PRÁCTICA Nº2 TUBO DE RESONANCIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA Nº2 TUBO DE RESONANCIA"

Transcripción

1 PRÁCTICA Nº2 TUBO DE RESONANCIA 1.- Objetivo El objetivo de esta práctica es determinar la velocidad de propagación del sonido en el aire empleando el fenómeno de la resonancia en un tubo. Además se pretenden observar las ondas estacionarias en tubo cerrado y abierto y localizar los nodos y antinodos. 2.- Equipamiento Los accesorios necesarios para la correcta realización de la presente práctica (véase figura 1) son los que se enumeran a continuación: 1. Tubo de plástico de 90 cm con escala métrica incorporada. 2. Dos soportes del tubo: uno de ellos lleva incorporado un altavoz y el otro una entrada para el pistón. 3. Pequeño micrófono con un amplificador alimentado por una batería y un conector coaxial para unirlo directamente al osciloscopio. 4. Pistón movible. 5. Varilla para mover el micrófono. 6. Dos abrazaderas para cubrir los agujeros presentes en el tubo. 7. Dos cables con bananas en ambos extremos. 8. BNC a cocodrilos. 9. Sonda de osciloscopio. 10. Generador de funciones. 11. Osciloscopio. Fig. 1. Componentes de la práctica. 1

2 3.- Montaje 1. Colocar las abrazaderas en el tubo cubriendo los orificios. 2. Colocar los soportes: el que lleva incorporado el altavoz al inicio y el otro en el extremo final del tubo. 3. Sujetar el micrófono a la varilla mediante cinta adhesiva que le entregará el encargado de laboratorio. 4. Conectar el altavoz al Output del generador de funciones. 5. Conectar el canal 1 del osciloscopio al altavoz. 6. Conectar el canal 2 del osciloscopio al micrófono. 7. Bajar a cero la amplitud y la frecuencia del generador de funciones antes de encenderlo. 8. Encender el generador de funciones y comprobar que está fijada la opción de onda sinusoidal. 9. Colocar la pila en el amplificador del micrófono y encenderlo. 10. Encender el osciloscopio. Fig. 2.- Montaje para la adecuada realización de la práctica del tubo de resonancia. 4.- Experimentos: Experimento 1 : Ondas estacionarias en un tubo abierto y cerrado Procedimiento 1. Colocar los soportes de manera que la configuración del tubo sea la de abierto. Véase figura 3. 2

3 Fig. 3.- Colocación adecuada de los soportes para que el tubo adquiera configuración de tubo abierto. 2. Introducir el micrófono, sujeto a la varilla, por el orificio situado debajo del altavoz y sitúelo, a lo largo del tubo, donde crea conveniente. 3. Fijar la señal del generador de funciones aproximadamente a 100 Hz y aumente la amplitud hasta conseguir que se escuche claramente el altavoz. Nota: a estas frecuencias es muy difícil escuchar con claridad el altavoz, por lo que se debe prestar atención. 4. Subir poco a poco la frecuencia hasta que se produzca un máximo en el sonido o al ver un aumento de la señal en el osciloscopio. Apuntar esta frecuencia en una tabla similar a la tabla 1 y, deslizando el micrófono encontrar las posiciones de los nodos y antinodos a lo largo del tubo. Anotarlas. Modo(n) Frecuencia de resonancia (νn) Posición nodo Posición antinodo Longitud de onda (λ) Velocidad de la onda (v) Tabla 1.- Esquema de la tabla en la que se recogerán los datos obtenidos durante este apartado de la práctica. 5. Seguir este procedimiento hasta encontrar los 4 primeros modos de resonancia y sus respectivos nodos y antinodos. 6. Bajar la amplitud y la frecuencia del generador de funciones a cero. 7. Quitar el soporte del extremo final del tubo. 8. Sacar el micrófono del tubo. 9. Introducir el pistón hasta el extremo del tubo donde se encuentra el altavoz. 10. Colocar de nuevo el soporte del extremo final del tubo y sitúe los soportes de manera que el tubo adquiera configuración de tubo cerrado. Vea figura 4. 3

4 Fig. 4 Colocación adecuada de los soportes para que el tubo adquiera configuración de tubo cerrado. 11. Situar el pistón justo al final del tubo, como indica la segunda foto de la figura 5. Para evitar que el pistón se rompa estando en esta posición, debe apoyarse en una espuma negra que le proporcionará el encargado del laboratorio. 12. Colocar el micrófono donde sea conveniente a lo largo del tubo. 13. Comprobar que el soporte del extremo final tape bien el tubo, ya que sino las medidas no serán las correspondientes a las de un tubo cerrado. 14. Fijar del generador aproximadamente a 100 Hz y aumentar la amplitud hasta conseguir que se escuche claramente el altavoz. 15. Subir poco a poco la frecuencia hasta que se produzca un máximo en el sonido o al ver un aumento de la señal en el osciloscopio. Apuntar esta frecuencia y, deslizando el micrófono, encontrar las posiciones de los nodos y antinodos. Anotarlas. 16. Seguir este procedimiento hasta encontrar los 4 primeros modos de resonancia y sus respectivos nodos y antinodos. Experimento 2 : Frecuencia de resonancia Procedimiento 1. Medir la amplitud a lo largo del tubo a la frecuencia de resonancia obtenida en el segundo armónico con la configuración de tubo abierto. 2. Anotar los valores de amplitud obtenidos en el osciloscopio cada 5 cm aproximadamente. 3. Fijar el generador a 200 Hz aproximadamente. 4. A esta frecuencia medir la amplitud a lo largo del tubo y anotar los valores cada 5 cm aproximadamente. 4

5 Experimento 3 : Longitud del tubo y modos de resonancia Procedimiento 1. Bajar la frecuencia y la amplitud del generador de funciones a cero. 2. Colocar los soportes en configuración de tubo cerrado. 3. Colocar el pistón en el extremo final del tubo (en 90 cm). Para evitar que el pistón se rompa estando en esta posición, debe apoyarse en una espuma negra que le proporcionará el encargado del laboratorio. 4. Introducir el micrófono, ayudado de la varilla, por el orificio situado debajo del altavoz y situelo en la posición de 5 cm, aproximadamente. 5. Teniendo en el generador de funciones la amplitud a cero, fijar una frecuencia de 700 Hz, aproximadamente. Apuntar esta frecuencia, en una tabla similar a la tabla 1. Frecuencia: Posición del Pistón Tabla. 2.- Esquema de la tabla en la que se recogerán los datos obtenidos durante este apartado de la práctica. 6. Subir poco a poco la amplitud del generador de funciones hasta que se escuche claramente el altavoz, sin que el sonido sea muy alto. El altavoz puede ser dañado si la amplitud es muy elevada. 7. Empujar el pistón poco a poco hasta que oiga una amplificación del sonido y/o en el osciloscopio vea un máximo en la amplitud de la señal. Ajustar la posición del pistón, con cuidado, donde se produce la amplificación del sonido y/o cuando la amplitud de la señal del canal 2 del osciloscopio es máxima. Apuntar esta posición. 8. Seguir empujando el pistón hasta que encuentre todas las posiciones en las que se amplifique el sonido y apúntelas. 9. Repetir este proceso para 900Hz, 1100Hz y 1300 Hz. 5

6 5.- Conocimientos Dibujar los cuatro primeros modos de resonancia en desplazamiento, indicando a qué frecuencias se dan y en qué posiciones se dan los nodos y antinodos para cada uno de los modos, en un tubo abierto de longitud 90 cm. Hacer lo mismo para el mismo tubo cerrado. Qué relación existe entre los armónicos en un tubo abierto? y en uno cerrado? Si se utiliza un micrófono (sensor de presión), cómo serán los cuatro primeros modos de resonancia para un tubo de 90 cm de longitud, tanto para un tubo abierto como para uno cerrado? Comparar los resultados con los de la pregunta anterior. Qué relación existe entre ellos? 6.- Análisis Experimento 1 Calcular la longitud de onda y la velocidad del sonido para cada uno de los datos obtenidos. Con los datos obtenidos durante la práctica, dibujar la forma de las ondas para cada frecuencia de resonancia para los dos tipos de tubo. Coinciden los resultados obtenidos experimentalmente con los teóricos contestados en la pregunta de conocimientos realizada previamente? Razonar las respuestas. Experimento 2 Describir y graficar lo que ocurre a la frecuencia de 200 Hz a lo largo del tubo. Comparar con lo obtenido en la frecuencia de resonancia elegida. Experimento 3 Según los datos obtenidos, dibujar la actividad de la onda a lo largo del tubo. Cómo se relacionan las sucesivas posiciones del pistón que producen resonancia con este dibujo? Graficar la longitud del tubo vs n, donde n es el número de antinodos que se producen a lo largo de la longitud del tubo a una de las frecuencias medidas (700 Hz, 900 Hz, 1100 Hz o 1300 Hz). Calcular a partir de la gráfica el valor de la velocidad del sonido. Razonar cada paso llevado a cabo hasta la obtención de dicha velocidad. 6

ONDAS DE SONIDO ESTACIONARIAS EN TUBOS

ONDAS DE SONIDO ESTACIONARIAS EN TUBOS Departamento de Física Laboratorio de Imagen y Sonido ONDAS DE SONIDO ESTACIONARIAS EN TUBOS 1. Objetivos Analizar la formación de ondas sonoras estacionarias en tubos. Determinar la velocidad de propagación

Más detalles

PRÁCTICA Nº1 SONÓMETRO

PRÁCTICA Nº1 SONÓMETRO PRÁCTICA Nº1 SONÓMETRO 1.- Objetivo El objetivo de esta práctica es el estudio de las ondas estacionarias en una cuerda sujeta por ambos extremos. Para ello se obtendrán los modos de vibración para diferentes

Más detalles

TUBO DE RESONANCIA ONDAS ESTACIONARIAS

TUBO DE RESONANCIA ONDAS ESTACIONARIAS TUBO DE RESONANCIA ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de las ondas acústicas y de su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante

Más detalles

TUBO DE RESONANCIA (II) ONDAS ESTACIONARIAS

TUBO DE RESONANCIA (II) ONDAS ESTACIONARIAS TUBO DE RESONANCIA (II) ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de las ondas acústicas y de su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La

Más detalles

Práctica 11 Movimiento ondulatorio

Práctica 11 Movimiento ondulatorio Página 1/9 Práctica 11 Movimiento ondulatorio Página 1 de 119 Página 2/9 1. Seguridad en la ejecución Peligro o fuente de energía 1 Base universal 2 Impulsor de ondas Riesgo asociado Mal colocada, puede

Más detalles

Experimento 10. VELOCIDAD DEL SONIDO EN EL AIRE - TUBO DE RESONANCIA Referencia: Physics Laboratory Experiments J. D. Wilson, DC Heath and Co

Experimento 10. VELOCIDAD DEL SONIDO EN EL AIRE - TUBO DE RESONANCIA Referencia: Physics Laboratory Experiments J. D. Wilson, DC Heath and Co Experimento 10 VELOCIDAD DEL SONIDO EN EL AIRE - TUBO DE RESONANCIA Referencia: Physics Laboratory Experiments J. D. Wilson, DC Heath and Co Objetivo Medir la velocidad del sonido en el aire a temperatura

Más detalles

Experiencia P45: Modos resonantes y velocidad del sonido Sensor de voltaje, Salida de potencia

Experiencia P45: Modos resonantes y velocidad del sonido Sensor de voltaje, Salida de potencia Sensor de voltaje, Salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P45 Speed of Sound 2.DS P36 Speed of Sound P36_MACH.SWS Equipo necesario Cant. Equipo necesario Cant

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados.

1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados. Laboratorio 4 Ondas estacionarias en una columna de aire 4.1 Objetivos 1. Identificar los distintos modos de vibración de las columnas de aire en tubos abiertos y cerrados. 2. Medir la velocidad del sonido

Más detalles

Experiencia P44: Modos resonantes- Tubo Modos resonantes de una columna de aire Sensor de Voltaje

Experiencia P44: Modos resonantes- Tubo Modos resonantes de una columna de aire Sensor de Voltaje Experiencia P44: Modos resonantes- Tubo Modos resonantes de una columna de aire Sensor de Voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P44 Resonance.DS P35 Resonance Modes

Más detalles

Manual de Prácticas. Práctica número 11 Movimiento Ondulatorio

Manual de Prácticas. Práctica número 11 Movimiento Ondulatorio Práctica número 11 Movimiento Ondulatorio Tema Correspondiente: Movimiento ondulatorio Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado

Más detalles

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui

TEMA I.13. Ondas Estacionarias Longitudinales. Dr. Juan Pablo Torres-Papaqui TEMA I.13 Ondas Estacionarias Longitudinales Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL

GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL3003 Laboratorio de Ingeniería Eléctrica GUÍA DE TRABAJO LÍNEA DE TRANSMISIÓN COAXIAL Contenido 1.

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa FS-00 Física General II UNAH Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Ondas estacionarias en una cuerda tensa Actualizada y corregida por Fis. Ricardo

Más detalles

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo

Más detalles

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-415 Electricidad y Magnetismo II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Elaborado por: Ing. Francisco Solórzano Asesor: M.Sc. Maximino Suazo Facultad de Ciencias Escuela de Física Magnetostricción I. Objetivo 1. Analizar la respuesta

Más detalles

Universidad Nacional Autónoma de Honduras. Facultad de Ciencias. Escuela de Física

Universidad Nacional Autónoma de Honduras. Facultad de Ciencias. Escuela de Física Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Práctica de FS-415 Tema: Magnetostricción Elaborado por: Ing. Francisco Solórzano Asesor: M. Sc. Maximino Suazo I. OBJETIVOS

Más detalles

Ondas Estacionarias en una Cuerda

Ondas Estacionarias en una Cuerda Ondas Estacionarias en una Cuerda Objetivo Observar las ondas estacionarias en una cuerda tensa y mediante el análisis y medición de algunos parámetros importantes, involucrados en este fenómeno. Materiales

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Objetivos Ondas estacionarias en una cuerda tensa Actualizada y corregida por Fis. Ricardo Salgado y Fis. Luis Zapata Coordinador

Más detalles

Ondas estacionarias en una columna de aire

Ondas estacionarias en una columna de aire Laboratorio 4 Ondas estacionarias en una columna de aire 4.1 Objetivos 1. Identificar los distintos modos de vibración de las columnas de aire en un tubo abierto y cerrado. 2. Medir la velocidad del sonido

Más detalles

Índice. Página. Contenido

Índice. Página. Contenido CUAUHTÉMOC HERNÁNDEZ ORTIZ FACULTAD DE INGENIERIA Práctica No. 11: Movimiento Ondulatorio Índice Página Contenido 1 2 2 3 4 5 6 7 8 9 Introducción Objetivos Desarrollo Materiales Necesarios Características

Más detalles

PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN

PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN 1.- Objetivo El objetivo de esta práctica es examinar el patrón de difracción a través de una sola rendija y de interferencia a través de una rendija múltiple, utilizando

Más detalles

TRABAJO PRÁCTICO # 2. COMUNICACIÓN: mecanismo de la producción del sonido en cuerdas y tubos GUIA DE TRABAJO PRÁCTICO

TRABAJO PRÁCTICO # 2. COMUNICACIÓN: mecanismo de la producción del sonido en cuerdas y tubos GUIA DE TRABAJO PRÁCTICO 1 BIOLOGIA SENSORIAL ANIMAL 2018 DEPARTAMENTO DE BIODIVERSIDAD Y BIOLOGIA EXPERIMENTAL FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES TRABAJO PRÁCTICO # 2 COMUNICACIÓN: mecanismo

Más detalles

Ondas Estacionarias en una. Cuerda FIS Objetivo. Materiales

Ondas Estacionarias en una. Cuerda FIS Objetivo. Materiales FIS-1525 Ondas Estacionarias en una Cuerda Objetivo Observar las ondas estacionarias en una cuerda tensa con análisis y medición de algunos parámetros importantes involucrados en este fenómeno como longitud

Más detalles

MEDIDA DE LA VELOCIDAD DEL SONIDO

MEDIDA DE LA VELOCIDAD DEL SONIDO Laboratorio de Física General (Ondas mecánicas) MEDIDA DE LA VELOCIDAD DEL SONIDO Fecha: 02/10/2013 1. Objetivo de la práctica Determinación de la velocidad del sonido (y la constante adiabática del aire)

Más detalles

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA I - Finalidades 1.- Introducción y uso del osciloscopio. 2.- Efectuar medidas de tensiones alternas con el osciloscopio. alor máximo, valor pico

Más detalles

TEMA DE LA CLASE: EFECTO DOPPLER

TEMA DE LA CLASE: EFECTO DOPPLER TEMA DE LA CLASE: EFECTO DOPPLER OBJETIVOS DE LA CLASE: Reconocer y describir el fenómeno físico del Efecto Doppler. Aplicar a ejemplos comunes el Efecto Doppler. VALOR: RESPETO Efecto Doppler EFECTO DOPPLER

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Laboratorio de: (5) FÍSICA CALOR Y ONDAS Número de Páginas: (2) 7 Identificación: (1) Revisión No.: (3) 4 Fecha Emisión: (4) 2011/08/31 Titulo de la Práctica de Laboratorio:

Más detalles

Laboratorio 1 Medidas Eléctricas - Curso 2018

Laboratorio 1 Medidas Eléctricas - Curso 2018 Objetivo: Laboratorio 1 Medidas Eléctricas - Curso 2018 El objetivo de esta práctica es familiarizarse con el manejo del osciloscopio y los principios fundamentales de su funcionamiento. Materiales del

Más detalles

Ondas III: ondas estacionarias (sonido) Versión 2.0

Ondas III: ondas estacionarias (sonido) Versión 2.0 Ondas III: ondas estacionarias (sonido) Versión 2.0 Héctor Cruz Ramírez 1 Instituto de Ciencias Nucleares, UNAM 1 hector.cruz@ciencias.unam.mx febrero 2017 Índice 1. Resumen 1 1.1. Objetivos de la práctica.......................

Más detalles

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN 1.- Equipamiento y montaje Componentes del equipo Los accesorios necesarios para la realización de la presente práctica se enumeran a continuación: 1. Caja de Almacenamiento

Más detalles

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión Física III clase 4 (22/03/2010) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería Civil

Más detalles

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

Osciloscopio y Generador de señales. Departamento de Física Aplicada I Escuela Politécnica Superior Universidad de Sevilla

Osciloscopio y Generador de señales. Departamento de Física Aplicada I Escuela Politécnica Superior Universidad de Sevilla Osciloscopio y Generador de señales Universidad de Sevilla El osciloscopio Es un instrumento que sirve para visualizar y medir las características de señales eléctricas variables en el tiempo. En concreto,

Más detalles

* Cuando dos ondas o vibraciones de frecuencias ligeramente diferentes se suman, se producen pulsaciones. La frecuencia de estas es F=f - f.

* Cuando dos ondas o vibraciones de frecuencias ligeramente diferentes se suman, se producen pulsaciones. La frecuencia de estas es F=f - f. Superposición de ondas. Cuerdas y tubos sonoros Generalidades * Cuando ondas incidentes se suman a sus propias ondas reflejadas se producen ondas estacionarias. Hay puntos de amplitud cero, llamados nodos,

Más detalles

Ondas Estacionarias Sonoras

Ondas Estacionarias Sonoras FS-00 Fı sica General II UNAH Universidad Nacional Auto noma de Honduras Facultad de Ciencias Escuela de Fı sica Ondas Estacionarias Sonoras Elaborada por: He ctor Laı nez Supervisada por Fis. Ricardo

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

Práctica 1 Movimiento ondulatorio

Práctica 1 Movimiento ondulatorio Página 1/5 Práctica 1 Movimiento ondulatorio 1 Página 2/5 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 base de soporte universal. Mal colocada en la mesa puede caer y provocar

Más detalles

Práctica: Movimiento ondulatorio

Práctica: Movimiento ondulatorio Página 1/5 Práctica: Movimiento ondulatorio 1 Página 2/5 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 base de soporte universal. Mal colocada en la mesa puede caer y provocar

Más detalles

Columnas de Aire Resonantes en Tubos Abiertos y Cerrados

Columnas de Aire Resonantes en Tubos Abiertos y Cerrados Columnas de Aire Resonantes en Tubos Abiertos y Cerrados Objetivo: Equipo: - Estudiar varias propiedades importantes de las ondas sonoras, incluidas la recuencia, amplitud e intensidad. - Tubos transparentes

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

Utilizando una identidad trigonométrica, se llega a:

Utilizando una identidad trigonométrica, se llega a: Ondas Estacionarias Cuando dos ondas de la misma frecuencia y de la misma amplitud viajan en direcciones opuestas se combinan obedeciendo al principio de superposición produciendo un fenómeno de interferencia.

Más detalles

FISICA DE ONDAS. Laboratorio: Ondas estacionarias en una cuerda tensa

FISICA DE ONDAS. Laboratorio: Ondas estacionarias en una cuerda tensa FISICA DE ONDAS Laboratorio: Ondas estacionarias en una cuerda tensa Marco teórico Se llaman ondas estacionarias, por contraposición de ondas viajeras, a aquellas mediante las cuales no se puede transmitir

Más detalles

UNA CUERDA. Donde es la tensión de la cuerda y su densidad lineal. De las expresiones (1), (2) y (3) Ud. puede deducir que: T V (3)

UNA CUERDA. Donde es la tensión de la cuerda y su densidad lineal. De las expresiones (1), (2) y (3) Ud. puede deducir que: T V (3) EXPERIMENTO : ONDAS ESTACIONARIAS EN UNA CUERDA OBJETIVOS Determinar la cantidad de nodos y vientres de una cuerda con una determinada frecuencia. Determinar la densidad lineal de la cuerda Estudiar la

Más detalles

Física II clase 10 (15/04) Interferencia de Ondas

Física II clase 10 (15/04) Interferencia de Ondas Física II clase 10 (15/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Interferencia de

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

PRÁCTICA 4. Polarización de transistores en emisor/colector común

PRÁCTICA 4. Polarización de transistores en emisor/colector común PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros

Más detalles

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO OBJETIVO Estudio de las diferentes partes de un osciloscopio y realización de medidas con este instrumento. Introducción Un osciloscopio consta

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

ACÚSTICA MATERIAL: GENERADOR DE FUNCIONES

ACÚSTICA MATERIAL: GENERADOR DE FUNCIONES MATERIAL: GENERADOR DE FUNCIONES MATERIAL: OSCILOSCOPIO DIGITAL MATERIAL: AURICULARES MICRÓFONO MATERIAL: ADAPTADOR BNC-BANANAS CABLE HEMBRA JACK-3 BANANAS MONTAJE EXPERIMENTO 1: Colocar el adaptador BNC-bananas

Más detalles

EJERCICIO 1: Amplificador de pequeña señal de 1 etapa (PSIM)

EJERCICIO 1: Amplificador de pequeña señal de 1 etapa (PSIM) EJERCICIO 1: Amplificador de pequeña señal de 1 etapa (PSIM) Diseñar, en el PSIM, el circuito de la figura, con la siguiente configuración, : La fuente de tensión alterna con una tensión de pico de 50mV

Más detalles

Problemas de Ondas Sonora AP Física B de PSI

Problemas de Ondas Sonora AP Física B de PSI Problemas de Ondas Sonora AP Física B de PSI Nombre Multiopción 1. Dos fuentes de sonido S 1 y S 2 producen ondas con frecuencias de 500 Hz y 250 Hz. Cuando se compara la velocidad de la onda 1 a la velocidad

Más detalles

Sonido Problemas de Práctica. Problemas de Multiopcion. Slide 1 / 40. Slide 2 / 40. Slide 3 / 40 A B

Sonido Problemas de Práctica. Problemas de Multiopcion. Slide 1 / 40. Slide 2 / 40. Slide 3 / 40 A B Slide 1 / 40 Sonido Problemas de Práctica Slide 2 / 40 Problemas de Multiopcion 1 os fuentes de sonido S 1 y S 2 producen ondas con frecuencias de 500 Hz y 250 Hz. uando se compara la velocidad de la onda

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

Ondas acústicas en un tubo semi-cerrado

Ondas acústicas en un tubo semi-cerrado Ondas acústicas en un tubo semi-cerrado Labruna, Gimena, labrugi@yahoo.com.ar Quiroga, Paula, paulaquiroga@hotmail.com Scalise, Guido, gscalise@ciudad.com.ar Valli, Mauricio, mauriciolaplata@sinectis.com.ar

Más detalles

Ondas estacionarias. kx t

Ondas estacionarias. kx t Ondas estacionarias Un caso interesante de interferencia de ondas surge cuando interfieren dos ondas idénticas que se propagan en sentidos contrarios (lo que sucede, por ejemplo, cuando la onda reflejada

Más detalles

ONDAS ESTACIONARIAS EN UN HILO

ONDAS ESTACIONARIAS EN UN HILO Laboratorio de Física General Primer Curso (Ondas mecánicas) ONDAS ESTACIONARIAS EN UN HILO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de las ondas estacionarias transversales en un hilo. Papel

Más detalles

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Ejemplo Suponga que

Más detalles

Experiencia P41: Ondas en un hilo Amplificador de potencia

Experiencia P41: Ondas en un hilo Amplificador de potencia Amplificador de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P41 Waves.DS P31 Waves on a String P31_WAVE.SWS Equipo necesario Cant Equipo necesario Cant Amplificador de potencia

Más detalles

CAPÍTULO 3: PRUEBAS EXPERIMENTALES

CAPÍTULO 3: PRUEBAS EXPERIMENTALES CAPÍTULO 3: PRUEBAS EXPERIMENTALES Las pruebas experimentales que se realizaron con todos los circuitos que fueron previamente elaborados nos ayudarán a obtener mediciones necesarias para descartar todos

Más detalles

INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física IV

INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física IV INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física IV Física IV Alumno Grupo Equipo Profesor de teoría Profesor de laboratorio Fecha / /

Más detalles

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N ro 1 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

2009 HARLEY DAVIDSON MODELOS SOFTAIL

2009 HARLEY DAVIDSON MODELOS SOFTAIL Lista de componentes 2009 HARLEY DAVIDSON MODELOS SOFTAIL Manual de instrucciones Estas instrucciones no son aplicables al modelo Crossbones 1 Power Commander 1 Cable USB 1 CD- ROM 1 Manual de instrucciones

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Objetivos Ondas estacionarias en una cuerda tensa 1. Producir los modos normales de vibración de una cuerda fija en los

Más detalles

Práctica: Modos de vibración de una cuerda fija por los extremos

Práctica: Modos de vibración de una cuerda fija por los extremos Práctica: Modos de vibración de una cuerda fija por los extremos Introducción Las estacionarias no son ondas de propagación como después veremos, primero, porque la ecuación que las describe no responde

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. Teror

Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. Teror Ondas Sonoras. David Santana Quintana. Práctica de física. 2º Bachillerato B. I.E.S. eror Objetivo El objetivo de la siguiente práctica es alcanzar el vientre de la onda que produciremos gracias a la ayuda

Más detalles

ONDAS ESTACIONARIAS EN UN HILO

ONDAS ESTACIONARIAS EN UN HILO Laboratorio de Física General (Ondas mecánicas) ONDAS ESTACIONARIAS EN UN HILO Fecha: 02/10/2013 1. Objetivo de la práctica Estudio de las ondas estacionarias transversales en un hilo. Papel de la tensión

Más detalles

PRÁCTICA 11. OSCILACIÓN EN AMPLIFICADORES REALIMENTADOS

PRÁCTICA 11. OSCILACIÓN EN AMPLIFICADORES REALIMENTADOS PRÁCTICA 11. OSCILACIÓN EN AMPLIFICADORES REALIMENTADOS 1. Objetivo El objetivo de la práctica es comprobar experimentalmente el problema de la oscilación en amplificadores realimentados. Dicho problema

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Medida de la Función de Transferencia de un Circuito RLC.

Medida de la Función de Transferencia de un Circuito RLC. Medida de la Función de Transferencia de un Circuito LC. DATSI 9 de octubre de 2014 1. Introducción El circuito sobre el que se pretende medir la función de transferencia en el laboratorio es el representado

Más detalles

I. DATOS DE IDENTIFICACIÓN

I. DATOS DE IDENTIFICACIÓN UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN PROGRAMA DE UNIDAD DE APRENDIZAJ E POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN

Más detalles

TUBO DE QUINCKE ONDAS ESTACIONARIAS

TUBO DE QUINCKE ONDAS ESTACIONARIAS TUBO DE QUINCKE ONDAS ESTACIONARIAS 1.- OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Quincke. Cálculo de la velocidad de propagación del sonido en el aire. 2.- FUNDAMENTO

Más detalles

2. ONDAS TRANSVERSALES EN UNA CUERDA

2. ONDAS TRANSVERSALES EN UNA CUERDA 2. ONDAS RANSVERSALES EN UNA CUERDA 2.1 OBJEIVOS Analizar el fenómeno de onda estacionaria en una cuerda tensa. Determinar la densidad lineal de masa de una cuerda. Estudiar la dependencia entre la frecuencia

Más detalles

F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS

F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS 1. 1.- Comenta si la siguiente afirmación es verdadera o falsa: En un movimiento armónico simple dado por x = A senωt las direcciones

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Cuestiones Movimiento ondulatorio 1. a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, λ, se propaga por una

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en 1 Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a través de un medio. Pero la onda

Más detalles

LABORATORIO DE CONTROL

LABORATORIO DE CONTROL Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Ingeniería de Control LABORATORIO DE CONTROL ANALOGICO P R A C T I C A CONTROL DE VELOCIDAD Y POSICION Agosto 998 CONTROL DE VELOCIDAD

Más detalles

Experiencia P32: Variación de la Intensidad de la luz Sensor de luz

Experiencia P32: Variación de la Intensidad de la luz Sensor de luz Experiencia P32: Variación de la Intensidad de la luz Sensor de luz Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Luz P32 Vary Light.DS P54 Light Bulb Intensity P54_BULB.SWS Equipo necesario

Más detalles

VIBRACIÓN DE CUERDAS. λ n. = λ = Figura 1: Ondas transversales estacionarias originadas en una cuerda fijada por ambos extremos

VIBRACIÓN DE CUERDAS. λ n. = λ = Figura 1: Ondas transversales estacionarias originadas en una cuerda fijada por ambos extremos VIBRACIÓN DE CUERDAS 1. OBJETIVO Estudiar cómo varía la frecuencia fundamental de vibración de un hilo metálico, sujeto por ambos extremos, en función de su longitud, de su diámetro y de una fuerza tensora..-

Más detalles

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas?

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? Cómo se puede controlar la interferencia de dos ondas experimentalmente?

Más detalles

Sistema de imagen para asiento trasero (RSE), dos pantallas, con dos reproductores V1.4

Sistema de imagen para asiento trasero (RSE), dos pantallas, con dos reproductores V1.4 Installation instructions, accessories Nº instrucciones Versión Nº pieza 31320295 1.4 31320303, 31320302, 31320170, 31320166, 31320168, 31320167, 31320169, 1287634, 1287635, 31373288, 31373284, 31373280,

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

aletos CAPÍTULO 3.08 ONDAS ESTACIONARIAS EN TUBOS SONOROS

aletos CAPÍTULO 3.08 ONDAS ESTACIONARIAS EN TUBOS SONOROS aletos Física para iencias e Ingeniería APÍTUO 3.08 ONDAS STAIONARIAS N TUOS SONOROS 1 3.08-1 Ondas estacionarias en tubos sonoros Un tubo sonoro consiste básicamente en un tubo metálico, o de madera,

Más detalles

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos

Más detalles

1. Medidor de potencia óptica

1. Medidor de potencia óptica En este anexo se va a hablar del instrumental de laboratorio más importante utilizado en la toma de medidas. Este instrumental consta básicamente de tres elementos: el medidor de potencia óptica, el osciloscopio

Más detalles

El arreglo experimental de la figura corresponde al tubo de Quincke. Un emisor conectado a un generador de funciones genera una señal sonora de

El arreglo experimental de la figura corresponde al tubo de Quincke. Un emisor conectado a un generador de funciones genera una señal sonora de El arreglo experimental de la figura corresponde al tubo de Quincke. Un emisor conectado a un generador de funciones genera una señal sonora de frecuencia f = 3400Hz. Un micrófono conectado a un amplificador

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 29 OSCILACIONES AMORTIGUADAS.

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 29 OSCILACIONES AMORTIGUADAS. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA FÍSICA II PRÁCTICA 29 OSCILACIONES AMORTIGUADAS OBJETIVOS DEL APRENDIZAJE: CONOCER LA DISMINUCIÓN DE ENERGÍA MECÁNICA CON EL TIEMPO ANALIZAR

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 03 Laboratorio 03: ONDAS TRANSVERSALES EN UNA CUERDA I. OBJETIVOS General Estudiar

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

Carlos Durán Torres. Centro de Ciencia PRINCIPIA. Málaga

Carlos Durán Torres. Centro de Ciencia PRINCIPIA. Málaga ESTO ME SUENA!: MÚSICA Y CIENCIA. MONOGRÁFICO Carlos Durán Torres Centro de Ciencia PRINCIPIA. Málaga RESUMEN Mediante la realización de experiencias sencillas, se puede poner de manifiesto la relación

Más detalles