3.1 Ejercicios Trigonometría 4.1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.1 Ejercicios Trigonometría 4.1"

Transcripción

1 1 3.1 Ejercicios Trigonometría Ejercicios resueltos 1. Comprobar la siguiente identidad trigonométrica curiosa: tg (α) sen (α) tg (α) sen (α) Solución: En primer lugar desarrollaremos el primer término de la igualdad. Así: tg (α) sen (α) sen cos (α) sen (α) sen (α) sen (α)cos (α) cos (α) sen (α)(1 cos (α)) cos (α) 1 z } { sen (α) ( sen (α)+cos (α) cos (α)) cos (α) sen (α) sen (α) cos (α) tg (α) sen (α). Sabiendo que tg( ) 1 calcular sen(). Solución: Como vimos, utilizando la epresión de la tangente del ángulo doble tenemos:: tg() tg( ) tg( ) 1 tg ( ) 1 1 ( 1 ) 3 Ahora bien, conocemos tg() pero nos piden sen(). Este caso es típico, para ello partiremos de la relación fundamental: sen (α)+cos (α) 1 sen () sen () + cos () sen () 1 sen () 1+ 1 tg () 1 sen () 1+ 1 (/3) 1 sen () sen () 16 5 sen() ± 5 Notar que tenemos dos valores (uno positivo y otro negativo) ya que la tangente es positiva en el primer y tercer cuadrante, pero no así en seno. 3. Conocidos los tres ángulos de un triángulo es posible resolver el triángulo? Solución: La respuesta a esta cuestión es negativa, ya que eisten infinitos triángulos semejantes a uno dado con idénticos ángulos.

2 Lo que si sabremos es que los lados de todos ellos serán proporcioles.. Los lados de un triángulo miden respectivamente 13, 1 y 15 cm. Hallar sus ángulos así como es área del triángulo. Solución: A partir de los datos del problema debemos encontrar los valores de los ángulos. Como nos dan sus tres lados podemos aplicar el teorema del coseno, de donde: c a + b ab cos(c) cos(c) cos(c) C arccos(0.386) rad Análogamente: a b + c bc cos(a) cos(a) A arccos(0.508) rad Utilizando que la suma de los ángulos ha de ser π rad, tenemos: B π Por otro lado para calcular el área debemos notar que, por ejemplo: sen(a) h 13 h 13 (1.038) de donde: area base altura cm

3 3 5. Encontrar el valor de y h a partir de los datos que se nos indican en el siguiente dibujo, sabiendo que A π/6 y B π/3. Solución: A partir de las tangentes de los ángulos A y B obtenemos: ½ tg(a) tg(b) h h 10+ tg(π/6) tg(π/3) 3 ½ h h h 5 3 unidades 5unidades 6. Un aeroplano vuela a 170 km/s hacia el nordeste, en u dirección que forma un ángulo de 5 con la dirección este. El viento está soplando a 30 km/h en la dirección noroeste, formando un ángulo de 0 o con la dirección norte. Cuál es la velocidad con respecto a tierra real del aeroplano y cuál es el ángulo A entre la ruta real del aeroplano y la dirección este? Solución: Indiquemos la velocidad del aeroplano relativa al aire como V, la velocidad del viento relativa a tierra como W, y la velocidad del aeroplano relativa a tierra UV+W. Para ejecutar la suma real cada vector debe descomponerse en sus componentes. Por tanto obtenemos: V170cos(5 ) 10.6 Vy 170sen(5 ) de donde: W 30sen(0 ) 10.6 Wy 30cos(0 )8.19 U 9. Uy 16.15

4 Entonces, por el teorema de Pitágoras, dado que Por otro lado U U + Uy U km/h cos(a) U U A arccos( ) rad Ejercicios propuestos 1. Calcular todos los ángulos α [0, π] tales que cos(α) 3 tg(α) (sol: α π/6, α 5π/6). Si α y β son ángulos comprendidos entre 0 y π radianes. Qué relación hay entre ellos si se verifica que sen(α) sen(β) y cos(α) cos(β)? (sol: β α). 3. Que relación eiste entre las razones trigonométricas de (π/ α) y(π/ + α)? (sol: Al ser complementarios sen(π/ α) cos(π/+α) y viceversa).. Sabiendo que cos(α) 1/3 yqueα [0, π/] determir cos(π/ α), sen(3π/+α) y tg(π α) (sol: cos(π/ α) 3 ; sen(3π/+α) 1/3 ; tg(π α) ). 5. Sabiendo que cos(α) 3/5 yqueα [3π/, π] determir sen(α), tg(α) y cos(α/) (sol: sen(α) /5 ; tg(α) /3 ; cos(α) / 5). 6. Comprobar que las siguientes epresiones no dependen del valor de α y determir su valor: sen(α)cos(π/ α) cos(α)cos(π/+α) (sol: ) 7. Demostrar las identidades: cos(α)cos(π/6+α)+sen(α)cos(π/3 α) (sol: 3 ) a) cos(α) sen (α + π/) b) 1+cotg (α) cosec (α) c) sec (α) 1+tg (α) d) tg(α)+cotg(α) sec(α) cos ec(α) 8. Sabiendo que tg(α) yque sen(α)cos(β) cos(α β) hallar tg(β) (sol: tg(β) 7/). 9. Resolver la siguiente ecuación trigonométrica: cos() 3 tg() (sol: π/6+kπ ; 5π/6+kπ (k Z) 10. Resolver la siguiente ecuación trigonométrica sabiendo que [0, π] : 3sen() cos() sen 3 () (sol: 0, π, π/6 ó 7π/6 rad) 11. Resolver el siguiente sistema de ecuaciones sabiendo que e y [0, π]: ½ ()+cos(y) (sol: yπ/ ;3π/ y-π/) + y π/

5 5 1. Resolver, si es posible, los siguientes triángulos: a) a 100cm, B 7 0,C 63 0 (sol :b 77.8cm, c 9.81cm, A 70 0 ) b) A π/3,b π/,c π/6 (sol: Infinitos triángulos) c) a 5 cm, b 30cm, c 0cm (sol: A 0.67rad, B 0.85rad, C 1.6rad) d) b 6cm, c 8cm,C 57 0 (sol :a 9.8cm, A ,B ) donde: 13. Sean A y B los ángulos no rectos de un triángulo rectángulo. Probar que: (a) sen (A)+sen (B) 1 (b) tg(a) tg(b) 1 1. Sean A, B y C los ángulos de un triángulo cualesquiera. Probar que (a) sen(a) sen(b + C) (b) cos(a)+cos(b + C) Los lados de un paralelogramo miden 6 y 8 cm respectivamente y forman un ángulo de 0.5 rad. Calcular la medida de sus diagoles (sol: 13.6 cm y.31 cm). 16. Se desea calcular la distancia entre dos puntos A y B de un terreno llano que no son accesibles. Para ello, se toman dos puntos accesibles del terreno C y D y se determir las distancias y ángulos siguientes: CD 300m α ACD 85 0 β BDC 75 0 α 0 BCD 0 β 0 ADC 35 0 Calcular la distancia de A a B (sol:7.7 m)

6 .1. TEMA.5 COMPLEJOS 1.1 Tema.5 Complejos Ejemplo: Efectúa i, 1+i7 3+i 1 i y 1+3i i( i) 1+3i i 3+i i 3+i 3 i 3 i 3i i 3i ( 1) 3i +1 3 i 9 ( 1) i Observemos que: i 0 1,i i, i 1,i 3 i, i 1,i 5 i, i 6 1,i 7 i,... 1+i 7 1 i 1 i 1 i 1 1+3i i ( i) 1+3i 1+3i i + i 1+i 1 i 1+3i 1+3i 1+3i i 1 3i 1+3i 1 3i i 3i 1 3 i i i 1 10 Ejemplo: Resuelve la ecuación +0 ± ± 1 ± 8 1± 11± i ± ± 1 Ejemplo: Comprueba que la suma z + 1 z también lo sea. Sea z + iy 1 z z + 1 z + iy + + y + y y + y i nunca puede ser imagirio puro, salvo que z y + y i + µ + y + i y para que sea imagirio puro, tiene que ser: µ + + y y y + y Ejemplo: Qué condiciones tiene que cumplir z para que z + 1 z sea real? z + 1 z + iy + + y y + y i + µ + y + i y y + y

7 para que sea un número real, tiene que verificar: y µ y + y 0y y y y y o z es un número real o bien su afijo se encuentra sobre la circunferencia unidad de centro (0, 0). Ejemplo: Dado el polinomio +3 +1p(), demuestra que p(z) p(z) cualesquiera que sean los z para los que p(z) R Sea z a + bi, por las propiedades de la conjugación, sabemos que p(z) p(z) p (z) p (z) R, luego, (a + bi) +3(a + bi)+1 R a b +abi +3a +3bi +1 R ab +3b 0 Ejemplo: Calcula el producto i i i 3 i 100 ylasumai + i + i i 100. i i i 3 i 100 i i 5050 i + 16 i i 16 i 1 i + i + i i 100 i i100 i i i i 1 i 1 0 Ejemplo: Representa en el plano complejo los números que verifican: 1. z + z 1. z z 1 i 1. z + z 1 + iy + iy 1 1. z z 1 i + iy ( iy) yi 1 i y 1 Ejemplo: Describe el conjunto de puntos z tal que: 1. Re (z) 0;Re(z) > 0; z 1; z > 1; Im (z) 1;Im(z) < 1; 1 < z <.. z 1 ; z 1 < ; z 1 z Re (z) + Im (z) 1; z Re(z)+; z 5 z +5 6; z 3 + z +3 8 Solución.- Solución.- 1. Si z + iy Re (z) 0que representa u recta, el eje de ordedas; Re(z) >0 es un semiplano. z p + y 1 + y 1circunferencia de centro (0, 0) yradio1.1 < z < es u coro circular de radios 1 y respectivamente.

8 .1. TEMA.5 COMPLEJOS 3. z 1 es la circunferencia de centro (1, 0) yradio. z 1 < el circulo de centro (1, 0) y radio. z 1 z +1 es el lugar geométrico de puntos del plano que equidistan de los puntos (1, 0) y ( 1, 0), es decir, la mediatriz de ese segmento. 3. Re (z) + Im (z) 1 + y es un cuadrilátero de vértices (1, 0), (0, 1), ( 1, 0) y (0, 1). z 5 z +5 6lugar geométrico de puntos del plano cuya diferencia de distancias a dos puntos fijos (llamados focos (5, 0) y ( 5, 0)) es constante, es decir, u hipérbola. z 3 + z +3 8es el lugar geométrico de puntos del plano cuya suma de distancias a dos puntos fijos(llamadosfocos)(3, 0) y ( 3, 0) es constante, es decir, u elipse. z Re(z)+lugar geométrico de puntos del plano equidistantes de un punto fijo y u recta, es decir, u parábola. Ejemplo: Resolver la ecuación z 3 1. ½ 11 0 ( φ ) 3 3 3φ φ 0+kπ las soluciones son: observemos que 1 0 1, 1 π 3 1 0, 1 π, 1 π 3 3 1e π 3 i e π 3 i w, 1 π 3 ½ 1e π 3 i e π 3 i 1 φ kπ ; k 0, 1, 3 ³ e π 3 i w verificándose que 1+w + w 0yquew 3 1 w 1 w w ww w. Veamos un ejemplo donde se hace uso de estas propiedades. Ejemplo: Demostrar que para cualquier número tural n el polinomio ( +1) 6n+1 6n+1 1 es divisible por ( + +1). Vamos a demostrar que las raíces de ( + +1) dividen a ( +1) 6n+1 6n+1 1 con lo que estará probado. ( 1) luego las raíces de + +1son las raíces complejas de z 3 1, es decir, w y w w 1 w, y lasraícesde( + +1) son w y w w 3 w w. y al ser (w +1) 6n+1 w 6n+1 1 w +1 w ª w 6n+1 w 6n+1 1 w 6n+1 w 1n+ w 1n w w 3 n w w w 6n+1 w 3 n w w de donde (w +1) 6n+1 w 6n+1 1 w w 10 Análogamente procedemos con la otra raíz, w. Ejemplo: La fórmula de Moivre nos sirve para realizar cálculos trigonométricos, por ejemplo, epresar a, cos 3a, cos a,...,cos a, cos 3 a,...

9 En efecto, aplicando la citada fórmula, podemos escribir: (cos a + i a) n cos + i ysólotenemosquedesarrollarporlafórmuladelbinomioelprimertérmino. Así tendremos, por ejemplo, para n (cos a + i a) cosa + i a cos a +i cos a a + i a cosa + i a ½ ¾ cos cos a a +i cos a a cosa + i a a a cosa cosa a si cos a 1 cos a cosa cos a 1+cosa y 1 cos a a También podemos obtener el seno de u suma o diferencia a partir de la fórmula de Euler: e i cos + i pero, por otra parte: e ia e ib e i(a+b) cos(a + b)+i (a + b) (cos a + i a)(cosb + i b) cosa cos b a b + i (cos a b +sicob) igualando las partes reales e imagirias obtenemos: cos (a + b) cosa cos b a b (a + b) cosa b +si cos b Las transformaciones de productos de senos y/o cosenos, son muy utililes en el cálculo de primitivas, veamos un procedimiento sencillo basado en la fórmula de Euler. Ejemplo: Transformar en sumas de senos y/o cosenos. Sea e i cos + i, y e i e i( ) cos( )+i ( ) cos i. Sumando y restando, obtenemos: de donde, cos ei + e i ei e i i ei e i i ei e i i

10 .1. TEMA.5 COMPLEJOS 5 y multiplicando ei e i e i e i 1 e 3i e i e i + e 3i i i 1 e 3i + e 3i e i + e i 1 (e 3i + e 3i ) (ei + e i ) 1 [cos 3 cos ] Ejercicios Ejemplo: Hallarz (1+i)100 ( 1 i) 50 z (1 + i)100 (1 + i) z 1 i (1 i) 5 Pasamos los número complejos a su forma polar ½ arg (z0 )arctan 1 z 0 1+i ¾ π 1 z z 0 π z π 50 5π ( arg (z0 ) arctan 1 1 z 1 1 i 1π ) q z 1 1 +( 1) z 1 π z π 50 5π z π 75 3π 37 µ cos 3π 5 π + i 3π 37 ( 1+i) ³ n ³ n 1+i Ejemplo: Calcular f (n) + 1 i para n 1,, 3, yprobarquef (n +) f (n)(n > 0 entero) µ n µ n 1+i 1 i f (n) + e π i n + e π i n nπ e i + e nπ i ³ nπ ³ nπ ³ cos + i +cos nπ ³ + i nπ ³ nπ ³ nπ ³ nπ ³ nπ ³ nπ cos + i +cos i cos de donde ³ π f (1) cos µ π f () cos µ 3π f (3) cos 0

11 6 µ π f () cos µ (n +)π f (n +) cos ³ nπ π cos + cos nπ f (n) Ejemplo: Girar5 o el vector z 3+i y etenderlo el doble. Girar u figura o un vector 5 o, equivale a multiplicarlo por el número complejo z 1 5 o 1 π cosπ + i π i y para etenderlo el doble basta con multiplicar por. µ 1 1 (3 + i) + i +7i Ejemplo: Calcularlasumacos a +cosa +cos3a + +cos Consideramos z cosa +cosa +cos3a + +cos + i ( a +si + +) cosa + i a +cosa + ½ i a + +cos + i ¾ suma de n términos de e ia + e ia + + e i ei e ia e ia u progresión geométrica e ia 1 e ia ei 1 cos + i 1 1+cos + i e ia eia eia 1 cos a + i a 1 1+cosa + i a ia + i cos + icos e ia e a ia e a a + i a cos a a µ i + i cos i a + i cos a e i( a ) a cos n +1 a + i n +1 a ia e a ia e a e i( + a ) a a + icos a cos a cos a e i (n+1)a de donde, igualando la parte real y la imagiria, tendremos: cos a +cosa +cos3a + +cos a cos n +1 a a +si +3a + + Ejercicio: Demostrar las fórmulas de Moivre: 1+cos π n +cosπ n π n +π n a 1) π + +cos(n n 1) π + +(n n n +1 a 0 0

12 .1. TEMA.5 COMPLEJOS 7 Ejercicio: Hallar las raices de la ecuación (1 + i) z 3 i 0 Ejercicio: Escribir en forma binómica e i. Ejercicio: Resolver la ecuación z Ejercicio: Resolver la ecuación z Ejercicio: Resolver la ecución (z +1) 3 + i (z 1) 3 0.

Tema 3. El cuerpo de los números complejos Introducción

Tema 3. El cuerpo de los números complejos Introducción Tema 3 El cuerpo de los números complejos 3.0.6 Introducción Aunque parezca que los complejos se introducen a partir de la resolución de la ecuación x +1 0, da más lejos de la realidad, esta era rechazada

Más detalles

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones: MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

T3: TRIGONOMETRÍA 1º BCT

T3: TRIGONOMETRÍA 1º BCT 1 RAZONES TRIGONOMÉTRICAS DE LA SUMA DE DOS ÁNGULOS Queremos calcular las razones trigonométricas de la suma de dos ángulos, α + β, a partir de las razones de los ángulos α y β. 1.1 SENO DE LA SUMA DE

Más detalles

RESUMEN DE TRIGONOMETRÍA

RESUMEN DE TRIGONOMETRÍA RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.

Más detalles

3.- TRIGONOMETRÍA 1.- EL RADIÁN

3.- TRIGONOMETRÍA 1.- EL RADIÁN . Pasa a radianes los siguientes ángulos: a) 00 b) 00 Solución: a) 0/9 rad, b) 5/ rad.. Pasa a radianes los siguientes ángulos: a) 70 b) 6 Solución: a) / rad, b) 7/0 rad..- TRIGONOMETRÍA.- EL RADIÁN. Halla,

Más detalles

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj. Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.

Más detalles

Tri gonometrí a. Ca pi t ulo Trigonometría Trigonometría plana

Tri gonometrí a. Ca pi t ulo Trigonometría Trigonometría plana Ca pi t ulo Tri gonometrí a. 4.1 Trigonometría Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de triángulos, de las propiedades y aplicaciones de las funciones

Más detalles

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.

Más detalles

B) dado un lado y dos ángulos,el triángulo queda determinado.

B) dado un lado y dos ángulos,el triángulo queda determinado. En un triángulo distinguimos: -3 vértices: A, B y C -3 lados: a, b y c -3 ángulos: α, β y γ Je vous conseille de douter de tout, excepté que les trois angles d un triangle sont égaux à deux droit Voltaire

Más detalles

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q NÚMEROS COMPLEJOS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El paso de Z a Q Imaginemos que solo se conocieran los números enteros, Z. Sin utilizar otro tipo de números, intenta resolver las siguientes

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

1. NÚMEROS REALES. LOGARITMOS Y EXPONENCIALES. (Pendientes de Matemáticas I)

1. NÚMEROS REALES. LOGARITMOS Y EXPONENCIALES. (Pendientes de Matemáticas I) . NÚMEROS REALES. LOGARITMOS Y EXPONENCIALES. (Pendientes de ). Calcula las potencias: a) -, (-), (-) -, - - (/) -, (-/), -(-/) - - (/) - 0 ( ) d) e) 0 0 + + 8 [sol] a) ; 7 ; ( 7; ; 7 d) e) 0 7 7 7. Simplifica

Más detalles

TEMA 4: TRIGONOMETRÍA

TEMA 4: TRIGONOMETRÍA TEMA 4: TRIGONOMETRÍA 1. Cuántos radianes tiene una circunferencia? 2. Cuántos grados tiene un radián? 3. Cuántos radianes tiene un grado? 4. Cuántos radianes tiene un ángulo α de 210 o? 5. Determina los

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

BLOQUE II Trigonometría y números complejos

BLOQUE II Trigonometría y números complejos LOQUE II Trigonometría y números complejos Pág. de 6 En el triángulo, rectángulo en, conocemos tg ^ =, y b = 6 cm. Halla los lados y los ángulos del triángulo. tg ^ b 6 = 8, = 8 c = cm c c c a a = 6 +

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos Elena Álvare Sái Dpto. Matemática Aplicada y C. Computación Universidad de Cantabria Ingeniería de Telecomunicación Teoría: Números Complejos Necesidad

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones

Más detalles

Matemáticas Básicas. 1 de octubre de 2005

Matemáticas Básicas. 1 de octubre de 2005 Matemáticas Básicas de octubre de 005 Índice general. Combinatoria, binomio de Newton y simbología.. Los números naturales y racionales. Combinatoria....................... El simbolo Σ........................................

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. 6. Trigonometría 37 6 Trigonometría Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. A efectos representativos y de medición, el

Más detalles

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos. RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:

Más detalles

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría. - Un triángulo de hipotenusa unidad Teorema fundamental de la trigonometría Puesto que el valor de las razones trigonométricas en un triángulo rectángulo no dependen del tamaño de los lados, puede elegirse

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos CONCEPTOS NÚMEROS COMPLEJOS En el conjunto de los números reales, una ecuación tan sencilla como x + = 0 no se puede resolver ya que es equivalente a x = - y no existe ningún número real cuyo cuadrado

Más detalles

94' = 1º 34' 66.14'' = 1' 6.14'' +

94' = 1º 34' 66.14'' = 1' 6.14'' + UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene

Más detalles

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0) 1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por

Más detalles

sen sen sen a 2 a cos cos 2 a

sen sen sen a 2 a cos cos 2 a BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:

Más detalles

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben

Más detalles

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica: Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

Problemas Tema 3 Enunciados de problemas sobre complejos

Problemas Tema 3 Enunciados de problemas sobre complejos página 1/6 Problemas Tema 3 Enunciados de problemas sobre complejos Hoja 1 1. Dados los complejos: z 1 = 2 + 3i z 2 = 2 - i z 3 = 1 + 4i z 4 = 5 2i Calcula (z 1 + z 2)(z 3 z 4) -28 + 16i 2. Calcula (2

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García . MEDIDAS DE ÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Para medir los ángulos solemos utilizar las siguientes unidades: el grado sexagesimal y el radián. Grado sexagesimal: Se denomina grado

Más detalles

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Las Funciones Trigonométricas Inversas

Las Funciones Trigonométricas Inversas Capítulo 4 Las Funciones Trigonométricas Inversas 4.1. Relaciones y sus inversas Recordemos que una relación es un subconjunto de un producto cartesiano, es decir R A B o bien R : A B, en tanto que su

Más detalles

Guía de Reforzamiento N o 2

Guía de Reforzamiento N o 2 Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma

Más detalles

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1. GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el:

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el: TRIGONOMETRÍA La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y astronomía,

Más detalles

El conjunto de los números complejos.

El conjunto de los números complejos. Tema 1 El conjunto de los números complejos. 1.1. Introducción. Suponemos conocido el conjunto de los números reales R y sus propiedades. En consecuencia sabemos que en tal conjunto no tiene solución la

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

180º 36º 5. rad. rad 7. rad

180º 36º 5. rad. rad 7. rad ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor

Más detalles

MATEMÁTICAS UNIDAD 2 GRADO 10º. trigonometría

MATEMÁTICAS UNIDAD 2 GRADO 10º. trigonometría 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 2 GRADO 10º trigonometría 1 2 Franklin Eduardo Pérez Quintero LOGRO: Reconocer las relaciones entre las funciones trigonométricas y sus aplicaciones

Más detalles

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio. GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo

Más detalles

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO TRIGONOMETRÍA INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO Interpretación geométrica de las razones trigonométricas

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA ECUCIÓN DE L RECT.- PRIMERO DE BCHILLERTO.- TEORÍ Y EJERCICIOS. Pág. ECUCIÓN DE L RECT Sistema de referencia. Es el conjunto formado por: Un punto O del plano llamado origen. Una base B {i, j } para los

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos

Más detalles

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.

TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm. TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia: GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida

Más detalles

Geometría Analítica Enero 2016

Geometría Analítica Enero 2016 Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos

Más detalles

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es. Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,

Más detalles

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

UNIDAD X - GEOMETRIA. Ejercitación

UNIDAD X - GEOMETRIA. Ejercitación UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.

Más detalles

1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas: cos. sen.

1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas: cos. sen. Soluciones de la Hoja de problemas de Números complejos y trigonometría. 1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas:

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.- ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el

Más detalles

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes. TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.

Más detalles

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1)

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1) 2011 ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº 4 Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Prroducctto Veeccttorriiall.. Reecctta.. Pllano

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos.

CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. CAPÍTULO XVI. NÚMEROS COMPLEJOS SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. 73 A. DEFINICIÓN. PRIMERAS PROPIEDADES. Un número complejo

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles