T3: TRIGONOMETRÍA 1º BCT
|
|
|
- Enrique Jesús Chávez Hernández
- hace 9 años
- Vistas:
Transcripción
1 1 RAZONES TRIGONOMÉTRICAS DE LA SUMA DE DOS ÁNGULOS Queremos calcular las razones trigonométricas de la suma de dos ángulos, α + β, a partir de las razones de los ángulos α y β. 1.1 SENO DE LA SUMA DE DOS ÁNGULOS sen(α + β) = sen α cos β + cos α sen β Como se muestra en el dibujo, para deducir la fórmula combinamos dos triángulos rectángulos. Trazando triángulos semejantes podemos suponer que R = 1 ABC que tiene un ángulo α ADE " " " " β D F La hipotenusa del triángulo ADE es AD = R = 1 Por consiguiente: DE = sen β AE = cos β R = 1 α C El triángulo ADG, rectángulo, se verifica: sen (α + β) = DG = FH β 90 - α E Por otra parte: FH = FE + EH A α G H B o En el triángulo AEH: EH = AE sen α = cos β sen α Observamos en el dibujo que los triángulos AEH y EFD son semejantes, por tener sus ángulos iguales. o En el triángulo rectángulo EFD: FE = ED cos α = sen β cos α Luego, hemos obtenido: sen (α + β) = DG = EH + FE = cos β sen α + sen β cos α - 1 -
2 1. COSENO DE LA SUMA DE DOS ÁNGULOS cos(α + β) = cos α cos β sen α sen β Según el dibujo anterior: cos (α + β) = AG = AH GH o En el triángulo AEH: AH = AE cos α = cos β cos α o En el triángulo rectángulo EDF: GH = DF = DE sen α = sen β sen α Luego, hemos obtenido: cos(α + β) = AH GH = cos α cos β sen α sen β 1. TANGENTE DE LA SUMA DE DOS ÁNGULOS tgα + tgβ tg(α +β) = 1- tgα tgβ tg (α + β) = sen(α +β) senα cosβ + senβ cosα = cos(α +β) cosα cosβ - senβ senα = (Dividimos numerados y denominador por cos α cos β) tg (α + β) = senα cosβ senβ cos α + cosα cosβ cosα cosβ tgα + tgβ = cos α cosβ senβ sen α 1- tgα tgβ - cos α cosβ cos α cosβ - -
3 RAZONES TRIGONOMÉTRICAS DE LA DIFERENCIA DE DOS ÁNGULOS Empleando las fórmulas de la suma de dos ángulos y las razones de ángulos opuestos, vamos a determinar las razones de la diferencia de dos ángulos..1 SENO DE LA DIFERENCIA DE DOS ÁNGULOS sen (α β) = cos β sen α sen β cos α sen (α - β) = sen [α + (-β)] = cos (-β) sen α + sen (-β) cos α Teniendo en cuenta: cos (-β) = cos β sen (-β) = - sen β Obtenemos: sen (α β) = cos (-β) sen α + sen (-β) cos α = cos β sen α sen β cos α. COSENO DE LA DIFERENCIA DE DOS ÁNGULOS cos(α β) = cos α cos β + sen α sen β cos (α β) = cos [α + (-β)] = cos (-β) cos α sen (-β) sen α Teniendo en cuenta: cos (-β) = cos β sen (-β) = - sen β Obtenemos: cos (α β) = cos (-β) cos α sen (-β) sen α = cos β cos α + sen β sen α. TANGENTE DE LA DIFERENCIA DE DOS ÁNGULOS tgα - tgβ tg(α -β) = 1+ tgα tgβ tgα + tg(-β) tg[α + (-β)] = 1- tgα tg(-β) Teniendo en cuenta: Obtenemos: tg (-β) = - tg β tgα + tg(-β) tg(α -β) = 1- tgα tg(-β) tgα - tgβ = 1+ tgα tgβ - -
4 RAZONES TRIGONOMÉTRICAS DEL ÁNGULO DOBLE Vamos a determinar las razones del ángulo doble a partir de las razones de la suma de dos ángulos. 1) sen (α) = sen α cos α ) cos (α) = cos α sen tgα α ) tgα = 1- tg α sen (α) = sen (α + α) = cos α sen α + sen α cos α = sen α cos α cos (α) = cos (α + α) = cos α cos α sen α sen α = cos α sen α tgα + tgα tgα tg (α) = tg (α + α) = = 1- tgα tgα 1- tg α 4 RAZONES TRIGONOMÉTRICAS DEL ÁNGULO MITAD 1) sen = ) 1+ cosα cos = ) tg = 1+ cosα Teniendo en cuenta que α = razones del ángulo doble. α, vamos a determinar las razones del ángulo mitad empleando las cos (α) = cos sen = 1- sen sen = 1- sen sen = sen = 1+ cosα cos = 1- sen = 1- = 1+ cosα cos = sen tg = = = 1+ cosα 1+ cosα cos - 4 -
5 5 ECUACIONES TRIGONOMÉTRICAS Una ecuación trigonométrica es aquella ecuación en la que aparecen una o más razones trigonométricas. En las ecuaciones trigonométricas la incógnita es el ángulo común de las razones trigonométricas. Ejemplos: sen x = tgx x = sen x + cos x = 1 No puede especificarse un método general que permita resolver cualquier ecuación trigonométrica; sin embargo, un procedimiento efectivo para solucionar un gran número de éstas consiste en: 1º.- Transformar, usando principalmente las identidades trigonométricas, todas las razones que aparecen en una sola razón (es recomendable pasarlas todas a senos o cosenos). º.- Una vez expresada la ecuación en términos de una sola razón trigonométrica, se aplican los pasos usuales en la solución de ecuaciones algebraicas para despejar la razón º.- Por último, se resuelve la parte trigonométrica, es decir, conociendo el valor de la razón trigonométrica de un ángulo hay que pasar a determinar cuál es ese ángulo. Para ello, empleando la calculadora determinamos el menor de los ángulos. Ejemplos: 1) sen x = 1 Empleando la calculadora obtenemos x = 90º Las soluciones son : 90º + 60º k ) cosec x = 4 cosec x = ± = ± cos ec x = x = 60º, x = 10º cos ec x = x = 40º, x = 00º ) tg x = -1 Sabemos que la tangente es negativa en el ºC y en el 4º C Empleando la calculadora, se obtiene - 1 INV TG = -45º El ángulo obtenido está en el 4ºC, considerando el ángulo positivo correspondiente x = 60º - 45º = 15º Para obtener el ángulo del º C prolongamos el lado extremo del ángulo: x = 90º + 45º = 15º - 5 -
6 4) sec 4x = - Para poder calcular el ángulo a partir de la razón, es necesario que la razón que aparezca en la ecuación sea seno, coseno ó tangente (ya que son la razones que tiene la calculadora) Si sec 4x = - cos 4x = -1/ 4x = 10º (calculadora) El coseno es negativo en el segundo y tercer cuadrante: 4x = 180º + 60º = 40º x = 60º 4x = 10º x = 0º 5) tg x 1 = 0 tg x 1 = 0 tg x = 1 x = 0º + 60ºk, x = 10º + 60ºk 6) sen x cos x = 0 sen x cos x = 0 sen x = 0, cos x = 0 o sen x = 0 x = 0º, x = 180º o cos x = 0 x = 90º, x = 70º 7) 1 + sen x = cosec x 1 + sen x = sen x sen x + sen x = Realizamos el cambio: t = sen x sen x + sen x = t + t = 0 Resolvemos la ecuación de segundo grado: Deshaciendo el cambio, obtenemos: o t = sen x = t = o t = 1 sen x = 1 x = 90º + 60ºk 1 5 = 1± ± 5 4 = = = 1 4 (imposible ya que -1 sen x 1) - 6 -
7 6 AMPLIACIÓN: SUMA Y DIFERENCIA DE SENOS Y COSENOS 6.1 SUMA Y DIFERENCIA DE SENOS sen A + sen B = sen A +B cos A B sen A sen B = cos A +B sen A B Consideremos las fórmulas de los senos de suma y diferencia de ángulos: sen (α + β) = sen α cos β + sen β cos α sen (α β) = sen α cos β sen β cos α Sumando sen (α + β) + sen (α β) = sen α cos β Restando sen (α + β) sen (α β) = sen β cos α Realizando el cambio: α + β = A α β = B Sustituyendo: α = A +B ; β = A -B sen A + sen B = sen A +B cos A -B sen A sen B = cos A +B sen A -B 6. SUMA Y DIFERENCIA DE COSENOS cos A + cos B = cos A +B cos A B cos A cos B = - sen A +B sen A B Consideremos las fórmulas de los cosenos de suma y diferencia de ángulos: cos(α + β) = cos α cos β sen α sen β cos(α β) = cos α cos β + sen α sen β Sumando cos (α + β) + cos (α β) = cos α cos β Restando cos (α + β) cos (α β) = - sen α sen β Realizando el cambio: α + β = A α β = B Sustituyendo: α = A +B ; β = A -B cos A + cos B = cos A +B cos A -B cos A cos B = - sen A +B sen A -B - 7 -
EJERCICIOS RESUELTOS DE TRIGONOMETRÍA
EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia
A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:
MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
RESUMEN DE TRIGONOMETRÍA
RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.
- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.
Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.
3.- TRIGONOMETRÍA 1.- EL RADIÁN
. Pasa a radianes los siguientes ángulos: a) 00 b) 00 Solución: a) 0/9 rad, b) 5/ rad.. Pasa a radianes los siguientes ángulos: a) 70 b) 6 Solución: a) / rad, b) 7/0 rad..- TRIGONOMETRÍA.- EL RADIÁN. Halla,
7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.
b 11 cm y la hipotenusa
. RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,
TEMA 4: TRIGONOMETRÍA
TEMA 4: TRIGONOMETRÍA 1. Cuántos radianes tiene una circunferencia? 2. Cuántos grados tiene un radián? 3. Cuántos radianes tiene un grado? 4. Cuántos radianes tiene un ángulo α de 210 o? 5. Determina los
1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3
TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre
T R I G O N O M E T R Í A
T R I G O N O M E T R Í A 1. M E D I D A D E Á N G U L O S Existen varios sistemas de medida de ángulos. Los más comunes son el sistema sexagesimal y el radián. Sistema sexagesimal: Cada una de las 360
1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS
ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones
VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)
VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de
Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el:
TRIGONOMETRÍA La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y astronomía,
RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II
RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
94' = 1º 34' 66.14'' = 1' 6.14'' +
UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene
3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.
RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:
Ejercicios de Trigonometría
Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo
Unidad 2: Resolución de triángulos
Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones
180º 36º 5. rad. rad 7. rad
ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
B) dado un lado y dos ángulos,el triángulo queda determinado.
En un triángulo distinguimos: -3 vértices: A, B y C -3 lados: a, b y c -3 ángulos: α, β y γ Je vous conseille de douter de tout, excepté que les trois angles d un triangle sont égaux à deux droit Voltaire
Ecuaciones trigonométricas resueltas
Ecuaciones trigonométricas resueltas 1. Resuelve: sen 2 x cos 2 x= 1 2 Despejando el coseno de x de la primera relación fundamental, se tiene: Sustituyendo en la ecuación original: sen 2 x 1sen 2 x= 1
4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.
- Un triángulo de hipotenusa unidad Teorema fundamental de la trigonometría Puesto que el valor de las razones trigonométricas en un triángulo rectángulo no dependen del tamaño de los lados, puede elegirse
Guía de Reforzamiento N o 2
Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma
MATEMÁTICAS UNIDAD 2 GRADO 10º. trigonometría
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 2 GRADO 10º trigonometría 1 2 Franklin Eduardo Pérez Quintero LOGRO: Reconocer las relaciones entre las funciones trigonométricas y sus aplicaciones
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo
TEMAS 5 FUNCIONES Y FÓRMULAS TRIGONOMETRÍAS
TEMA 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS MATE I 1º Bach 1 TEMAS 5 FUNCIONES Y FÓRMULAS TRIGONOMETRÍAS 5.1 UNIDAD PARA MEDIR ÁNGULOS: EL RADIÁN DEFINICIÓN DE RADIAN Se llama radian a un ángulo tal que
MATEMATICAS GRADO DECIMO
MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de
Nota: Como norma general se usan tantos decimales como los que lleven los datos
1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a 10cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b 10 sen Bˆ
RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo
RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria
OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría III Nivel I Eliminatoria Marzo 2016 Índice 1. Presentación. 2 2. Temario 3 3. Teorema de Pitágoras 4 4. Triángulos Especiales 7
El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.
Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia
GEOMETRÍA ANALÍTICA EN EL PLANO
GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante
UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN
86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )
La Lección de hoy es sobre el Uso de Razones Trigonométrica para Resolver Triángulos Rectángulos.
La Lección de hoy es sobre el Uso de Razones Trigonométrica para Resolver Triángulos Rectángulos. El cuál es la expectativa para el aprendizaje del estudiante T.2.G.6 La Lección de hoy es sobre el Uso
Triángulos Rectángulos y Ángulos Agudos
Triángulos Rectángulos y Ángulos Agudos Un ángulo agudo es un ángulo con una medida mayor que 0º y menor que 90º. Se utilizan letras griegas (alpha), (beta), (gamma), (theta), and (phi) para nombrar ángulos,
Capítulo 6: Ecuaciones Trigonométricas
Capítulo 6: Ecuaciones Trigonométricas Definición: Una ecuación trigonométrica es una relación de igualdad que contiene expresiones trigonométricas. Esta ecuación sólo es válida para determinado valor
Tema 7: Trigonometría.
Tema 7: Trigonometría. Ejercicio 1. Sabiendo que cos α = 0, 63, calcular s = sen α y t = tg α. Mediante la igualdad I, conocido sen α obtenemos cos α, y viceversa. s + 0,63 = 1 s = 1 0,63 = 0,6031 s =
3.1 Ejercicios Trigonometría 4.1
1 3.1 Ejercicios Trigonometría.1 3.1.1 Ejercicios resueltos 1. Comprobar la siguiente identidad trigonométrica curiosa: tg (α) sen (α) tg (α) sen (α) Solución: En primer lugar desarrollaremos el primer
Complejos, C. Reales, R. Fraccionarios
NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar
Problemas Tema 3 Enunciados de problemas sobre complejos
página 1/6 Problemas Tema 3 Enunciados de problemas sobre complejos Hoja 1 1. Dados los complejos: z 1 = 2 + 3i z 2 = 2 - i z 3 = 1 + 4i z 4 = 5 2i Calcula (z 1 + z 2)(z 3 z 4) -28 + 16i 2. Calcula (2
Ecuaciones de Primer Grado con una Incógnita
Tema 5 Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una
ECUACIONES TRIGONOMÉTRICAS página 87
ECUACIONES TRIGONOMÉTRICAS página 87 página 88 INSTITUTO VALLADOLID PREPARATORIA 5 ECUACIONES TRIGONOMÉTRICAS 5. CONCEPTOS Y DEFINICIONES La palabra ecuación viene del latín, de aequatus, participio pasivo
TEMA 6 ECUACIONES DE PRIMER GRADO
Nueva del Carmen,. 0 Valladolid. Tel 98 9 6 9 Fa 98 89 96 Matemáticas º ESO TEMA 6 NOMBRE Y APELLIDOS... HOJA - FECHA... Comenzamos en este tema a resolver ecuaciones. Primero de Primer grado. Luego vendrán
TRIGONOMETRIA DEL TRIANGULO RECTO. Copyright 2009 Pearson Education, Inc.
TRIGONOMETRIA DEL TRIANGULO RECTO Copyright 2009 Pearson Education, Inc. Triángulos Rectángulos y Ángulos Agudos Un triángulo recto es un triángulo con un ángulo de 90º y dos ángulos agudos (menor que
TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa.
TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: seno de cos eno de cateto opuesto hipotenusa cateto próximo hipotenusa cateto opuesto tan gente
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
Introducción a la actividad Material Didáctico: Tiempo (1hr.45min)
Código/Título de la Unidad Didáctica: CALCULOS TRIGONOMETRICOS Actividad nº/título: A1. TRIGONOMETRÍA FORMULAS GENERALES Introducción a la actividad Material Didáctico: Tiempo (1hr.45min) 1. OBJETIVO El
1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García
. MEDIDAS DE ÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Para medir los ángulos solemos utilizar las siguientes unidades: el grado sexagesimal y el radián. Grado sexagesimal: Se denomina grado
Ecuaciones de primer grado
Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,
II.- PRODUCTOS NOTABLES
II.- PRODUCTOS NOTABLES Representaremos algunos productos notables mediante el uso de material concreto. Binomio conjugado. (y + 4) (y 4) = y - 4y + 4y - 4 = y - 16 Cuadrado de un binomio. (x + 3) = x
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
BLOQUE II Trigonometría y números complejos
LOQUE II Trigonometría y números complejos Pág. de 6 En el triángulo, rectángulo en, conocemos tg ^ =, y b = 6 cm. Halla los lados y los ángulos del triángulo. tg ^ b 6 = 8, = 8 c = cm c c c a a = 6 +
UNIDAD IV. LEYES DE SENOS Y COSENOS.
UNIDAD IV. LEYES DE SENOS Y COSENOS. OBJETIVO. El estudiante resolverá problemas leyes de senos y cosenos, teóricos o prácticos de distintos ámbitos, mediante la aplicación las leyes y propiedades de Senos
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO
TRIGONOMETRÍA INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO Interpretación geométrica de las razones trigonométricas
7 RAZONES TRIGONOMÉTRICAS
7 RAZONES TRIGONOMÉTRICAS PARA EMPEZAR Utiliza la calculadora para hallar la medida en grados, minutos y segundos de cada uno de los ángulos que resultan al dividir un círculo en: a) 7 partes iguales b)
Trigonometría, figuras planas
El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama
Las Funciones Trigonométricas Inversas
Capítulo 4 Las Funciones Trigonométricas Inversas 4.1. Relaciones y sus inversas Recordemos que una relación es un subconjunto de un producto cartesiano, es decir R A B o bien R : A B, en tanto que su
Matemática II Clase Nº 14-15
LA DERIVADA La derivación es una de las operaciones que el Análisis Matemático efectúa con las funciones, permite resolver numerosos problemas de Geometría, Economía, Física otras disciplinas. En matemáticas,
GUIA DE TRIGONOMETRÍA
GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo
ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO
ECUACIONES ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO 1.- IGUALDADES Y ECUACIONES Las expresiones compuestas de dos miembros enlazados por el signo = se llaman igualdades, y ponen de manifiesto
1. Sistemas lineales. Resolución gráfica
5 Sistemas de ecuaciones 1. Sistemas lineales. Resolución gráfica Dado el sistema lineal formado por las ecuaciones del gráfico de la parte derecha: a) cuántas soluciones tiene? b) halla la solución o
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
MÓDULO DE MATEMÁTICA 3º MEDIO P.G. UNIDAD N 5: RELACIONES MÉTRICAS DEL TRIÁNGULO RECTÁNGULO. Nombre:... Curso: 3º Fecha:..
0 MÓULO E MTEMÁTI º MEIO P.G. UNI N : RELIONES MÉTRIS EL TRIÁNGULO RETÁNGULO Nombre:....... urso: º Fecha:.. I. Teorema de Euclides onsideramos el triángulo, rectángulo en, donde: c es la. h es altura.
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
RESOLUCIÓN DE TRIÁNGULOS página 119
RESOLUCIÓN DE TRIÁNGULOS página 119 página 120 INSTITUTO VALLADOLID PREPARATORIA 6 RESOLUCIÓN DE TRIÁNGULOS 6.1 CONCEPTOS Y DEFINICIONES Todos los triángulos constan de seis elementos primarios que son
Tema 4: Resolución de triángulos.
Tema 4: Resolución de triángulos. Ejercicio 1. En un triángulo rectángulo se conocen: a = 11 cm. y la hipotenusa, c = 0 cm. Hallar los demás elementos. El otro cateto: b 0 11 16,7 cm. Un ángulo agudo:
TEMA N 2 RECTAS EN EL PLANO
2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración
Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?
Cálculo de Derivadas
Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada
TALLER NIVELATORIO DE TRIGONOMETRIA
TALLER NIVELATORIO DE TRIGONOMETRIA TEOREMA DE PITAGORAS En todo triangulo rectángulo el cuadrado de la longitud de la hipotenusa es igual al cuadrado de la longitud de los catetos. Entonces la expresión
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
1. NUMEROS COMPLEJOS.
Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.
I.P.A.O. Granada EXAMEN ANDALUCÍA 2000. JARR
PROCEDIMIENTO SELECTIVO PARA EL INGRESO AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA. CONVOCATORIA 2000. MATEMÁTICAS EJERCICIO 1: Construir un triángulo conociendo los lados "b" y "c" y la bisectriz
ECUACIÓN DE LA RECTA
ECUCIÓN DE L RECT.- PRIMERO DE BCHILLERTO.- TEORÍ Y EJERCICIOS. Pág. ECUCIÓN DE L RECT Sistema de referencia. Es el conjunto formado por: Un punto O del plano llamado origen. Una base B {i, j } para los
ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO
Resúmenes de Matemáticas para la E.S.O. ECUACIONES ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO 1.- IGUALDADES Y ECUACIONES Las expresiones compuestas de dos miembros enlazados por el signo = se
Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra
Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que
57º 35' 23.14'' = 67º 59' 43.00'' + 125º 34' 66.14'' = 1' 6.14'' +
UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla
PROBLEMAS RESUELTOS DE TRIGONOMETRÍA. 1 cos
PROBLEMAS RESUELTOS DE TRIGONOMETRÍA ) Sabiendo que > 90º y que tg /, calcular el resto de razones trigonométricas de sin usar lalculadora. Posteriormente, decir el valor de en grados, minutos y segundos,
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos
EJERCICIOS RESUELTOS DE ECUACIONES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:
2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1)
2011 ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº 4 Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Prroducctto Veeccttorriiall.. Reecctta.. Pllano
1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:
Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?
. Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta
T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:
T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente
Notas del curso de Introducción a los métodos cuantitativos
Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el
Introducción a la actividad Material Didáctico: Tiempo (2 hras)
Código/Título de la Unidad Didáctica: CALCULOS TRIGONOMETRICOS Actividad nº/título: A2. CALCULO DE ANGULOS Introducción a la actividad Material Didáctico: Tiempo (2 hras) 1. OBJETIVO El objetivo de esta
circulares y trigonométricas Unidad 2:Funciones ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia
1 Unidad :Funciones circulares y trigonométricas Tem: Ángulos Lección 6: Ángulos de referencia 11 ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia Para dibujar un triángulo de referencia
