solares fotovoltaicas. 2.1-Instrumentos de medición de radiación solar. 2.2-Medición de la duración del brillo solar. 2.3-Ubicación y exposición
CIENCIAS SOCIALES 5º EL UNIVERSO
EL UNIVERSO Vas aprender a. Componentes y características del Universo. b. El sistema solar. Los planetas. c. El Planeta Tierra: representación y sus coordenadas. e. Las fases Lunares. Movimientos. INTRODUCCIÓN.
ENERGÍA ELÉCTRICA. Central Eólica
ENERGÍA ELÉCTRICA. Central Eólica La energía eólica es la energía obtenida por el viento, es decir, la energía cinética obtenida por las corrientes de aire y transformada en energía eléctrica mediante
Termodinámica de la atmósfera. Ana Lage González http://www.meteogalicia.es
Termodinámica de la atmósfera. Ana Lage González http://www.meteogalicia.es La composición del aire seco es bastante uniforme y la composición relativa de los gases se mantiene casi cte. hasta unos 90
MATERIA Y ENERGÍA (Física)
MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.
FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.
1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;
SUPERFICIE ESPECULAR Y LAMBERTIANA
SUPERFICIE ESPECULAR Y LAMBERTIANA Especular: es la superficie ideal en la que se cumple perfectamente la ley de la reflexión (ángulo incidente = ángulo reflejado). Lambertiana: es la superficie, también
CALENTAMIENTO DE AGUA CALIENTE SANITARIA
CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización
El Sistema Climático 2
Prólogo 1 El Sistema Climático 2 Prólogo El Sistema Climático Fundamentos físicos del clima 3 El Sistema Climático Universidad de Valparaíso-Editorial, 2002. Errázuriz 1108 - Valparaíso, Chile. Fono: 507648
El Efecto Invernadero, y el Balance de Energía
Capítulo 2 El Efecto Invernadero, y el Balance de Energía El efecto invernadero es un concepto que se ha vuelto muy popular pero, como todo lo popular, tiene muchas interpretaciones y se presta a un sinfín
LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO
LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo
TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO
TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado
Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1
Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 CA3 Actividades Cuál es tu temperatura favorita? Si alguien te preguntase a qué temperatura te gustaría vivir, seguramente elegirías
Empresa de Transmisión Eléctrica S. A. Gerencia de Hidrometeorología Cambio Climático
Empresa de Transmisión Eléctrica S. A. Gerencia de Hidrometeorología Cambio Climático ESTÁ AMENAZADO NUESTRO PLANETA? LA ATMÓSFERA TERRESTRE Es una mezcla de varios gases y aerosoles (partículas sólidas
APLICACIÓN DE HERRAMIENTAS INFORMÁTICAS AL ENTORNO
CAPÍTULO 9 APLICACIÓN DE HERRAMIENTAS INFORMÁTICAS AL ENTORNO 9. APLICACIÓN DE HERRAMIENTAS INFORMÁTICAS AL ENTORNO Para profundizar en el conocimiento del medio es necesario el desarrollo de herramientas
Nuestro Sistema Solar
03 Lección Refuerzo Ciencias Nuestro Sistema Solar APRENDO JUGANDO Competencia Comprende con perspectiva científica el universo, algunos de sus componentes y el movimiento de rotación y traslación de los
GEORAMA ROTACIÓN DE LA TIERRA EN TORNO AL SOL. ROTACIÓN EN TORNO A SÍ MISMA
GEORAMA INTRODUCCIÓN La presente práctica ha sido concebida para acompañar el aparato denominado Georama (del griego geos = Tierra, orama = vista o representación). Es una práctica suficientemente completa
Naturaleza y Geografía Bloque III EL SUBSISTEMA ATMOSFERA
Naturaleza y Geografía Bloque III EL SUBSISTEMA ATMOSFERA La atmosfera como sistema Cubierta mas externa de la tierra y constituye el límite con el espacio exterior Esta en contacto con los sistemas hidrosfera,
Introducción al calor y la luz
Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas
1. LA REPRESENTACIÓN DE LA TIERRA
1. LA REPRESENTACIÓN DE LA TIERRA 1.1. La forma de la Tierra La Tierra tiene forma esférica, aunque no es una esfera perfecta, ya que se encuentra achatada en dos puntos geográficos, llamados polos. El
ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.
CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros
EL VALOR ECOLÓGICO DEL AGUA
1 Capítulo VALOR ECOLÓGICO DEL AGUA Capítulo 1 EL VALOR ECOLÓGICO DEL AGUA Los conceptos Para comenzar a reflexionar sobre el valor ecológico del agua, es necesario un acercamiento a los tres conceptos
10 Anexo A: Aspectos Básicos de la Radiación Solar
10 Anexo A: Aspectos Básicos de la Radiación Solar 10.1 Relaciones astronómicas Tierra-Sol La literatura solar contiene una gran variedad de sistemas, métodos y ecuaciones para establecer las relaciones
Glosario de Ciencias de la Tierra
Glosario de Ciencias de la Tierra Agua de la superficie Agua dulce en la superficie terrestre, como la que está en lagos y ríos. Agua dulce Agua sin sal que se encuentra en lagos, ríos, aguas subterráneas,
Tema 7 : Trabajo, Energía y Calor
Tema 7 : Trabajo, Energía y Calor Esquema de trabajo: 7. Trabajo. Concepto. Unidad de medida. 8. Energía. Concepto 9. Energía Cinética 10. Energía Potencial Gravitatoria 11. Ley de Conservación de la Energía
PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA
PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA RADIACION SOLAR CONCEPTOS BÁSICOS Posición astronómica de la tierra con respecto al sol Solsticios y equinoccios Angulo de
2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS
COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,
Origen de la Tierra y Sistema Solar
Origen de la Tierra y Sistema Solar Cecilia Caballero Diplomado Tiempo, Clima y Ambiente. Instituto de Geofísica, UNAM Para qué conocer el origen del Sistema Solar y la Tierra? Para entender el origen
Cátedra de Introducción a las Ciencias de la Atmósfera Introducción a las Ciencias de la Atmósfera Unidad 2: Energía en la atmósfera
Introducción a las Ciencias de la Atmósfera Unidad 2: nergía en la atmósfera Calor De acuerdo con el primer principio de la termodinámica, la energía no se crea ni se destruye. Sin embargo, este principio
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3. Flujos Turbulentos
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3 Flujos Turbulentos René Garreaud S. Carolina Meruane N. 2005 Índice 1. Antecedentes teóricos...............................
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA
3 CAPITULO 1: CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA 1.1 INTRODUCCIÓN El agua es el principal constituyente de los seres vivos, es la sustancia más abundante en la Tierra y es una fuerza importante que
Universidad autónoma de Sinaloa
Universidad autónoma de Sinaloa Prepa Guasave Diurna Comprensión y producción de textos 2 Ensayo: El calentamiento global Maestra: Yolanda Noemí Guerrero Zapata Alumna: Olivares Camacho Citlaly Grupo:
ENERGÍA EN EL UNIVERSO
3 LA ENERGÍA EN EL UNIVERSO 3. LA ENERGIA EN EL UNIVERSO LECTURA: EL SISTEMA SOLAR... 76 71 72 3. LA ENERGIA EN EL UNIVERSO El cosmos contiene energía bajo diversas formas: gravitacional (o de atracción
El Sistema Solar - Generalidades
El Sistema Solar - Generalidades Nuestro sistema solar consiste en una estrella mediana que llamamos el Sol y los planetas Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno, y el planeta
Potencial eléctrico. du = - F dl
Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula
Conceptos sobre cambio climático:
Conceptos sobre cambio climático: Qué es el cambio climático? Según definición de la CMNUCC, es el cambio del clima atribuido directa o indirectamente a actividades humanas que alteran la composición de
Es el principal elemento químico, indispensable para que éxista la vida, está presente casi en todas las combinaciones conocidas y por sus
Es el principal elemento químico, indispensable para que éxista la vida, está presente casi en todas las combinaciones conocidas y por sus características, sabemos que tiene 8 protones en el núcleo. Número
Agentes para la conservación de la energía mecánica
Agentes para la conservación de la energía mecánica Para levantar un cuerpo verticalmente a velocidad constante, es necesario que algún agente externo realice trabajo y hemos demostrado que este trabajo
LA ENERGÍA. La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.
Objetivos: Unidad II: La energía Conocer qué es la energía Distinguir las distintas formas de energía Comprender las transformaciones de la energía Distinguir entre conservación y degradación de la energía
Astrofísica del Sistema Solar. Unidad 6: Formación de Planetas y Sistemas Planetarios
Astrofísica del Sistema Solar Unidad 6: Formación de Planetas y Sistemas Planetarios Introducción: la mayor parte del trabajo sobre formación planetaria se realiza en el contexto de explicar el sistema
MOVIMIENTO DE ROTACIÓN
MOVIMIENTO DE ROTACIÓN 1 El movimiento de rotación (rotar=girar, dar vueltas) es el que realiza la Tierra sobre su eje de rotación que forma un ángulo de 23º27 con la perpendicular al plano de la eclíptica,
Curso Básico de Metodología de los Radisótopos - C.I.N.
Curso Básico de Metodología de los Radisótopos - C.I.N. Inestabilidad nuclear y Modos de decaimiento Dra. Q.F. Lourdes Mallo FUERZAS NUCLEARES Para que el núcleo sea estable debe existir una fuerza atractiva
1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol
Leyes de Kepler 1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Planeta Sol 2.- El radio focal que une a un planeta con el Sol describe
PROBLEMAS DE TRNSMISIÓN DE CALOR
TEMODINAMIA Departamento de Física - UNS arreras: Ing. Industrial y Mecánica POBLEMAS DE TNSMISIÓN DE ALO Ejemplo. Pérdida de calor a través de una pared plana onsidere una pared gruesa de 3 m de alto,
Interacción de la radiación con los objetos
Tema 2 Interacción de la radiación con los objetos Todos los objetos (independientemente de la radiación que emitan) van a recibir radiación emitida por otros cuerpos, fundamentalmente del sol, que, en
1. Fundamento teórico
1 1. Fundamento teórico Los métodos espectroscópicos atómicos y moleculares figuran entre los métodos analíticos instrumentales más utilizados. La espectroscopia molecular basada en la radiación ultravioleta,
III. DIFUSION EN SOLIDOS
Metalografía y Tratamientos Térmicos III - 1 - III. DIFUSION EN SOLIDOS III.1. Velocidad de procesos en sólidos Muchos procesos de producción y aplicaciones en materiales de ingeniería están relacionados
Luz Natural e Iluminación de Interiores
Luminotecnia ENTREGA Luz Natural e Iluminación de Interiores Elaborado por Dra Andrea Pattini Laboratorio de Ambiente Humano y Vivienda (LAHV)- Instituto de Ciencias Humanas Sociales y Ambientales (INCIHUSA)
ACTIVIDADES DE RECUPERACIÓN ALUMNOS/AS CON CIENCIAS NATURALES DE 2º E.S.O. PENDIENTE. Primer Bloque de Unidades:
ACTIVIDADES DE RECUPERACIÓN ALUMNOS/AS CON CIENCIAS NATURALES DE 2º E.S.O. PENDIENTE Primer Bloque de Unidades: Unidad 1 Materia y energía Unidad 2 Las fuerzas y sus efectos Unidad 3 El calor y la temperatura
1 cal = 4,18 J. 1 kwh = 1000 Wh = 1000 W 3600 s/h = 3600 1000 J = 3 6 10 6 J
Energía Se define la energía, como la capacidad para realizar un cambio en forma de trabajo. Se mide en el sistema internacional en Julios (J), que se define como el trabajo que realiza una fuerza de 1N
UNIDAD 1. EL PLANETA TIERRA.
UNIDAD 1. EL PLANETA TIERRA. Vivimos en un planeta llamado Tierra. Nuestro planeta está constituido por una parte sólida (tierra), formada por los continentes; por una parte líquida (agua), formada por
ACTIVIDADES DE PROFUNDIZACIÓN
ACTIVIDADES DE PROFUNDIZACIÓN LEE CON ATENCIÓN Recordamos que el Sistema Solar está formado por el Sol, los planetas y sus satélites, asteroides y cometas, pero que hay más allá de nuestro Sistema Solar?
UNIDAD DIDÁCTICA 2: LA TIERRA EN EL SISTEMA SOLAR
UNIDAD DIDÁCTICA 2: LA TIERRA EN EL SISTEMA SOLAR 1. La Tierra, el Sol y la Luna Todos los cuerpos que podemos observar en el Universo son astros. Algunos astros tienen luz propia, son las estrellas, que
Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA
Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Antes se definía la energía como la capacidad de un cuerpo o sistema para realizar un trabajo. Vamos a ver una explicación
Movilidad habitual y espacios de vida en España. Una aproximación a partir del censo de 2001
Movilidad habitual y espacios de vida en España. Una aproximación a partir del censo de 2001 Centre d Estudis Demogràfics (Universitat Autònoma de Barcelona) Dirección de la investigación: Marc Ajenjo
TURÍSTICOS. Departamento de Geografía Universidad de Valladolid
RECURSOS TERRITORIALES TURÍSTICOS Dr Luis Carlos Martínez Fernández Dr. Luis Carlos Martínez Fernández Departamento de Geografía Universidad de Valladolid Bloque II. Los valores turísticos del territorio
Lección 2. Balance térmico de la atmósfera. Meta. Objetivos
Lección 2 Balance térmico de la atmósfera Esta lección y las dos siguientes introducen los conceptos fundamentales de la meteorología la ciencia de la atmósfera y sus fenómenos. En la lección 1 se aprendió
ENERGÍA INTERNA DE UN SISTEMA
ENERGÍA INTERNA DE UN SISTEMA Definimos energía interna U de un sistema la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías de interacción entre
Tema 2: Propiedades y medición de la radiación electromagnética
Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial
CAPÍTULO I. FIBRA ÓPTICA. La fibra óptica se ha vuelto el medio de comunicación de elección para la
CAPÍTULO I. FIBRA ÓPTICA. 1.1 INTRODUCCIÓN. La fibra óptica se ha vuelto el medio de comunicación de elección para la transmisión de voz, video, y de datos, particularmente para comunicaciones de alta
Tema 1.1 La bóveda celeste. Fundamentos geométricos.
Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la
INSTITUCIÓN EDUCATIVA MARIANO OSPINA PÉREZ TALLER DE TECNOLOGÍA GRADO 7 3P
1 La energía es la capacidad de los cuerpos para producir trabajo. Trabajo es la fuerza necesaria para producir movimiento. Hay muchos tipos de energía, aquí intentaremos enumerar la mayoría de ellos con
1.1 Estructura interna de la Tierra
CAPITULO 1 NOCIONES BASICAS DE SISMOLOGÍA 1.1 Estructura interna de la Tierra La estructura interna de la Tierra (Fig. 1.1) esta formada principalmente por la corteza, manto y núcleo, siendo en estos medios
El Calentamiento Global y Las tormestas solares
Calentamiento Global y Cambio Climático. Mitos y Realidades ACADEMIA DE INGENIERÍA de la Provincia De Buenos Aires La Plata 21 de Noviembre de 2014 El Calentamiento Global y Las tormestas solares Silvia
EL SISTEMA SOLAR Passeig Marítim, 1-12100 Grau (Castelló) - Tel 964 282 968 - www.planetari.castello.es 1 de 15
EL SISTEMA SOLAR Passeig Marítim, 1-12100 Grau (Castelló) - Tel 964 282 968 - www.planetari.castello.es 1 de 15 Un sistema planetario está formado por una estrella central o varias, y distintos objetos
Somos una empresa alemana de origen danés líder en la fabricación y aplicación de
Somos una empresa alemana de origen danés líder en la fabricación y aplicación de productos de energía solar en el mercado europeo, gracias a nuestra inversión en i+d+i y nuestra excelente gestión operativa.
ANÀLISIS TERMODINÀMICO DE LAS CAUSAS DEL CALENTAMIENTO GLOBAL Y CAMBIO CLIMÀTICO
ANÀLISIS TERMODINÀMICO DE LAS CAUSAS DEL CALENTAMIENTO GLOBAL Y CAMBIO CLIMÀTICO Los científicos no pueden establecer con objetividad las causas del calentamiento global en la tierra porque generalmente
INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.
GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto
Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO
Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad
Investigando las atmósferas de los planetas interiores
Investigando las atmósferas de los planetas interiores Miguel Ángel López Valverde Dpto. Sistema Solar Instituto de Astrofísica de Andalucía(IAA-CSIC) [email protected] En el fondo, los científicos somos
0.01 0.4 4. Operando sobre esta relación, se obtiene
ORGANIZACIÓN INDUSTRIAL (16691-ECO) TEMA 1: LA COMPETENCIA PERFECTA EN UN MARCO DE EQUILIBRIO PARCIAL 1.1 ANÁLISIS DE LA ESTÁTICA COMPARATIVA DE UN MERCADO COMPETITIVO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS
TEMA 1: EL UNIVERSO. 4. Qué significan los prefijos helio y geo? qué modelo del universo es más cercano al actual? por qué?
TEMA 1: EL UNIVERSO 1. La evolución de las ideas sobre el universo 1. Explica qué son las constelaciones y qué utilidad tienen. 2. Busca en Internet o en alguna enciclopedia las siguientes constelaciones
LOS GASES Y SUS LEYES DE
EMA : LOS GASES Y SUS LEYES DE COMBINACIÓN -LAS LEYES DE LOS GASES En el siglo XII comenzó a investigarse el hecho de que los gases, independientemente de su naturaleza, presentan un comportamiento similar
Gráfica 5.2 Acetato de cobalto 0.01M de 190 a 800nm con una absorbancia de 3.344 y λ 198.8 nm
5- Resultados 5.1- Espectrofotometría UV/Vis de los reactivos Gráfica 5.1 Peroximonosulfato de potasio 0.01M de 190 a 800nm con una absorbancia de 365 y λ 193 nm Gráfica 5.2 Acetato de cobalto 0.01M de
CLASE 2. RADIACIÓN SOLAR Y TERRESTRE.
CLASE 2. RADIACIÓN SOLAR Y TERRESTRE. El Sol es la principal fuente de energía para todos los procesos en el sistema tierra - atmósfera - océano, más del 99.9 % de la energía que este sistema recibe proviene
PRACTICA N 3: Viento.
UNIVERSIDAD DE BUENOS AIRES FACULTAD DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA ATMOSFERA Y LOS OCEANOS MATERIA: BIOCLIMATOLOGIA (BIOLOGOS) Jefe de Trabajos Prácticos: M. Elizabeth
FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.
FASES GASEOSA Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. Porosidad del suelo Se denomina porosidad del suelo al espacio no ocupado
TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.
C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando
Conservación de la Energía Mecánica NOMBRE: CURSO:
NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación
SOLSTICIO EL COMIENZO DEL VERANO
SOLSTICIO EL COMIENZO DEL VERANO Agrupación Astronómica de Huesca Este martes 21 de junio de 2016, a las cero horas y treinta cuatro minutos de la noche, comienza el verano. Es el solsticio. En este breve
CALENTAMIENTO GLOBAL Y CAMBIO CLIMÁTICO
CALENTAMIENTO GLOBAL Y CAMBIO CLIMÁTICO Cátedra en Finanzas Internacionales Banco Santander Enric Valor i Micó Departament de Física de la Terra i Termodinàmica Universitat de València ÍNDICE 1.- El origen
Clase 4. Agua en la Atmósfera
Clase 4 Agua en la Atmósfera Preguntas claves 1. Cuanta agua hay en la aire? 2. Cómo se satura el aire? 3. Cómo se forman las gotas del lluvia? Condiciones en la atmósfera terrestre permiten la existencia
