RESUMEN DE TRIGONOMETRÍA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESUMEN DE TRIGONOMETRÍA"

Transcripción

1 RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice. El ángulo es positivo si lo medimos en sentido contrario al movimiento de las agujas del reloj y negativo en caso contrario. Positivo Negativo La unidad de medida de los ángulos es el Grado, que puede venir expresado de varias formas: Sistema sexagesimal: Un grado es la amplitud del ángulo resultante de dividir la circunferencia en 360 partes iguales. Cada grado tiene 60 minutos y cada minuto tiene 60 segundos. Grado radián: Es la amplitud del ángulo cuyo arco mide lo mismo que el radio. Toda la circunferencia mide 2π radianes. Las razones trigonométricas de un ángulo son números que caracterizan a cada ángulo y para definirlas (calcularlas) trazamos una perpendicular al lado hasta formar un triángulo rectángulo. DEFINIMOS seno, coseno y tangente de un ángulo de la siguiente manera: No importa en qué punto tracemos la perpendicular pues todos los triángulos que resulten son semejantes y los cocientes anteriores no varían. (Thales) De la misma manera y, para no confundirlas con las funciones inversas (arco sen; arco cos; arco tg), definimos cosecante, secante y cotangente de un ángulo de la siguiente forma: ; sec ; Tal y como los hemos definido y, dado que los catetos son siempre más pequeños que la hipotenusa, el seno y el coseno de un ángulo NUNCA pueden ser, en valor absoluto, mayores que la unidad. Además podemos observar que así definidos se verifica que

2 Si en el triángulo anterior calculásemos las razones trigonométricas del otro ángulo agudo que llamaremos β, observaríamos que, como el cateto contiguo a α es opuesto a β y el cateto opuesto a α es contiguo a β resulta que: cos! ;! y! Donde α y β son complementarios. Es decir: α + β 90º Cálculo de las razones trigonométricas de distintos ángulos Para hacer más sencillo el cálculo de las RT de los diferentes ángulos utilizaremos la Circunferencia Goniométrica, que es una circunferencia de radio la unidad y centrada en el origen de coordenadas. La circunferencia queda así dividida en cuatro partes I, II, III, IV, llamadas cuadrantes de forma que: #$%&$ '($ )* '( '($ )** $$ '($ )*** '$ '($ )* En la circunferencia goniométrica, cuando vamos trazando los ángulos, al construir el triángulo, la hipotenusa es el radio de la circunferencia que mide uno. Por lo que en este caso y, SOLAMENTE EN ESTE CASO, el seno coincide con el cateto opuesto (y) y el coseno, con el cateto contiguo (x). Como el centro de la circunferencia es el origen de coordenadas, es fácil ver que: en el primer cuadrante tanto el seno como el coseno son positivos; en el segundo cuadrante, el seno es positivo y el coseno negativo; en el tercer cuadrante, ambos son negativos y en el cuarto cuadrante, el seno es negativo y el coseno es positivo Si conocemos las razones trigonométricas de los ángulos del primer cuadrante (agudos), podemos calcular las de ángulos de los otros cuadrantes, relacionándolas con las del 1º basándonos en la semejanza de triángulos. Así podemos afirmar que: )180 + Si α Є 2º cuadrante 9cos cos)180 + ; ) º '($ )180 +

3 ) Si α Є 3º cuadrante 9cos cos) ; ) º '($ ) )360 + Si α Є 4º cuadrante 9 cos cos)360 + ; ) º '($ )360 + Ecuación fundamental de la trigonometría. Si escribimos las razones trigonométricas del ángulo α del triángulo de la figura, tenemos: cos >? cos Aplicando Pitágoras c 2 a 2 + b 2 y sustituyendo: C 2 (c senα) 2 + (c cosα) 2 c 2 c 2 sen 2 α + c 2 cos 2 α c 2 c 2 (sen 2 α + cos 2 α) Dividiendo por c 2 sen 2 α + cos 2 α 1 Que es la Ecuación fundamental de la trigonometría y nos permite conocer el seno o el coseno de un ángulo, conocido el otro. Ejemplos: 1.- Si sen α 0,25 y α Є al 1º cuadrante, calcula las restantes razones trigonométricas. (0,25) 2 + cos 2 α 1 0, cos 2 α 1 cos 2 α 1-0,0625 0,9375 cosα ±A0,9375±0,9682 Como α Є al 1º cuadrante el coseno es positivo por lo que desechamos la determinación negativa de la raíz. cos α 0,9682 tgα D,EFDD D,GHIE 0,2582 D,EF 4 ; sec D,GHIE 1,033; D,EFIE 3, Sabiendo que sen25 0,423 y cos25 0,906. Hallar las razones trigonométricas de 65 Como º son complementarios por lo que: sen 65 0,906 y cos 65 0,423

4 Tabla resumen de razones trigonométricas de algunos ángulos sen α cos α tg α De esta manera, si conocemos el ángulo conocemos sus razones trigonométricas y viceversa: si conocemos la razón trigonométrica podemos conocer el ángulo, por ejemplo: Cuál es el seno de 30º? Respuesta: E Cuál es el ángulo cuyo seno vale? Respuesta: 30º E Cuál es el ángulo cuya tangente vale 1? Respuesta: 45º EJERCICIOS 1º) Sabiendo que cos α- 0,5735 y que 90º < α <180º. Calcular las restantes razones trigonométricas del ángulo α Sustituyendo en la ecuación fundamental de la trigonometría: sen 2 α + cos 2 α 1 sen 2 α+ (-0,5735) 2 1 sen 2 α 1-(-0,5735) 2 sen 2 α 1-(-0,5735) 2 1-0,32890,6711 sen α ± 0, ,8192 Como α 2º cuadrante, el seno es positivo por lo que desechamos la determinación negativa de la raíz. D,IGE 1,4284 LD,FMNF 1,2207 D,IGE sec 1,7436 LD,FMNF 0,700 2º) Expresa en radianes todos los ángulos de la tabla resumen. 30º O H ; 45º O P ; 60º O N ; 90º O E ; 180º π; 270º NO E 3º) Sabiendo que tg α 2, y que 180º < α <270. Calcular las restantes razones trigonométricas del ángulo α. Tenemos que resolver un sistema de 2 ecuaciones con 2 incógnitas

5 ; Q 2 E + E 1 2 cos )2 cos+ E + E 1 4 cos E + E 1 5 E 1 E F ±S F F F Como α 3º cuadrante, el coseno es negativo 2 cos 2 T F U F E F F cosec α F E ; sec α 5; cotgα E 4º) Comprueba si es cierta la siguiente igualdad. + Operando en un miembro tenemos que llegar al otro cos +cos +cos cos sen E + E la igualdad es cierta 5º) De un triángulo rectángulo ABC, se conocen a 6 m y b 4 m. Resolver el triángulo. Resolver un triángulo consiste en calcular todos sus ángulos y todos sus lados Por Pitágoras: c 2 a 2 +b 2 c c H E N H N E N N N N cos! α será el ángulo cuyo seno vale N N. Como no está en la tabla, lo buscamos con la N calculadora (shift sin -1 ) obteniendo α56,31º56º18 36 Como α y β son complementarios, β 90º - α 90º - 56,31º 33,69º33º º) Calcular el área de una parcela triangular, sabiendo que dos de sus lados miden 80 m y 130 m, y forman entre ellos un ángulo de 70. h80 sen 70º 75,17m S ND E 4886,40m 2

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj. Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.

Más detalles

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno

Más detalles

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría. - Un triángulo de hipotenusa unidad Teorema fundamental de la trigonometría Puesto que el valor de las razones trigonométricas en un triángulo rectángulo no dependen del tamaño de los lados, puede elegirse

Más detalles

180º 36º 5. rad. rad 7. rad

180º 36º 5. rad. rad 7. rad ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco. Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. 6. Trigonometría 37 6 Trigonometría Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. A efectos representativos y de medición, el

Más detalles

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia

Más detalles

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos. RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una

Más detalles

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades: Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

94' = 1º 34' 66.14'' = 1' 6.14'' +

94' = 1º 34' 66.14'' = 1' 6.14'' + UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene

Más detalles

T3: TRIGONOMETRÍA 1º BCT

T3: TRIGONOMETRÍA 1º BCT 1 RAZONES TRIGONOMÉTRICAS DE LA SUMA DE DOS ÁNGULOS Queremos calcular las razones trigonométricas de la suma de dos ángulos, α + β, a partir de las razones de los ángulos α y β. 1.1 SENO DE LA SUMA DE

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones: MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para

Más detalles

TEMA 4: TRIGONOMETRÍA

TEMA 4: TRIGONOMETRÍA TEMA 4: TRIGONOMETRÍA 1. Cuántos radianes tiene una circunferencia? 2. Cuántos grados tiene un radián? 3. Cuántos radianes tiene un grado? 4. Cuántos radianes tiene un ángulo α de 210 o? 5. Determina los

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO TRIGONOMETRÍA INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO Interpretación geométrica de las razones trigonométricas

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo

Más detalles

Razones trigonométricas

Razones trigonométricas RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una

Más detalles

3.- TRIGONOMETRÍA 1.- EL RADIÁN

3.- TRIGONOMETRÍA 1.- EL RADIÁN . Pasa a radianes los siguientes ángulos: a) 00 b) 00 Solución: a) 0/9 rad, b) 5/ rad.. Pasa a radianes los siguientes ángulos: a) 70 b) 6 Solución: a) / rad, b) 7/0 rad..- TRIGONOMETRÍA.- EL RADIÁN. Halla,

Más detalles

TEMA2: TRIGONOMETRÍA I

TEMA2: TRIGONOMETRÍA I TEMA: Trigonometría (del griego trigonon, triángulo y métron, medida). MEDIDA DE ÁNGULOS Para medir los ángulos y los ar de circunferencia se usan fundamentalmente dos sistemas de medida:. Sistema Sexagesimal:

Más detalles

B) dado un lado y dos ángulos,el triángulo queda determinado.

B) dado un lado y dos ángulos,el triángulo queda determinado. En un triángulo distinguimos: -3 vértices: A, B y C -3 lados: a, b y c -3 ángulos: α, β y γ Je vous conseille de douter de tout, excepté que les trois angles d un triangle sont égaux à deux droit Voltaire

Más detalles

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1. GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,

Más detalles

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el:

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el: TRIGONOMETRÍA La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y astronomía,

Más detalles

MATEMÁTICAS UNIDAD 2 GRADO 10º. trigonometría

MATEMÁTICAS UNIDAD 2 GRADO 10º. trigonometría 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 2 GRADO 10º trigonometría 1 2 Franklin Eduardo Pérez Quintero LOGRO: Reconocer las relaciones entre las funciones trigonométricas y sus aplicaciones

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

TEMA 6. TRIGONOMETRÍA

TEMA 6. TRIGONOMETRÍA TEMA 6. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es

Más detalles

TALLER NIVELATORIO DE TRIGONOMETRIA

TALLER NIVELATORIO DE TRIGONOMETRIA TALLER NIVELATORIO DE TRIGONOMETRIA TEOREMA DE PITAGORAS En todo triangulo rectángulo el cuadrado de la longitud de la hipotenusa es igual al cuadrado de la longitud de los catetos. Entonces la expresión

Más detalles

RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?

RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números? RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área

Más detalles

Departamento de Matemáticas TRIGONOMETRÍA

Departamento de Matemáticas TRIGONOMETRÍA TRIGONOMETRÍA Construcción de un aparato medidor de ángulos Se llama línea de visión a la recta imaginaria que une el ojo de un observador con el lugar observado. Llamamos ángulo de elevación al que forman

Más detalles

I.E.S. CUADERNO Nº 7 NOMBRE: FECHA: / / Trigonometría

I.E.S. CUADERNO Nº 7 NOMBRE: FECHA: / / Trigonometría Trigonometría Contenidos 1. Los ángulos y su medida Recorridos en la circunferencia Radianes Grados sexagesimales De radianes a grados Midiendo ángulos 2. Razones trigonométricas Razones trigonométricas

Más detalles

Trigonometría. 1. Ángulos

Trigonometría. 1. Ángulos Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida

Más detalles

Trigonometría, figuras planas

Trigonometría, figuras planas El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama

Más detalles

Guía de Reforzamiento N o 2

Guía de Reforzamiento N o 2 Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma

Más detalles

TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa.

TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa. TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: seno de cos eno de cateto opuesto hipotenusa cateto próximo hipotenusa cateto opuesto tan gente

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

Se utilizan diversos sistemas de medidas de ángulos. Los más utilizados son: a) El sistema sexagesimal. b) El radián.

Se utilizan diversos sistemas de medidas de ángulos. Los más utilizados son: a) El sistema sexagesimal. b) El radián. ÁNGULOS Y SU MEDIDA. Llamamos ángulo (r,s) a la región del plano limitada por dos semirectas ordenadas (r,s) que tienen un origen común O, que llamamos vértice del ángulo. Notación: Sean A r, B s El ángulo

Más detalles

Tema 7: Trigonometría.

Tema 7: Trigonometría. Tema 7: Trigonometría. Ejercicio 1. Sabiendo que cos α = 0, 63, calcular s = sen α y t = tg α. Mediante la igualdad I, conocido sen α obtenemos cos α, y viceversa. s + 0,63 = 1 s = 1 0,63 = 0,6031 s =

Más detalles

Nota: Como norma general se usan tantos decimales como los que lleven los datos

Nota: Como norma general se usan tantos decimales como los que lleven los datos 1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a 10cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b 10 sen Bˆ

Más detalles

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS el blog de mate de aida: trigonometría º ESO pág. 1 TRIGONOMETRÍA: MEDIDA DE ÁNGULOS Ángulo es la porción del plano limitada por dos semirrectas de origen común. Medidas de ángulos Medidas en grados Un

Más detalles

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta

Más detalles

TEMA 7 TRIGONOMETRÍA -

TEMA 7 TRIGONOMETRÍA - TEMA 7 TRIGONOMETRÍA - 1. MEDIDA DE ÁNGULOS Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

Tema 4 Trigonometría Índice

Tema 4 Trigonometría Índice Tema 4 Trigonometría Índice 1. Medida de un ángulo... 2 2. Razones trigonométricas en triángulos rectángulos. (Ángulos agudos)... 2 3. Relaciones trigonométricas fundamentales... 3 4. Razones trigonométricas...

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

UNIDAD III. Funciones Trigonométricas.

UNIDAD III. Funciones Trigonométricas. UNIDAD III. Funciones Trigonométricas. El estudiante: Resolverá problemas de funciones trigonométricas teóricos o prácticos de distintos ámbitos, mediante la aplicación y el análisis crítico y reflexivo

Más detalles

Tema 10. Geometría plana

Tema 10. Geometría plana Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...

Más detalles

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad

Más detalles

BLOQUE II Trigonometría y números complejos

BLOQUE II Trigonometría y números complejos LOQUE II Trigonometría y números complejos Pág. de 6 En el triángulo, rectángulo en, conocemos tg ^ =, y b = 6 cm. Halla los lados y los ángulos del triángulo. tg ^ b 6 = 8, = 8 c = cm c c c a a = 6 +

Más detalles

Tema 4: Resolución de triángulos.

Tema 4: Resolución de triángulos. Tema 4: Resolución de triángulos. Ejercicio 1. En un triángulo rectángulo se conocen: a = 11 cm. y la hipotenusa, c = 0 cm. Hallar los demás elementos. El otro cateto: b 0 11 16,7 cm. Un ángulo agudo:

Más detalles

π = π rad º? 3 α.180

π = π rad º? 3 α.180 1 TEMA 5 RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS TRIGONOMÉTRICAS 5.1 DEFINICIÓN DE ÁNGULO Y UNIDADES DE MEDIDA DE LOS ÁNGULOS Ángulo es la parte del plano comprendida entre dos semirrectas que se encuentran

Más detalles

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica: Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones

Más detalles

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben

Más detalles

Razones trigonométricas.

Razones trigonométricas. Razones trigonométricas. Matemáticas I 1 Razones trigonométricas. Medidas de ángulos. Medidas en grados (Deg.) El grado es el ángulo plano que teniendo su vértice en el centro de un círculo intercepta

Más detalles

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García . MEDIDAS DE ÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Para medir los ángulos solemos utilizar las siguientes unidades: el grado sexagesimal y el radián. Grado sexagesimal: Se denomina grado

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

Ejercicios sobre Ángulos de Referencia

Ejercicios sobre Ángulos de Referencia www.matebrunca.com Prof. Waldo Márquez González TRIGONOMETRÍA: ÁNGULOS 1 Ejercicios sobre Ángulos de Referencia 1. Localizar los siguientes puntos en un sistema de coordenadas rectangulares y encontrar

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho [email protected] Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto

Más detalles

TEMA 6. SEMEJANZA Y TRIGONOMETRÍA

TEMA 6. SEMEJANZA Y TRIGONOMETRÍA TEMA 6. SEMEJANZA Y TRIGONOMETRÍA 6.1 FIGURAS SEMEJANTES Dos figuras que tienen la misma forma se llaman semejantes, aunque pueden tener distintas dimensiones. Los elementos (puntos, lados, ángulos ) que

Más detalles

TEMA 9. TRIGONOMETRÍA

TEMA 9. TRIGONOMETRÍA TEMA 9. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es

Más detalles

Unidad 5 ELEMENTOS DE TRIGONOMETRIA

Unidad 5 ELEMENTOS DE TRIGONOMETRIA Unidad 5 ELEMENTOS DE TRIGONOMETRIA Competencias a desarrollar: Convertir medidas de ángulos en radianes a grados y viceversa. Aplicar las funciones trigonométricas, para resolver problemas que se puedan

Más detalles

7 RAZONES TRIGONOMÉTRICAS

7 RAZONES TRIGONOMÉTRICAS 7 RAZONES TRIGONOMÉTRICAS PARA EMPEZAR Utiliza la calculadora para hallar la medida en grados, minutos y segundos de cada uno de los ángulos que resultan al dividir un círculo en: a) 7 partes iguales b)

Más detalles

circulares y trigonométricas Unidad 2:Funciones ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia

circulares y trigonométricas Unidad 2:Funciones ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia 1 Unidad :Funciones circulares y trigonométricas Tem: Ángulos Lección 6: Ángulos de referencia 11 ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia Para dibujar un triángulo de referencia

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 6 Trigonometría. Resolución de triángulos Elaorado por la Profesora

Más detalles

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35. Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90

Más detalles

PRUEBA GEOMETRÍA CDI 2015

PRUEBA GEOMETRÍA CDI 2015 Portal Fuenterrebollo PRUEBA GEOMETRÍA CDI 015 1. Una cruz compuesta por cinco cuadrados iguales está inscrita en un cuadrado. Si el área de la cruz es de 5 cm. Cuál es, en cm, el área del cuadrado? 5

Más detalles

Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas

Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas 1 Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia Matemáticas Grado 10º Unidad 1 Circulo unitario y funciones trigonométricas 1 2 Franklin Eduardo Pérez Quintero

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

TRIGONOMETRIA. π radianes <> 180º

TRIGONOMETRIA. π radianes <> 180º TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas

Más detalles

LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR A MANO CON LETRA LEGIBLE Y BUENA PRESENTACIÓN.

LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR A MANO CON LETRA LEGIBLE Y BUENA PRESENTACIÓN. ESCUELA COMERCIAL CAMARA DE COMERCIO Profesora Ingeniero María del Pilar García Rico Materia Matemáticas II Grupo 51-A Guía Semestral LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR

Más detalles

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:

Más detalles

Triángulos Rectángulos y Ángulos Agudos

Triángulos Rectángulos y Ángulos Agudos Triángulos Rectángulos y Ángulos Agudos Un ángulo agudo es un ángulo con una medida mayor que 0º y menor que 90º. Se utilizan letras griegas (alpha), (beta), (gamma), (theta), and (phi) para nombrar ángulos,

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

Semejanza y trigonometría

Semejanza y trigonometría 7 Semejanza y trigonometría Objetivos En esta quincena aprenderás a: Reconocer triángulos semejantes. Calcular distancias inaccesibles, aplicando la semejanza de triángulos. Nociones básicas de trigonometría.

Más detalles

UNIDAD IV TRIGONOMETRÍA

UNIDAD IV TRIGONOMETRÍA UNIDAD IV TRIGONOMETRÍA http://www.ilustrados.com/publicaciones/epyuvklkkvpfesxwjt.php Objetivos: Al finalizar esta unidad, el alumno deberá ser hábil en: Comprender las definiciones de las relaciones

Más detalles

El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ

El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ .- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo

Más detalles

Introducción a la actividad Material Didáctico: Tiempo (1hr.45min)

Introducción a la actividad Material Didáctico: Tiempo (1hr.45min) Código/Título de la Unidad Didáctica: CALCULOS TRIGONOMETRICOS Actividad nº/título: A1. TRIGONOMETRÍA FORMULAS GENERALES Introducción a la actividad Material Didáctico: Tiempo (1hr.45min) 1. OBJETIVO El

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

Ecuaciones trigonométricas resueltas

Ecuaciones trigonométricas resueltas Ecuaciones trigonométricas resueltas 1. Resuelve: sen 2 x cos 2 x= 1 2 Despejando el coseno de x de la primera relación fundamental, se tiene: Sustituyendo en la ecuación original: sen 2 x 1sen 2 x= 1

Más detalles

Semejanza y trigonometría

Semejanza y trigonometría Semejanza y trigonometría Contenidos 1. Semejanza. Teorema de Tales. Triángulos semejantes. Teorema de Pitágoras. Cálculo de distancias. 2. Razones trigonométricas. Definición. Relaciones fundamentales.

Más detalles

ACTIVIDADES TRIGONOMETRÍA

ACTIVIDADES TRIGONOMETRÍA ACTIVIDADES TRIGONOMETRÍA Trabajo Práctico 1. Dados los siguientes ángulos expresados en grados, realiza las operaciones que se solicitan. = 42 13 20 = 17 56 31 = 34 13 54 = 53 38 23 a) + b) + c) d) e)

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

TEMA 7: TRIGONOMETRÍA

TEMA 7: TRIGONOMETRÍA TEMA 7: TRIGONOMETRÍA 7.1 MEDIDA DE ÁNGULOS. RELACIÓN ENTRE GRADOS Y RADIANES Dada una circunferencia, el ángulo central tiene su vértice en el centro de la misma sus lados son dos radios. Para medir ese

Más detalles