TEMA2: TRIGONOMETRÍA I
|
|
|
- Luis Vázquez González
- hace 9 años
- Vistas:
Transcripción
1 TEMA: Trigonometría (del griego trigonon, triángulo y métron, medida). MEDIDA DE ÁNGULOS Para medir los ángulos y los ar de circunferencia se usan fundamentalmente dos sistemas de medida:. Sistema Sexagesimal: Se toma como unidad fundamental el ángulo recto. Un ángulo recto se divide en 90 partes llamadas grados sexagesimales ( º ). Un grado sexagesimal tiene 60 minutos( ) y cada minuto tiene 60 segundos ( ). ángulo recto 90º º Sistema Circular o Internacional: En el sistema circular la unidad de medida es el radián y no tiene subunidades. Su abreviatura es rad. Se dice que un ángulo mide un radián cuando la longitud del arco que abarca es igual al radio. Si a un ángulo de radián corresponde un arco de longitud r, a radianes corresponde un arco de longitud r, por tanto, como la longitud de toda la circunferencia de radio r es πr, este arco corresponderá a un ángulo de π radianes. Una circunferencia, cuya medida en grados es 360º, tiene un total de π radianes: Cuántos ar de longitud r podemos colocar sobre una circunferencia de radio r? La longitud r cabe π veces. 360º π rad 80º π rad π 90º rad º) En una circunferencia de 4 m de radio, un arco mide 6 m. Halla el ángulo central correspondiente expresado en radianes y en grados sexagesimales. º) Completa la tabla en tu cuaderno: Ángulo en grados 0º 45º 60º 90º 35º 00º 5º 40º Ángulo en π radianes 6 4π 9 5π 6 3π /8 IBR IES LA NÍA
2 . RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Considerando el triángulo rectángulo OAB, se definen las razones trigonométricas o (), coo () y tangente (tg) del ángulo de la forma: tg AB OB OA OB AB OB cateto opuesto a hipotenusa cateto contiguo a hipotenusa cateto opuesto a cateto contiguo a Además de las tres razones trigonométricas principales, existen otras tres razones relacionadas con las anteriores: secante, ecante y cotangente, definidas como sec, ec, ctg tg Las teclas sin, y tan de la calculadora científica permiten calcular las razones trigonométricas principales. Usa el modo DEG o D para trabajar con grados sexagesimales y RAD o R para trabajar en radianes. También podemos usar la calculadora para el resultado contrario, es decir, conocido el valor del o, coo o tangente de un ángulo, podemos averiguar el valor del ángulo utilizando la función inversa de la tecla correspondiente. 3º) Calcula en el sistema sexagesimal, con la ayuda de la calculadora, un ángulo agudo en cada uno de los siguientes casos: a) Â 0 34 b) Bˆ 0 76 c) tgĉ 34 d) ec Dˆ 3 45 e) sec Ê 4 f) ctg Fˆ 5 4º) Calcula las razones trigonométricas del ángulo menor de un triángulo rectángulo cuyos catetos miden 4 y 8 cm. 5º) Utiliza la calculadora para hallar x en cada una de las figuras siguientes: 6º) Ayúdate de los siguientes triángulos para calcular los valores exactos del o, coo y tangente de los ángulos de 30º, 45º y 60º. /8 IBR IES LA NÍA
3 3. RELACIONES ENTRE LAS RAZONES TRIGONOMÉTRICAS Observa el triángulo ABC de la figura: ) Como a>b y a>c 0 < < y 0 < < b ) a b tg c c a, es decir tg b c 3) + + a a teorema de Pitágoras se cumplirá que: b + c a, luego: b + a c, pero por el b c b + c a + + +, esta igualdad es la a a a a relación fundamental de la trigonometría. 4) Si en la relación anterior dividimos todo por : + + ctg ec 5) Si en la relación anterior dividimos todo por : + + tg sec Ejercicio: 7º) Halla las restantes razones trigonométricas del ángulo en los casos siguientes: 4 ) 5 ) sec 3) tg 4. RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Resolver un triángulo rectángulo consiste en determinar todos sus elementos: los tres ángulos Â, Bˆ y Ĉ y los tres lados a, b y c. Para ello debemos recordar: La suma de los tres ángulos de un triángulo es 80º. Si el triángulo es rectángulo y  90º, se cumplirá que: Bˆ +Ĉ 90º. El teorema de Pitágoras. Las definiciones de las razones trigonométricas. Una de las aplicaciones más importantes de la trigonometría es la determinación de alturas y distancias. 3/8 IBR IES LA NÍA
4 8º) Resuelve el triángulo ABC en cada uno de los siguientes casos: a) a5, b b) a3, Bˆ 50º c) c, b7 d) b5, Ĉ 30º e) c6, Ĉ 5º 9º) Calcula la altura de un edificio si el ángulo de elevación de su punto más alto, observado desde un punto del suelo situado a 0 metros de su base, es de 50º. 0º) Resuelve un triángulo rectángulo sabiendo que un cateto mide 5 m y que su ángulo agudo adyacente es de 6º. º) Apoyamos el extremo superior de una escalera de 4 metros en una pared vertical. El ángulo que forma la escalera con el suelo es de 70º. A qué distancia de la pared está la base de la escalera? Qué altura podemos alcanzar sobre la pared? º) Al ir por una carretera nos encontramos la siguiente señal de tráfico: Significa que por cada 00 m. recorridos, el desnivel aumenta m. Qué ángulo forma la carretera con la horizontal? Si avanzamos 538 m. cuántos metros habremos subido en vertical? 3º) En un círculo de radio 50 cm. trazamos una cuerda que une los extremos de un arco de 0º. Calcula la distancia del centro a la cuerda. [5] 4º) La altura sobre el lado desigual de un triángulo isósceles mide cm. y el ángulo desigual es de 30º. Halla los otros lados, el perímetro y el área. 5º) La altura de un edificio es 8m. Desde una ventana del edificio una persona, A, tensa una cuerda con otra, B, que está en la calle a una cierta distancia del edificio. Si B ve la azotea del edificio bajo un ángulo de 60º, y la cuerda mide 4 m, calcula a qué altura está A. 6º) Halla el área de un pentágono regular de lado 5 cm. 7º) Calcula el área de un octógono regular inscrito en una circunferencia de 4 cm. de radio 8º) Desde la orilla de un río vemos la punta más alta de un árbol, situado en la otra orilla, bajo un ángulo de 45º. Si retrocedemos 0 m, vemos el árbol bajo un ángulo de 30º. Calcula la altura del árbol. 9º) Desde un punto de la horizontal en el suelo, medimos el ángulo de elevación de la cumbre de una montaña: 53º. Caminando 33 m hacia la montaña, el ángulo de elevación se incrementa en º. Halla la altura de la montaña. 0º) ABC es un triángulo rectángulo en A. El segmento CD divide el ángulo C en dos ángulos de 0º y 8º respectivamente. Si DB 9m halla la longitud de AC. º) Desde lo alto de un acantilado de 350 m de altura se observa un barco con un ángulo de depresión de º (ángulo que forma la visual desde el acantilado hasta el barco, con la horizontal). Transcurridos 5 min, el mismo barco se observa bajo un ángulo de 9º. Calcula la velocidad del barco. 4/8 IBR IES LA NÍA
5 5. ÁNGULOS ORIENTADOS A partir de ahora consideraremos los ángulos como giros, y no como regiones del plano limitadas por dos semirrectas. Así, un ángulo puede dar lugar a cuatro ángulos distintos según el lado que se tome como origen y el tido del giro: Para repretar un ángulo orientado utilizaremos un sistema de coordenadas cartesianas, haciendo coincidir el lado origen con el semieje OX. La posición del lado extremo nos dirá a qué cuadrante pertenece el ángulo. Por ejemplo, el ángulo de 50º pertenece al segundo cuadrante. Al considerar los ángulos como giros, tiene tido hablar de ángulos mayores de 360º. Consideremos, por ejemplo, un ángulo 390º. Para girar 390º hemos de girar una vuelta completa (360º) y 30º más. Por tanto, la posición final y la repretación de un ángulo de 390º coincide con la del ángulo de 30º, aunque el giro es otro diferente. Decimos que 30º es el resultado de reducir al primer giro el ángulo de 390º. En general, para reducir un ángulo al primer giro, dividiremos entre 360º para saber cuántas vueltas completas contiene. El resto de la división nos da el ángulo equivalente del primer giro. º)Los ángulos positivos del primer cuadrante verifican la desigualdad 0 º < < 90º. Qué desigualdad verifican los ángulos positivos de los restantes cuadrantes? 3º)Indica a qué cuadrante pertenecen los siguientes ángulos: a) 85º e) 300º b) -05º f) -50º c) 60º d) 40º g) 350º h) -300º i) 385º j) 80º k) -740º 5/8 IBR IES LA NÍA
6 6. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO CUALQUIERA En un sistema de ejes cartesianos se considera una circunferencia con centro situado en el origen de coordenadas y de radio r. Dibujamos el ángulo, agudo, que corta a dicha circunferencia en el punto P(x,y). Sabemos que las razones trigonométricas del ángulo son: y, r x, r tg y x Pues bien, si es un ángulo cualquiera, de forma similar se definen las razones trigonométricas de : y, r x, r tg y x Con esta definición las razones trigonométricas pueden tener tanto signo positivo como negativo: er C ºC 3 er C 4ºC o + + coo + + tangente + + El valor de las razones trigonométrica de un ángulo no dependen del radio de la circunferencia. En particular si tomamos una circunferencia de radio (circunferencia goniométrica), el o y el coo coinciden con la ordenada y y con la abscisa x del punto P, respectivamente. Esto nos permite tener un segmento repretativo de valor del o y del coo de un ángulo cualquiera, y acotar su valor entre - y : 6/8 IBR IES LA NÍA
7 4º) Utiliza la circunferencia goniométrica para obtener los valores del o, coo y tangente de los ángulos que limitan los cuatro cuadrantes. 5º) Los puntos P(-,3), Q(-5,-) y R(3,-4) determinan los ángulos, β y δ con el eje OX, respectivamente. Calcula sus razones trigonométricas. 6º) Calcula las razones trigonométricas de un ángulo del segundo cuadrante si. 7º) Sin utilizar la calculadora, obtén las restantes razones trigonométricas de en los siguientes casos: c. ctg 4, 4ºC a., ºC 3 d. ec, 5, 3 er C b. tg, 3 er e. C sec, 4ºC 7. RELACIONES ENTRE LAS RAZONES TRIGONOMÉTRICAS DE ALGUNOS ÁNGULOS a) Ángulos complementarios: Dos ángulos son complementarios cuando suman 90º o π rad. Así, si es un ángulo cualquiera, su complementario es 90 º. Como se observa en la figura x' y' y x, luego (90º ) (90º ) b) Ángulos suplemetarios: Dos ángulos son suplementarios cuando suman 80º o π rad. Así, si es un ángulo cualquiera, su suplementario es 80 º. Podemos observar que ( 80º ) (80º ) c) Ángulos que difieren en 80º En la figura siguiente aparecen dos ángulos de medida y 80 º+ : Se observa en este caso que el o y coo de y ( 80º + ) 80 º+ son opuestos: (80º + ) 7/8 IBR IES LA NÍA
8 d) Ángulos opuestos Podemos considerar opuesto de tanto al ángulo como al ángulo. 360 º, De la figura se deduce que: ( 360º ) ( ) (360º ) ( ) 8º) Calcula, usando un ángulo del primer cuadrante, las razones trigonométricas de los ángulos siguientes: 35º, 0º, 40º, 300º, 35º, -30º, -45º, 945º, -5º. 9º) Si tg y 0<<90º, halla las razones trigonométricas de 360º, 80º y 80º+. 30º) Utilizando como único dato que 73º0 9563, obtén razonadamente las RT de 07º, 53º, -73º y 77º. 3º) Calcula todos los ángulos del primer giro que cumplan: a. x b. x c. tgx 3º) Qué otro ángulo cumple la igualdad? a. x 48º b. x - 6º c. tg x tg 70º d. sec x sec 84º e. ctg x -ctg 307º 33º)Justifica las siguientes identidades: + tg a) + sec b) tg + ctg sec ec c) sec + ec sec ec d) ctg 3 + e) ctg º) Resuelve las siguientes ecuaciones trigonométricas: a) x x b) 4 x ecx c) x x x d. sec x e. ctgx 3 f. x g. x 0 f) ctg + ctg g) + tg tg ec h) + ctg i) sec tg ec d) 3tg x + tgx e) tgx + ctgx f) tg x + ec x 3 g) ctg x ecx sec ec 8/8 IBR IES LA NÍA
- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.
Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.
RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo
RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno
7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.
El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la
T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una
Ejercicios de Trigonometría
Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo
INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO
TRIGONOMETRÍA INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO Interpretación geométrica de las razones trigonométricas
1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3
TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre
TEMA 4: TRIGONOMETRÍA
TEMA 4: TRIGONOMETRÍA 1. Cuántos radianes tiene una circunferencia? 2. Cuántos grados tiene un radián? 3. Cuántos radianes tiene un grado? 4. Cuántos radianes tiene un ángulo α de 210 o? 5. Determina los
GUIA DE TRIGONOMETRÍA
GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo
3.- TRIGONOMETRÍA 1.- EL RADIÁN
. Pasa a radianes los siguientes ángulos: a) 00 b) 00 Solución: a) 0/9 rad, b) 5/ rad.. Pasa a radianes los siguientes ángulos: a) 70 b) 6 Solución: a) / rad, b) 7/0 rad..- TRIGONOMETRÍA.- EL RADIÁN. Halla,
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
180º 36º 5. rad. rad 7. rad
ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema
Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.
6. Trigonometría 37 6 Trigonometría Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. A efectos representativos y de medición, el
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este
El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.
Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
94' = 1º 34' 66.14'' = 1' 6.14'' +
UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.
RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:
RESUMEN DE TRIGONOMETRÍA
RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.
TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: sen. hipotenusa. hipotenusa.
TEMA 8: TRIGONOMETRÍA RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Dado el siguiente triángulo rectángulo: seno de cos eno de cateto opuesto hipotenusa cateto próximo hipotenusa cateto opuesto tan gente
Unidad 4: Resolución de triángulos.
Unidad 4: Resolución de triángulos 1 Unidad 4: Resolución de triángulos. 1.- Resolución de triángulos rectángulos. La resolución de triángulos consiste en calcular, a partir de los datos que nos proporcionan,
Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.
- Un triángulo de hipotenusa unidad Teorema fundamental de la trigonometría Puesto que el valor de las razones trigonométricas en un triángulo rectángulo no dependen del tamaño de los lados, puede elegirse
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo
Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor
El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ
.- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo
Unidad 2: Resolución de triángulos
Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo
Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.
GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,
Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
TRIGONOMETRIA. π radianes <> 180º
TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas
1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:
Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
Nota: Como norma general se usan tantos decimales como los que lleven los datos
1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a 10cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b 10 sen Bˆ
Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el:
TRIGONOMETRÍA La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y astronomía,
UNIDAD III TRIGONOMETRIA
UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos
b 11 cm y la hipotenusa
. RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,
MATEMÁTICAS UNIDAD 2 GRADO 10º. trigonometría
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 2 GRADO 10º trigonometría 1 2 Franklin Eduardo Pérez Quintero LOGRO: Reconocer las relaciones entre las funciones trigonométricas y sus aplicaciones
TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS
IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA
ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos.
Unidad Trigonometría Introducción... Ángulos. Medida de ángulos... Razones trigonométricas de un ángulo... Resolución de triángulos: triángulos rectángulos... Casos concretos... Introducción Se entiende
TEMA 6. TRIGONOMETRÍA
TEMA 6. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es
TRIGONOMETRIA. π radianes <> 180º
TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas
Semejanza. Teorema de Tales
Semejanza. Teorema de Tales Dos polígonos son semejantes si los ángulos correspondientes son iguales y los lados correspondientes son proporcionales. ABCDE A'B' C'D'E' si: Â = Â', Bˆ = Bˆ ', Ĉ = Ĉ', Dˆ
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 10
RAZONES TRIGONOMÉTRICAS SEMESTRE: UNO VERSIÓN 04 FECHA: Marzo 5 de 01 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 10 LOGROS: Construir y definir las funciones trigonométricas en circunferencias de
LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR A MANO CON LETRA LEGIBLE Y BUENA PRESENTACIÓN.
ESCUELA COMERCIAL CAMARA DE COMERCIO Profesora Ingeniero María del Pilar García Rico Materia Matemáticas II Grupo 51-A Guía Semestral LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR
EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:
Trigonometría. 1. Ángulos
Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
UNIDAD 4 TRIGONOMETRÍA
UNIDAD 4 TRIGONOMETRÍA http://elpostulante.wordpress.com/category/teoria-y-practica/geometria-y-trigonometria/ UNIDAD 4: Trigonometría. Introducción. Ángulos. Relaciones trigonométricas de un ángulo. Sistemas
UNIDAD IV TRIGONOMETRÍA
UNIDAD IV TRIGONOMETRÍA http://www.ilustrados.com/publicaciones/epyuvklkkvpfesxwjt.php Objetivos: Al finalizar esta unidad, el alumno deberá ser hábil en: Comprender las definiciones de las relaciones
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 8 PROBLEMAS MÉTRICOS DEL PLANO
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 8 PROBLEMAS MÉTRICOS DEL PLANO Ejercicio nº 1.- Calcula la medida de los ángulos desconocidos: a) b) a) A ˆ = 180 35 = 145 Por ser opuestos por el vértice: Bˆ =
Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :
Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una
Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :
Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una
TALLER NIVELATORIO DE TRIGONOMETRIA
TALLER NIVELATORIO DE TRIGONOMETRIA TEOREMA DE PITAGORAS En todo triangulo rectángulo el cuadrado de la longitud de la hipotenusa es igual al cuadrado de la longitud de los catetos. Entonces la expresión
Razones trigonométricas
RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una
I.E.S VICENTE ALEIXANDRE BARBATE
1. Calcula el área y el perímetro de estas figuras:. Un sector circular mide 80 y tiene 10 de radio. Cuál es su área y su perímetro? 3. El área de la zona sombreada es de 35. Cuál es la superficie del
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-
ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el
1 Indica cuál es el valor de los ángulo Â, Bˆ. en las siguientes figuras: a) b) 2 Calcula los ángulos dados por letras:
1 Indica cuál es el valor de los ángulo Â, Bˆ y Ĉ en las siguientes figuras: a) b) Calcula los ángulos dados por letras: 3 Calcula el valor del ángulo A. 4 Dados los ángulos los mismos. a 45 0 30.y b 6
TRIANGULOS. La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos.
TRIANGULOS La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos. CLASIFICACION DE LOS TRIANGULOS Los triángulos se pueden clasificar por la relación entre las
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS
TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS En un triángulo rectángulo, los lados menores son los que forman el ángulo
Razones trigonométricas.
Razones trigonométricas. Matemáticas I 1 Razones trigonométricas. Medidas de ángulos. Medidas en grados (Deg.) El grado es el ángulo plano que teniendo su vértice en el centro de un círculo intercepta
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA
SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
TEMA 9. TRIGONOMETRÍA
TEMA 9. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es
EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.
1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)
TRIGONOMETRÍA: MEDIDA DE ÁNGULOS
el blog de mate de aida: trigonometría º ESO pág. 1 TRIGONOMETRÍA: MEDIDA DE ÁNGULOS Ángulo es la porción del plano limitada por dos semirrectas de origen común. Medidas de ángulos Medidas en grados Un
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
Matemáticas I 1º BACHILLERATO
Matemáticas I 1º BACHILLERATO Introducción Estas prácticas constituyen un complemento esencial de los esquemas. Su finalidad principal es la de afianzar los conocimientos expuestos en el módulo. Las actividades
Guía de Reforzamiento N o 2
Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma
EJERCICIOS RESUELTOS DE TRIGONOMETRÍA
EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia
80 EJERCICIOS de TRIGONOMETRÍA
80 EJERCICIOS de TRIGONOMETRÍA GRADOS Y RADIANES: 1. Pasar los siguientes ángulos a radianes: a) b) 45º c) 60º d) 90º e) 180º f) 270º g) 360º ) 135º i) 235º j) 75º (Sol: a) π/6 rad; b) π/4 rad; c) π/3
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
José Antonio Jiménez Nieto
TRIGONOMETRÍA. UNIDADES PARA MEDIR ÁNGULOS Un ángulo es una porción de plano limitada por dos semirrectas que tienen un origen común. Las unidades que más frecuentemente se utilizan para medir ángulos
PRÁCTICA 1: 2) Calcular el valor de x con tres cifras significativas. 2) Determina el valor de x e y en el siguiente dibujo. b) x. 6 x 60.
PRÁCTICA 1: 1) 2) Calcular el valor de con tres cifras significativas a) b) c) 7 40 20 6 60 d) e) f) 40 6 60 7 20 2) Determina el valor de e y en el siguiente dibujo y 40 6 20 3) Determina el valor de
ÁNGULO TRIGONOMÉTRICO
ÁNGULO TRIGONOMÉTRICO EL ÁNGULO TRIGONOMÉTRICO SE OBTIENE GIRANDO UN RAYO ALREDEDOR DE SU ORIGEN. B O < A OA : LADO INICIAL OB : LADO FINAL O: VÉRTICE SENTIDO DE GIRO ANTIHORARIO < POSITIVO SENTIDO DE
continuación, con la ayuda de un goniómetro, medimos el ángulo que forma PQ con la horizontal, siendo de 25º. Encontrar la altura buscada. 22.
1. Calcular la altura de una torre si su sombra mide 13 mts cuando los rayos del Sol forman un ángulo de 45º con el suelo. 2. En un triángulo isósceles, el lado desigual mide 10 cm. y los ángulos iguales
1. Pasa a radianes los siguientes ángulos expresados en grados sexagesimales: a) 30º b) 90º c) 135º d) 240º e) 300º
. Pasa a radianes los siguientes ángulos expresados en grados sexagesimales: a) 0º b) 90º c) 5º d) 0º e) 00º. Expresa en grados sexagesimales los siguientes ángulos dados en radianes: 5 7 a) b) c) d) 6
TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados
TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta
Tema 4: Resolución de triángulos.
Tema 4: Resolución de triángulos. Ejercicio 1. En un triángulo rectángulo se conocen: a = 11 cm. y la hipotenusa, c = 0 cm. Hallar los demás elementos. El otro cateto: b 0 11 16,7 cm. Un ángulo agudo:
A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:
MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para
I.E.S. CUADERNO Nº 7 NOMBRE: FECHA: / / Trigonometría
Trigonometría Contenidos 1. Los ángulos y su medida Recorridos en la circunferencia Radianes Grados sexagesimales De radianes a grados Midiendo ángulos 2. Razones trigonométricas Razones trigonométricas
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
UNIDAD X - GEOMETRIA. Ejercitación
UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
MÓDULO DE MATEMÁTICA 3º MEDIO P.G. UNIDAD N 5: RELACIONES MÉTRICAS DEL TRIÁNGULO RECTÁNGULO. Nombre:... Curso: 3º Fecha:..
0 MÓULO E MTEMÁTI º MEIO P.G. UNI N : RELIONES MÉTRIS EL TRIÁNGULO RETÁNGULO Nombre:....... urso: º Fecha:.. I. Teorema de Euclides onsideramos el triángulo, rectángulo en, donde: c es la. h es altura.
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García
. MEDIDAS DE ÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Para medir los ángulos solemos utilizar las siguientes unidades: el grado sexagesimal y el radián. Grado sexagesimal: Se denomina grado
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.
1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:
1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula
