FUNDAMENTOS DE DATA WAREHOUSE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNDAMENTOS DE DATA WAREHOUSE"

Transcripción

1 FUNDAMENTOS DE DATA WAREHOUSE 1. Qué es Data Warehouse? El Data Warehouse es una tecnología para el manejo de la información construido sobre la base de optimizar el uso y análisis de la misma utilizado por las organizaciones para adaptarse a los vertiginosos cambios en los mercados. Su función esencial es ser la base de un sistema de información gerencial, es decir, debe cumplir el rol de integrador de información proveniente de fuentes funcionalmente distintas (Bases Corporativas, Bases propias, de Sistemas Externos, etc.) y brindar una visión integrada de dicha información, especialmente enfocada hacia la toma de decisiones por parte del personal jerárquico de la organización. Un Datawarehouse es una base de datos corporativa que se caracteriza por integrar y depurar información de una o más fuentes distintas, para luego procesarla permitiendo su análisis desde infinidad de perspectivas y con grandes velocidades de respuesta. Es un sitio donde se almacena de manera integrada toda la información resultante de la operatoria diaria de la organización. Además, se almacenan datos estratégicos y tácticos con el objetivo de obtener información estratégica y táctica que pueden ser de gran ayuda para aplicar sobre las mismas técnicas de análisis de datos encaminadas a obtener información oculta (Data Mining). Esta información incluye movimientos que modifican el estado del negocio, cualquier interacción que se tenga con los clientes y proveedores, y cualquier dato adicional que ayude a comprender la evolución del negocio. Esta tecnología ayuda a la organización a responder preguntas esenciales para la toma de decisiones que le permitan obtener ventajas competitivas y mejorar su posición en el mercado en el que operan. Algunas de las preguntas podrían ser: Cuál es el perfil de mis clientes? Cómo es su comportamiento? Cuál es la rentabilidad que me deja? Cuál es el riesgo que corro con él? Qué servicios y productos utiliza y cómo puedo incrementarlos? Etc.

2 2. Características de un Data Warehouse. Integrado. Los datos almacenados en el datawarehouse deben integrarse en una estructura consistente, por lo que las inconsistencias existentes entre los diversos sistemas operacionales deben ser eliminadas. La información suele estructurarse también en distintos niveles de detalle para adecuarse a las distintas necesidades de los usuarios. La integración de datos se muestra de muchas maneras: en convenciones de nombres consistentes, en la medida uniforme de variables, en la codificación de estructuras consistentes, en atributos físicos de los datos consistentes, fuentes múltiples y otros. En la siguiente imagen podemos ver cómo se maneja la información en distintas aplicaciones y lo que buscamos con la integración seria escoger de todas un estándar de información para que uniformice los datos y se introduzcan al repositorio

3 Temático. Sólo los datos necesarios para el proceso de generación del conocimiento del negocio se integran desde el entorno operacional. Los datos se organizan por temas para facilitar su acceso y entendimiento por parte de los usuarios finales. Por ejemplo, todos los datos sobre clientes pueden ser consolidados en una única tabla del datawarehouse. De esta forma, las peticiones de información sobre clientes serán más fáciles de responder dado que toda la información reside en el mismo lugar. En la siguiente imagen se muestra cómo se maneja un sistema de información orientada a sus aplicaciones y otra temática una diferencia importante entre estas está en la interrelación de la información. Los datos operacionales (aplicaciones) mantienen una relación continua entre dos o más tablas basadas en una regla comercial. Las del data warehouse miden espectros de tiempo y las relaciones encontradas en la data warehouse (podremos indagar en toda la información pasada relacionada entre todas las aplicaciones).

4 De tiempo variante. El tiempo es parte implícita de la información contenida en un datawarehouse. En los sistemas operacionales, los datos siempre reflejan el estado de la actividad del negocio en el momento presente. Por el contrario, la información almacenada en el datawarehouse sirve, entre otras cosas, para realizar análisis de tendencias. Por lo tanto, el datawarehouse se carga con los distintos valores que toma una variable en el tiempo para permitir comparaciones. Los datos históricos son de poco uso en el procedimiento operacional. La información del depósito por el contrario, debe incluir los datos históricos para usarse en la identificación y evaluación de tendencias. 1. La más simple es que la información representa los datos sobre un horizonte largo de tiempo - desde cinco a diez años. El horizonte de tiempo representado para el ambiente operacional es mucho más corto - desde valores actuales hasta sesenta a noventa días. Las aplicaciones que tienen un buen rendimiento y están disponibles para el procesamiento de transacciones, deben llevar una cantidad mínima de datos si tienen cualquier grado de flexibilidad. Por ello, las aplicaciones operacionales tienen un corto horizonte de tiempo, debido al diseño de aplicaciones rígidas. 2. La segunda manera en la que se muestra el tiempo variante en el data warehouse está en la estructura clave. Cada estructura clave en el data warehouse contiene, implícita o explícitamente, un elemento de tiempo como día, semana, mes, etc. El elemento de tiempo está casi siempre al pie de la clave concatenada, encontrada en el data warehouse. En ocasiones, el elemento de tiempo existirá implícitamente, como el caso en que un archivo completo se duplica al final del mes, o al cuarto.

5 3. La tercera manera en que aparece el tiempo variante es cuando la información del data warehouse, una vez registrada correctamente, no puede ser actualizada. La información del data warehouse es, para todos los propósitos prácticos, una serie larga de "snapshots" (vistas instantáneas). Por supuesto, si los snapshots de los datos se han tomado incorrectamente, entonces pueden ser cambiados. Asumiendo que los snapshots se han tomado adecuadamente, ellos no son alterados una vez hechos. En algunos casos puede ser no ético, e incluso ilegal, alterar los snapshots en el data warehouse. Los datos operacionales, siendo requeridos a partir del momento de acceso, pueden actualizarse de acuerdo a la necesidad. No Volátil. El almacén de información de un datawarehouse existe para ser leído, pero no modificado. La información es por tanto permanente, significando la actualización del datawarehouse la incorporación de los últimos valores que tomaron las distintas variables contenidas en él sin ningún tipo de acción sobre lo que ya existía. La información es útil sólo cuando es estable. Los datos operacionales cambian sobre una base momento a momento. La perspectiva más grande, esencial la manipulación básica de los datos que ocurre en el data warehouse es mucho más simple. Hay dos únicos tipos de operaciones: la carga inicial de datos y el acceso a los mismos. No hay actualización de datos (en el sentido general de actualización) en el depósito, como una parte normal de procesamiento. Hay algunas consecuencias muy importantes de esta diferencia básica, entre el procesamiento operacional y del data warehouse. En el nivel de diseño, la necesidad de ser precavido para actualizar las anomalías no es un factor en el data warehouse, ya que no se hace la actualización de datos. Esto significa que en el nivel físico de diseño, se pueden tomar libertades para optimizar el acceso a los datos, particularmente al usar la normalización y de normalización física. Como se puede observar en la imagen en la base de datos operacional la actualización (actualizar, borrar y modificar) se hace regularmente, mientras en el data warehouse sea una sola actualización esto hace que cuando tengamos que tomar una decisión con esta información tengamos seguridad de esta.

6 3. Ventajas de un Data Warehouse Datawarehouse proporciona una información de gestión accesible, correcta, uniforme y actualizada. Proporciona un menor coste en la toma de decisiones, una mayor flexibilidad ante el entorno, un mejor servicio al cliente y permite el rediseño de los procesos. Entre las ventajas tenemos: - Proporciona información clave para la toma de decisiones empresariales. - Mejora la calidad de las decisiones tomadas. - Especialmente útil para el medio y largo plazo. - Son sistemas relativamente sencillos de instalar si las fuentes de datos y los objetivos están claros. - Muy útiles para el almacenamiento de análisis y consultas de históricos. - Proporciona un gran poder de procesamiento de información. - Permite una mayor flexibilidad y rapidez en el acceso a la información. - Facilita la toma de decisiones en los negocios. - Las empresas obtienen un aumento de la productividad. - Proporciona una comunicación fiable entre todos los departamentos de la empresa. - Mejora las relaciones con los proveedores y los clientes.

7 - Permite conocer qué está pasando en el negocio, es decir, estar siempre enterado de los buenos y malos resultados. - Transforma los datos en información y la información en conocimiento - Permite hacer planes de forma más efectiva. - Reduce los tiempos de respuesta y los costes de operación. 4. Desventajas de un Data Warehouse Las empresas que utilizan data warehouse son fundamentalmente aquellas que manejan grandes volúmenes de datos relativos a clientes, compras, marketing, transacciones, operaciones, como lo son las empresas de telecomunicaciones, transporte, Turismo, fabricación de bienes de consumo masivo etc. Entre las desventajas tenemos: - No es muy útil para la toma de decisiones en tiempo real debido al largo tiempo de procesamiento que puede requerir. En cualquier caso la tendencia de los productos actuales (junto con los avances del hardware) es la de solventar este problema convirtiendo la desventaja en una ventaja. - Requiere de continua limpieza, transformación e integración de datos. - Mantenimiento. - En un proceso de implantación puede encontrarse dificultades ante los diferentes objetivos que pretende una organización. - Una vez implementado puede ser complicado añadir nuevas fuentes de datos. - Requieren una revisión del modelo de datos, objetos, transacciones y además del almacenamiento. - Tienen un diseño complejo y multidisciplinar. - Requieren una reestructuración de los sistemas operacionales. - Tienen un alto coste. - Requieren sistemas, aplicaciones y almacenamiento específico 5. Estructura de un Data Warehouse En la estructura de un data warehouse encontraremos 4 niveles de esquematización los cuales forman la metadata, estos niveles se diferencian x el nivel de síntesis o depuracion de información requerida por la empresa que lo usa y son:

8 Detalle de datos antiguos ( históricos). Es aquella que se almacena sobre alguna forma de almacenamiento masivo. No es frecuentemente accesada y se almacena a un nivel de detalle, consistente con los datos detallados actuales. Mientras no sea prioritario el almacenamiento en un medio de almacenaje alterno, a causa del gran volumen de datos unido al acceso no frecuente de los mismos, es poco usual utilizar el disco como medio de almacenamiento. Detalle de datos actuales. En gran parte, el interés más importante radica en el detalle de los datos actuales, debido a que: Estos datos reflejan las ocurrencias más recientes, las cuales son de gran interés Son voluminosos, ya que se almacenan al más bajo nivel de granularidad (no están procesados). Casi siempre se almacena en disco, al cual se tiene fácil acceso, aunque su administración sea costosa y compleja Datos ligeramente resumidos. Es aquella que proviene desde un bajo nivel de detalle encontrado al nivel de detalle actual. Este nivel el data warehouse casi siempre se almacena en disco. Los puntos en los que se basa el diseñador para construirlo son: Que la unidad de tiempo se encuentre sobre la esquematización hecha. Qué contenidos (atributos) tendrá la data ligeramente resumida. Datos completamente resumidos. El siguiente nivel de datos encontrado en el data warehouse es el de los datos completamente resumidos. Estos datos son compactos y fácilmente accesibles por lo general son indicadores que son usados con más frecuencia para el análisis gerencial.

9 Metadata. El componente final del data warehouse es el de la metadata. De muchas maneras la metadata se sitúa en una dimensión diferente al de otros datos del data warehouse, debido a que su contenido no es tomado directamente desde el ambiente operacional. La metadata juega un rol especial y muy importante en el data warehouse y es usada como: Un directorio para ayudar al analista a ubicar los contenidos del data warehouse. Una guía para el mapping de datos de cómo se transforma, del ambiente operacional al de data warehouse. Una guía de los algoritmos usados para la esquematización entre el detalle de datos actual, con los datos ligeramente resumidos y éstos, con los datos completamente resumidos, etc. La metadata juega un papel mucho más importante en un ambiente data warehousing que en un operacional clásico. A fin de recordar los diferentes niveles de los datos encontrados en el data warehouse, considere el ejemplo mostrado en la Figura.

10 El detalle de ventas antiguas son las que se encuentran antes de Todos los detalles de ventas desde 1982 (o cuando el diseñador inició la colección de los archivos) son almacenados en el nivel de detalle de datos más antiguo. El detalle actual contiene información desde 1992 a 1993 (suponiendo que 1993 es el año actual). En general, el detalle de ventas no se ubica en el nivel de detalle actual hasta que haya pasado, por lo menos, veinticuatro horas desde que la información de ventas llegue a estar disponible en el ambiente operacional. En otras palabras, habría un retraso de tiempo de por lo menos veinticuatro horas, entre el tiempo en que en el ambiente operacional se haya hecho un nuevo ingreso de la venta y el momento cuando la información de la venta haya ingresado al data warehouse. El detalle de las ventas son resumidas semanalmente por línea de subproducto y por región, para producir un almacenamiento de datos ligeramente resumidos. El detalle de ventas semanal es adicionalmente resumido en forma mensual, según una gama de líneas, para producir los datos completamente resumidos. La metadata contiene (al menos): La estructura de los datos Los algoritmos usados para la esquematización El mapping desde el ambiente operacional al data warehouse La información adicional que no se esquematiza es almacenada en el data warehouse. En muchas ocasiones, allí se hará el análisis y se producirá un tipo u otro de resumen. El único tipo de esquematización que se almacena permanentemente en el data warehouse, es el de los datos que son usados frecuentemente. En otras palabras, si un analista produce un resumen que tiene una probabilidad muy baja de ser usado nuevamente, entonces la esquematización no es almacenada en el data warehouse.

11 6. Flujo de datos de un Data Warehouse El DW posee un flujo de datos estándar y generalizado, el cual puede apreciarse mejor en la siguiente figura. Cuando la información ingresa al depósito de datos se almacena a nivel de Detalle de datos actuales. Los datos permanecerán allí hasta que ocurra alguno de los tres eventos siguientes: Sean borrados del depósito de datos. Sean resumidos, ya sea a nivel de Datos ligeramente resumidos o a nivel de Datos altamente resumidos. Sean archivados a nivel de Detalle de datos históricos. 7. Redundancia de un Data Warehouse Debido a que el DW recibe información histórica de diferentes fuentes, sencillamente se podría suponer que existe una repetición de datos masiva entre el ambiente DW y el operacional. Por supuesto, este razonamiento es superficial y erróneo, de hecho, hay una mínima redundancia de datos entre ambos ambientes. Para entender claramente lo antes expuesto, se debe considerar lo siguiente:

12 Los datos del ambiente operacional se filtran antes de pertenecer al DW. Existen muchos datos que nunca ingresarán, ya que no conforman información necesaria o suficientemente relevante para la toma de decisiones. El horizonte de tiempo es muy diferente entre los dos ambientes. El almacén de datos contiene un resumen de la información que no se encuentra en el ambiente operacional. Los datos experimentan una considerable transformación, antes de ser cargados al DW. La mayor parte de los datos se alteran significativamente al ser seleccionados, consolidados y movidos al depósito. En vista de estos factores, se puede afirmar que, la redundancia encontrada al cotejar los datos de ambos ambientes es mínima, ya que generalmente resulta en un porcentaje menor del 1%. 8. Arquitectura de un Data Warehouse En este punto y teniendo en cuenta que ya se han detallado claramente las características generales del Data Warehousing, se definirán y describirán todos los componentes que intervienen en su arquitectura o ambiente. A través del siguiente gráfico se explicitará la estructura del Data Warehousing: Tal y como se puede apreciar, el ambiente está formado por diversos elementos que interactúan entre sí y que cumplen una función específica dentro del sistema.

13 Básicamente, la forma de operar del esquema superior se resume de la siguiente manera: Los datos son extraídos desde aplicaciones, bases de datos, archivos, etc. Esta información generalmente reside en diferentes tipos de sistemas, orígenes y arquitecturas y tienen formatos muy variados. Los datos son integrados, transformados y limpiados, para luego ser cargados en el DW. Principalmente, la información del DW se estructura en cubos multidimensionales, ya que estos preparan esta información para responder a consultas dinámicas con una buena performance. Pero también pueden utilizarse otros tipos de estructuras de datos para representar la información del DW, como por ejemplo Business Models. L@s usuari@s acceden a los cubos multidimensionales, Business Models (u otro tipo de estructura de datos) del DW utilizando diversas herramientas de consulta, exploración, análisis, reportes, etc. 9. Data Mart Un Datamart es una base de datos departamental, especializada en el almacenamiento de los datos de un área de negocio específica. Se caracteriza por disponer la estructura óptima de datos para analizar la información al detalle desde todas las perspectivas que afecten a los procesos de dicho departamento. Un datamart puede ser alimentado desde los datos de un datawarehouse, o integrar por si mismo un compendio de distintas fuentes de información.

14 Por tanto, para crear el datamart de un área funcional de la empresa es preciso encontrar la estructura óptima para el análisis de su información, estructura que puede estar montada sobre una base de datos OLTP, como el propio datawarehouse, o sobre una base de datos OLAP. La designación de una u otra dependerá de los datos, los requisitos y las características específicas de cada departamento. De esta forma se pueden plantear dos tipos de datamarts: Datamart OLAP. Se basan en los populares cubos OLAP, que se construyen agregando, según los requisitos de cada área o departamento, las dimensiones y los indicadores necesarios de cada cubo relacional. El modo de creación, explotación y mantenimiento de los cubos OLAP es muy heterogéneo, en función de la herramienta final que se utilice. Datamart OLTP. Pueden basarse en un simple extracto del datawarehouse, no obstante, lo común es introducir mejoras en su rendimiento (las agregaciones y los filtrados suelen ser las operaciones más usuales) aprovechando las características particulares de cada área de la empresa. Las estructuras más comunes en este sentido son las tablas report, que vienen a ser fact-tables reducidas (que a gregan las dimensiones oportunas), y las vistas materializadas, que se construyen con la misma estructura que las anteriores, pero con el objetivo de explotar la reescritura de queries (aunque sólo es posibles en algunos SGBD avanzados, como Oracle). Los datamarts que están dotados con estas estructuras óptimas de análisis presentan las siguientes ventajas: Poco volumen de datos Mayor rapidez de consulta Consultas SQL y/o MDX sencillas Validación directa de la información Facilidad para la historización de los datos De acuerdo a las operaciones que se deseen o requieran desarrollar, los datamarts pueden adoptar las siguientes arquitecturas: Top-Down: primero se define el data warehouse y luego se desarrollan, construyen y cargan los DM a partir del mismo. En la siguiente figura se encuentra detallada esta arquitectura:

15 Como se puede apreciar, el DW es cargado a través de procesos ETL y luego este alimenta a los diferentes DM, cada uno de los cuales recibirá los datos que correspondan al tema o departamento que traten. Esta forma de implementación cuenta con la ventaja de no tener que incurrir en complicadas sincronizaciones de hechos, pero requiere una gran inversión y una gran cantidad de tiempo de construcción. Bottom-Up: en esta arquitectura, se definen previamente los DM y luego se integran en un DW centralizado. La siguiente figura presenta esta implementación. Los DM se cargan a través de procesos ETL, los cuales suministrarán la información adecuada a cada uno de ellos. En muchas ocasiones, los DM son implementados sin que exista el DW, ya que tienen sus mismas características pero con la particularidad de que están enfocados en un tema específico. Luego de que hayan sido creados y cargados todos los DM, se procederá a su integración con el depósito. La ventaja que trae aparejada este modelo es que cada DM se crea y pone en funcionamiento en un corto lapso de tiempo y se puede tener una pequeña solución a un costo no tan elevado. Luego que todos los DM estén puestos en marcha, se puede decidir si

16 construir el DW o no. El mayor inconveniente está dado en tener que sincronizar los hechos al momento de la consolidación en el depósito. 10. Bases de datos OLAP vs OLTP OLAP - On-Line Analytical Processing. Los sistemas OLAP son bases de datos orientadas al procesamiento analítico. Este análisis suele implicar, generalmente, la lectura de grandes cantidades de datos para llegar a extraer algún tipo de información útil: tendencias de ventas, patrones de comportamiento de los consumidores, elaboración de informes complejos etc. Este sistema es típico de los datamarts. El acceso a los datos suele ser de sólo lectura. La acción más común es la consulta, con muy pocas inserciones, actualizaciones o eliminaciones. Los datos se estructuran según las áreas de negocio, y los formatos de los datos están integrados de manera uniforme en toda la organización. El historial de datos es a largo plazo, normalmente de dos a cinco años. Las bases de datos OLAP se suelen alimentar de información procedente de los sistemas operacionales existentes, mediante un proceso de extracción, transformación y carga (ETL). OLTP - On-Line Transactional Processing. Los sistemas OLTP son bases de datos orientadas al procesamiento de transacciones. Una transacción genera un proceso atómico (que debe ser validado con un commit, o invalidado con un rollback), y que puede involucrar operaciones de inserción, modificación y borrado de datos. El proceso transaccional es típico de las bases de datos operacionales. El acceso a los datos está optimizado para tareas frecuentes de lectura y escritura. (Por ejemplo, la enorme cantidad de transacciones que tienen que soportar las BD de bancos o hipermercados diariamente). Los datos se estructuran según el nivel aplicación (programa de gestión a medida, ERP o CRM implantado, sistema de información departamental...). Los formatos de los datos no son necesariamente uniformes en los diferentes departamentos (es común la falta de compatibilidad y la existencia de islas de datos).

17 El historial de datos suele limitarse a los datos actuales o recientes. Definición Objetivos Alineación de datos Integración de datos Historia Acceso y manipulación de datos Patrones de Uso Perfil de Usuario OLAP Procesamiento Analítico en Línea - Asistir en el análisis del negocio - Identificando tendencias, comparando periodos, - Gestiones, mercados, índices mediante el almacenamiento de datos. - Están alineados por dimensión - Los datos son organizados definiendo dimensiones del negocio. - Se focaliza en el cumplimiento de requerimientos del análisis del negocio. - Los datos deben ser integrados. - Son conocidos como datos derivados o DSS, dado que provienen de sistemas transaccionales y sistemas de archivos maestros. Almacenan tanta historia como sea necesario para el análisis del negocio, son guardados por 2 a 5 años, retienen valores para cada periodo en la Base de Datos. - Tienen una carga y acceso masivo de datos, la carga y refresco es batch (bulk copy). - La validación de datos se realiza antes o después de la carga, se realizan sentencias de Select sobre varios registros y tablas. - Patrón de uso liviano con picos de uso eventuales en el tiempo. - Los picos de uso suceden diario o semanal El perfil de usuario corresponde a la comunidad gerencial para la toma de decisiones. OLTP Procesamiento de Transacciones En Línea - Asistir a aplicaciones específicas. - Mantener integridad de los datos - Están alineados por aplicación. - Se focaliza en el cumplimiento de requerimientos de una aplicación especial o una tarea específica. - Los datos no están integrados. - Son calificados como datos primitivos, operacionales. - Son estructurados independientemente uno de otros. - Son almacenados en diferentes formatos de archivos. - Pueden residir en diferentes plataformas de hardware o RDBMS. Retienen datos para 60 o 90 días después son resguardados por administradores de B.D en almacenamientos secundarios. - Realizan manipulación de datos registro por registro con inserts, updates y deletes. - Necesitan rutinas de validación y transacciones a nivel de registro. - Patrón de uso constante - Requiere grandes cantidades de recursos consumiendo solo el tiempo referido a la transacción. El perfil de usuario corresponde a los que interactúan con dichos sistemas, puesto que es la comunidad operativa.

18 11. Fundamentos de Data Mining El datamining (minería de datos), es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto. Básicamente, el datamining surge para intentar ayudar a comprender el contenido de un repositorio de datos. Con este fin, hace uso de prácticas estadísticas y, en algunos casos, de algoritmos de búsqueda próximos a la Inteligencia Artificial y a las redes neuronales. De forma general, los datos son la materia prima bruta. En el momento que el usuario les atribuye algún significado especial pasan a convertirse en información. Cuando los especialistas elaboran o encuentran un modelo, haciendo que la interpretación que surge entre la información y ese modelo represente un valor agregado, entonces nos referimos al conocimiento. Aunque en datamining cada caso concreto puede ser radicalmente distinto al anterior, el proceso común a todos ellos se suele componer de cuatro etapas principales:

19 Determinación de los objetivos. Trata de la delimitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining. Preprocesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining. Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial. Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones. Carga de trabajo en las fases de un proyecto de datamining En resumen, el datamining se presenta como una tecnología emergente, con varias ventajas: por un lado, resulta un buen punto de encuentro entre los investigadores y las personas de negocios; por otro, ahorra grandes cantidades de dinero a una empresa y abre nuevas oportunidades de negocios. Además, no hay duda de que trabajar con esta tecnología implica cuidar un sinnúmero de detalles debido a que el producto final involucra "toma de decisiones".

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI INTRODUCCIÓN Se habla en multitud de ocasiones de Business Intelligence, pero qué es realmente? Estoy implementando en mi organización procesos de Business

Más detalles

Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008

Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008 Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008 Introducción Aunque la estrategia de adquisiciones que Oracle ha seguido en los últimos años siempre ha buscado complementar y fortalecer nuestra oferta

Más detalles

FUENTES SECUNDARIAS INTERNAS

FUENTES SECUNDARIAS INTERNAS FUENTES SECUNDARIAS INTERNAS Las fuentes secundarias son informaciones que se encuentran ya recogidas en la empresa, aunque no necesariamente con la forma y finalidad que necesita un departamento de marketing.

Más detalles

3.3.3 Tecnologías Mercados Datos

3.3.3 Tecnologías Mercados Datos 3.3.3 Tecnologías Mercados Datos TECNOLOGIAS DATAMART: Aspect Data Mart es una solución completa de reportes para la empresa, que le proporciona un mayor entendimiento de las operaciones de sus negocios

Más detalles

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 ANEXO A - Plan de Proyecto 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 2.- Diagrama de Gantt de la Solución DIAGRAMA DE GANTT- FASE INICIAL DOCUMENTACION Y ANALISIS2 DIAGRAMA DE GANTT- FASE FINAL

Más detalles

Tecnologías de Información y Comunicación II CLASE 10

Tecnologías de Información y Comunicación II CLASE 10 Tecnologías de Información y Comunicación II CLASE 10 Medidas Una medida es un tipo de dato cuya información es usada por los analistas (usuarios) en sus consultas para medir la perfomance del comportamiento

Más detalles

Capítulo 5. Cliente-Servidor.

Capítulo 5. Cliente-Servidor. Capítulo 5. Cliente-Servidor. 5.1 Introducción En este capítulo hablaremos acerca de la arquitectura Cliente-Servidor, ya que para nuestra aplicación utilizamos ésta arquitectura al convertir en un servidor

Más detalles

IDEA DE NEGOCIO EDUGER LOGISTIC GERMAN EDUARDO BALSERO MORALES PROFESOR: GERARDO ANDRES ARCOS CELIS

IDEA DE NEGOCIO EDUGER LOGISTIC GERMAN EDUARDO BALSERO MORALES PROFESOR: GERARDO ANDRES ARCOS CELIS IDEA DE NEGOCIO EDUGER LOGISTIC GERMAN EDUARDO BALSERO MORALES PROFESOR: GERARDO ANDRES ARCOS CELIS CORPORACIÓN UNIVERSITARIA IBEROAMERICANA TECNOLOGIA EN LOGISTICA INFORMATICA BOGOTA D.C. 2013 INTRODUCCIÓN

Más detalles

Business Intelligence

Business Intelligence 2012 Business Intelligence Agenda Programas Diferencias de OLTP vs OLAP Arquitectura de una solución de BI Tecnologías Microsoft para BI Diferencias entre OLTP v/s OLAP Alineación de Datos OLTP Datos organizados

Más detalles

Mejores prácticas para el éxito de un sistema de información. Uno de los problemas de información dentro de las empresas es contar con datos

Mejores prácticas para el éxito de un sistema de información. Uno de los problemas de información dentro de las empresas es contar con datos ANEXO VI. Mejores prácticas para el éxito de un sistema de información Uno de los problemas de información dentro de las empresas es contar con datos importantes del negocio y que éstos estén aislados

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza ([email protected]) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

App para realizar consultas al Sistema de Información Estadística de Castilla y León

App para realizar consultas al Sistema de Información Estadística de Castilla y León App para realizar consultas al Sistema de Información Estadística de Castilla y León Jesús M. Rodríguez Rodríguez [email protected] Dirección General de Presupuestos y Estadística Consejería de Hacienda

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

REGISTRO DE EMPRESAS Y PERSONAS BASE DE INFORMACIÓN DE CLIENTES & CONTACTOS

REGISTRO DE EMPRESAS Y PERSONAS BASE DE INFORMACIÓN DE CLIENTES & CONTACTOS REGISTRO DE EMPRESAS Y PERSONAS BASE DE INFORMACIÓN DE CLIENTES & CONTACTOS La gestión del asesor comercial se basa en mantener contacto personalizado con un grupo de clientes empresariales o personales.

Más detalles

Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida

Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida Resumen de la conferencia Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida Ponente: Luis Muñiz Socio Director de Sisconges & Estrategia y experto en Sistemas

Más detalles

Unidad 1. Fundamentos en Gestión de Riesgos

Unidad 1. Fundamentos en Gestión de Riesgos 1.1 Gestión de Proyectos Unidad 1. Fundamentos en Gestión de Riesgos La gestión de proyectos es una disciplina con la cual se integran los procesos propios de la gerencia o administración de proyectos.

Más detalles

Elementos requeridos para crearlos (ejemplo: el compilador)

Elementos requeridos para crearlos (ejemplo: el compilador) Generalidades A lo largo del ciclo de vida del proceso de software, los productos de software evolucionan. Desde la concepción del producto y la captura de requisitos inicial hasta la puesta en producción

Más detalles

Sistemas de Gestión de Calidad. Control documental

Sistemas de Gestión de Calidad. Control documental 4 Sistemas de Gestión de Calidad. Control documental ÍNDICE: 4.1 Requisitos Generales 4.2 Requisitos de la documentación 4.2.1 Generalidades 4.2.2 Manual de la Calidad 4.2.3 Control de los documentos 4.2.4

Más detalles

El almacén de indicadores de proceso de negocio en ejecución

El almacén de indicadores de proceso de negocio en ejecución X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 El almacén de indicadores de proceso de negocio en ejecución Andrés Boza García 1, Angel Ortiz Bas 1, Llanos Cuenca Gonzalez

Más detalles

Gestión de la Configuración

Gestión de la Configuración Gestión de la ÍNDICE DESCRIPCIÓN Y OBJETIVOS... 1 ESTUDIO DE VIABILIDAD DEL SISTEMA... 2 ACTIVIDAD EVS-GC 1: DEFINICIÓN DE LOS REQUISITOS DE GESTIÓN DE CONFIGURACIÓN... 2 Tarea EVS-GC 1.1: Definición de

Más detalles

LA LOGÍSTICA COMO FUENTE DE VENTAJAS COMPETITIVAS

LA LOGÍSTICA COMO FUENTE DE VENTAJAS COMPETITIVAS LA LOGÍSTICA COMO FUENTE DE VENTAJAS COMPETITIVAS Los clientes compran un servicio basandose en el valor que reciben en comparacion con el coste en el que incurren. Por, lo tanto, el objetivo a largo plazo

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

Destino Perú. En la búsqueda de nuevas oportunidades. Experiencias de Internacionalización

Destino Perú. En la búsqueda de nuevas oportunidades. Experiencias de Internacionalización Destino Perú En la búsqueda de nuevas oportunidades Experiencias de Internacionalización Presentación: Eduardo Sánchez Director Ejecutivo Presentación: 29-02-12 1 Ingeniería de Software ORGANIZACIÓN ORIENTADA

Más detalles

CAPITULO 4. Requerimientos, Análisis y Diseño. El presente capítulo explica los pasos que se realizaron antes de implementar

CAPITULO 4. Requerimientos, Análisis y Diseño. El presente capítulo explica los pasos que se realizaron antes de implementar CAPITULO 4 Requerimientos, Análisis y Diseño El presente capítulo explica los pasos que se realizaron antes de implementar el sistema. Para esto, primero se explicarán los requerimientos que fueron solicitados

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. [email protected]

Más detalles

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Económicas Departamento de Sistemas Asignatura: INTELIGENCIA DE NEGOCIOS Código: 715 Plan 1997 Cátedra: DEPARTAMENTO DE SISTEMAS Carrera: Licenciado en

Más detalles

Almacén de datos - concepto. Arquitectura de un sistema de almacén de datos

Almacén de datos - concepto. Arquitectura de un sistema de almacén de datos Almacén de datos - concepto Almacén de datos (Bodega de Datos, Data warehouse) es una integrada colección de datos que contiene datos procedentes de sistemas del planeamiento del recurso de la empresa

Más detalles

REGISTRO DE PEDIDOS DE CLIENTES MÓDULO DE TOMA DE PEDIDOS E INTEGRACIÓN CON ERP

REGISTRO DE PEDIDOS DE CLIENTES MÓDULO DE TOMA DE PEDIDOS E INTEGRACIÓN CON ERP REGISTRO DE PEDIDOS DE CLIENTES MÓDULO DE TOMA DE PEDIDOS E INTEGRACIÓN CON ERP Visual Sale posee módulos especializados para el método de ventas transaccional, donde el pedido de parte de un nuevo cliente

Más detalles

CRM. Customer Relationship Management Sistema de Gestión Inteligente de Mercadeo y Ventas. Sistema de Gestión Inteligente de Mercadeo y Ventas

CRM. Customer Relationship Management Sistema de Gestión Inteligente de Mercadeo y Ventas. Sistema de Gestión Inteligente de Mercadeo y Ventas CRM Customer Relationship Management Sistema de Gestión Inteligente de Mercadeo y Ventas Sistema de Gestión Inteligente de Mercadeo y Ventas Customer Relationship Management (Administración de Relaciones

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS Integrante: Profesor: Maximiliano Heise Luis Ríos Fecha de entrega: miércoles 18 de abril de 2012

Más detalles

Base de datos relacional

Base de datos relacional Base de datos relacional Una base de datos relacional es una base de datos que cumple con el modelo relacional, el cual es el modelo más utilizado en la actualidad para modelar problemas reales y administrar

Más detalles

Contact Center Comunicación multicanal integrada

Contact Center Comunicación multicanal integrada Rambla Catalunya, 124 2º 2ª 08008 BARCELONA Telf. 932 857 099 www.mk-r.es Contact Center Comunicación multicanal integrada Whitepaper nº4 - por Josep Ma. Abella Las compañías están estableciendo nuevos

Más detalles

DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA

DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA 147 DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA RICARDO LUJÁN SALAZAR INSTITUTO NACIONAL DE ESTADÍSTICA, GEOGRAFÍA E INFORMÁTICA (INEGI) MÉXICO 148 Data warehouse

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE PRESENTACIÓN Ramón Díaz Hernández Gerente (1.990) Nuestro Perfil Inversión permanente en formación y nuevas tecnologías. Experiencia en plataforma tecnológica IBM (Sistema Operativo

Más detalles

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología La metodología para el desarrollo de software es un modo sistemático de realizar, gestionar y administrar un proyecto

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Administración por Procesos contra Funciones

Administración por Procesos contra Funciones La administración moderna nos marca que en la actualidad, las organizaciones que no se administren bajo un enfoque de procesos eficaces y flexibles, no podrán sobrepasar los cambios en el entorno y por

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

Data Warehousing - Marco Conceptual

Data Warehousing - Marco Conceptual Data Warehousing - Marco Conceptual Carlos Espinoza C.* Introducción Los data warehouses se presentan como herramientas de alta tecnología que permiten a los usuarios de negocios entender las relaciones

Más detalles

Tecnologías de la Información en la Gestión Empresarial

Tecnologías de la Información en la Gestión Empresarial Tecnologías de la Información en la Gestión Empresarial 1 Sesión No.8 Nombre: Procesos de Negocio y Gestión en Business Intelligence Objetivo: Al término de la sesión, el alumno ilustrará un proceso de

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 FLUJO DE CAPACITACIÓN Prerrequisitos Fundamentos de Programación Sentencias SQL Server 2012 Duración: 12 horas 1. DESCRIPCIÓN

Más detalles

DE VIDA PARA EL DESARROLLO DE SISTEMAS

DE VIDA PARA EL DESARROLLO DE SISTEMAS MÉTODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS 1. METODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS CICLO DE VIDA CLÁSICO DEL DESARROLLO DE SISTEMAS. El desarrollo de Sistemas, un proceso

Más detalles

Introducción. Componentes de un SI. Sistema de Información:

Introducción. Componentes de un SI. Sistema de Información: Introducción. Sistema de Información: Conjunto de elementos relacionados entre sí de acuerdo a ciertas reglas, que aporta a la organización la información necesaria para el cumplimiento de sus fines, para

Más detalles

Resumen General del Manual de Organización y Funciones

Resumen General del Manual de Organización y Funciones Gerencia de Tecnologías de Información Resumen General del Manual de Organización y Funciones (El Manual de Organización y Funciones fue aprobado por Resolución Administrativa SBS N 354-2011, del 17 de

Más detalles

Capítulo 2. Planteamiento del problema. Capítulo 2 Planteamiento del problema

Capítulo 2. Planteamiento del problema. Capítulo 2 Planteamiento del problema Capítulo2 Planteamientodelproblema 38 2.1Antecedentesycontextodelproyecto En lo que respecta a los antecedentes del proyecto, se describe inicialmente el contexto donde se utiliza el producto de software.

Más detalles

Administración Logística de Materiales

Administración Logística de Materiales Administración Logística de Materiales Para un mejor conocimiento de la industria acerca de distribución física, manufactura y compras, se estableció el programa de administración logística de materiales.

Más detalles

activuspaper Text Mining and BI Abstract

activuspaper Text Mining and BI Abstract Text Mining and BI Abstract Los recientes avances en lingüística computacional, así como la tecnología de la información en general, permiten que la inserción de datos no estructurados en una infraestructura

Más detalles

REPOSITORIO COR O P R OR O A R T A I T VO V

REPOSITORIO COR O P R OR O A R T A I T VO V REPOSITORIO CORPORATIVO Repositorio Corporativo Que es? Antecedentes? Por que lo necesito? Multiplicidad de sistemas Retraso en obtención de reportes Info 3 Info 2 Info 1 Redundancia Inconsistencia de

Más detalles

Ventajas del software del SIGOB para las instituciones

Ventajas del software del SIGOB para las instituciones Ventajas del software del SIGOB para las instituciones Podemos afirmar que además de la metodología y los enfoques de trabajo que provee el proyecto, el software, eenn ssi i mi issmoo, resulta un gran

Más detalles

Introducción En los años 60 s y 70 s cuando se comenzaron a utilizar recursos de tecnología de información, no existía la computación personal, sino que en grandes centros de cómputo se realizaban todas

Más detalles

Sistemas de Información Geográficos (SIG o GIS)

Sistemas de Información Geográficos (SIG o GIS) Sistemas de Información Geográficos (SIG o GIS) 1) Qué es un SIG GIS? 2) Para qué sirven? 3) Tipos de datos 4) Cómo trabaja? 5) Modelos de datos, Diseño Conceptual 6) GeoDataase (GD) 7) Cómo evaluamos

Más detalles

Bechtle Solutions Servicios Profesionales

Bechtle Solutions Servicios Profesionales Soluciones Tecnología Bechtle Solutions Servicios Profesionales Fin del servicio de soporte técnico de Windows Server 2003 No hacer nada puede ser un riesgo BECHTLE Su especialista en informática Ahora

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

Propuesta de Portal de la Red de Laboratorios Virtuales y Remotos de CEA

Propuesta de Portal de la Red de Laboratorios Virtuales y Remotos de CEA Propuesta de Portal de la Red de Laboratorios Virtuales y Remotos de CEA Documento de trabajo elaborado para la Red Temática DocenWeb: Red Temática de Docencia en Control mediante Web (DPI2002-11505-E)

Más detalles

Maxpho Commerce 11. Gestión CSV. Fecha: 20 Septiembre 2011 Versión : 1.1 Autor: Maxpho Ltd

Maxpho Commerce 11. Gestión CSV. Fecha: 20 Septiembre 2011 Versión : 1.1 Autor: Maxpho Ltd Maxpho Commerce 11 Gestión CSV Fecha: 20 Septiembre 2011 Versión : 1.1 Autor: Maxpho Ltd Índice general 1 - Introducción... 3 1.1 - El archivo CSV... 3 1.2 - Módulo CSV en Maxpho... 3 1.3 - Módulo CSV

Más detalles

LOGISTICA D E COMPRAS

LOGISTICA D E COMPRAS LOGISTICA D E COMPRAS 1. - Concepto de compras OBTENER EL (LOS) PRODUCTO(S) O SERVICIO(S) DE LA CALIDAD ADECUADA, CON EL PRECIO JUSTO, EN EL TIEMPO INDICADO Y EN EL LUGAR PRECISO. Muchas empresas manejan

Más detalles

Sistema de análisis de información. Resumen de metodología técnica

Sistema de análisis de información. Resumen de metodología técnica Sistema de análisis de información Resumen de metodología técnica Tabla de Contenidos 1Arquitectura general de una solución de BI y DW...4 2Orígenes y extracción de datos...5 2.1Procesos de extracción...5

Más detalles

e-commerce, es hacer comercio utilizando la red. Es el acto de comprar y vender en y por medio de la red.

e-commerce, es hacer comercio utilizando la red. Es el acto de comprar y vender en y por medio de la red. Comercio electrónico. (e-commerce) Las empresas que ya están utilizando la red para hacer comercio ven como están cambiando las relaciones de la empresa con sus clientes, sus empleados, sus colaboradores

Más detalles

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición (cont.) Un Data Warehouse es una colección de

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

CAPÍTULO 4. EL EXPLORADOR DE WINDOWS XP

CAPÍTULO 4. EL EXPLORADOR DE WINDOWS XP CAPÍTULO 4. EL EXPLORADOR DE WINDOWS XP Características del Explorador de Windows El Explorador de Windows es una de las aplicaciones más importantes con las que cuenta Windows. Es una herramienta indispensable

Más detalles

OUTSOURCING, INSOURCING, OFFSHORING OUTSOURCING. También conocido como subcontratación, administración adelgazada o empresas

OUTSOURCING, INSOURCING, OFFSHORING OUTSOURCING. También conocido como subcontratación, administración adelgazada o empresas OUTSOURCING, INSOURCING, OFFSHORING OUTSOURCING También conocido como subcontratación, administración adelgazada o empresas de manufactura conjunta, el outsourcing es la acción de recurrir a una agencia

Más detalles

1.1 EL ESTUDIO TÉCNICO

1.1 EL ESTUDIO TÉCNICO 1.1 EL ESTUDIO TÉCNICO 1.1.1 Definición Un estudio técnico permite proponer y analizar las diferentes opciones tecnológicas para producir los bienes o servicios que se requieren, lo que además admite verificar

Más detalles

Para poder controlar se tiene que medir! Por qué desarrollar una cultura de la medición en la empresa?

Para poder controlar se tiene que medir! Por qué desarrollar una cultura de la medición en la empresa? EL CONTROL DE LA GESTION EMPRESARIAL BASADA EN INDICADORES [email protected] El control de la gestión empresarial es cada vez una preocupación latente en las organizaciones. Preguntados

Más detalles

MANUAL COPIAS DE SEGURIDAD

MANUAL COPIAS DE SEGURIDAD MANUAL COPIAS DE SEGURIDAD Índice de contenido Ventajas del nuevo sistema de copia de seguridad...2 Actualización de la configuración...2 Pantalla de configuración...3 Configuración de las rutas...4 Carpeta

Más detalles

Está creado como un organizador y gestor de tareas personalizables para generar equipos de alto desempeño en diferentes rubros de empresas.

Está creado como un organizador y gestor de tareas personalizables para generar equipos de alto desempeño en diferentes rubros de empresas. SACS proviene de las siglas Sistema Avanzado de Comunicación Social, es un modelo de gestión de toda la organización, basándose en la orientación del cliente. Es un software vía web que se encarga de la

Más detalles

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a:

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a: Oracle Business Intelligence Enterprise Edition 11g. A lo largo de los siguientes documentos trataré de brindar a los interesados un nivel de habilidades básicas requeridas para implementar efectivamente

Más detalles

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas.

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas. El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los

Más detalles

BearSoft. SitodeCloud. Rafael Rios Bascón Web: http://www.bearsoft.com.bo Móvil: +591 77787631 Email: [email protected]

BearSoft. SitodeCloud. Rafael Rios Bascón Web: http://www.bearsoft.com.bo Móvil: +591 77787631 Email: rafael.rios@bearsoft.com.bo BearSoft Rafael Rios Bascón Web: http://www.bearsoft.com.bo Móvil: +591 77787631 Email: [email protected] CONTENIDO 1. Resumen. 3 2. Business Intelligence.. 4 3. Características del software.

Más detalles

Soporte y mantenimiento de base de datos y aplicativos

Soporte y mantenimiento de base de datos y aplicativos Soporte y mantenimiento de base de datos y aplicativos Las bases de datos constituyen la fuente de información primaria a todos los servicios que el centro de información virtual ofrece a sus usuarios,

Más detalles

MANUAL DE USUARIO APLICACIÓN SYSACTIVOS

MANUAL DE USUARIO APLICACIÓN SYSACTIVOS MANUAL DE USUARIO APLICACIÓN SYSACTIVOS Autor Edwar Orlando Amaya Diaz Analista de Desarrollo y Soporte Produce Sistemas y Soluciones Integradas S.A.S Versión 1.0 Fecha de Publicación 19 Diciembre 2014

Más detalles

INTELIGENCIA DE NEGOCIOS

INTELIGENCIA DE NEGOCIOS INTELIGENCIA DE NEGOCIOS A P R O X I M A C I Ó N A U N A E X P E R I E N C I A D E A P L I C A C I Ó N E N I N S T I T U C I O N E S D E L A R E G I Ó N Ing. Patricia Uceda Martos Agenda Introducción Definición

Más detalles

Modificación y parametrización del modulo de Solicitudes (Request) en el ERP/CRM Compiere.

Modificación y parametrización del modulo de Solicitudes (Request) en el ERP/CRM Compiere. UNIVERSIDAD DE CARABOBO FACULTAD DE CIENCIA Y TECNOLOGÍA DIRECCION DE EXTENSION COORDINACION DE PASANTIAS Modificación y parametrización del modulo de Solicitudes (Request) en el ERP/CRM Compiere. Pasante:

Más detalles

Presentación de Pyramid Data Warehouse

Presentación de Pyramid Data Warehouse Presentación de Pyramid Data Warehouse Pyramid Data Warehouse tiene hoy una larga historia, desde 1994 tiempo en el que su primera versión fue liberada, hasta la actual versión 8.00. El incontable tiempo

Más detalles

retos LA ACTUALIDAD LA SOLUCIÓN

retos LA ACTUALIDAD LA SOLUCIÓN retos F U T U R O LA ACTUALIDAD En la actualidad, nos vemos rodeados de retos que hace algunos años veíamos muy lejanos. Nuestros clientes son cada vez más exigentes, demandan una mayor calidad de los

Más detalles

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Es un conjunto de conceptos y metodologías para mejorar la toma de decisiones.

Más detalles

GESTIÓN DOCUMENTAL PARA EL SISTEMA DE CALIDAD

GESTIÓN DOCUMENTAL PARA EL SISTEMA DE CALIDAD GESTIÓN DOCUMENTAL PARA EL SISTEMA DE CALIDAD Manual de usuario 1 - ÍNDICE 1 - ÍNDICE... 2 2 - INTRODUCCIÓN... 3 3 - SELECCIÓN CARPETA TRABAJO... 4 3.1 CÓMO CAMBIAR DE EMPRESA O DE CARPETA DE TRABAJO?...

Más detalles

Control del Stock, aprovisionamiento y distribución a tiendas.

Control del Stock, aprovisionamiento y distribución a tiendas. Control del Stock, aprovisionamiento y distribución a tiendas. Tan importante como el volumen de ventas y su rentabilidad, el control del stock supone uno de los pilares fundamentales en el éxito de una

Más detalles

IAP 1003 - ENTORNOS INFORMATIZADOS CON SISTEMAS DE BASES DE DATOS

IAP 1003 - ENTORNOS INFORMATIZADOS CON SISTEMAS DE BASES DE DATOS IAP 1003 - ENTORNOS INFORMATIZADOS CON SISTEMAS DE BASES DE DATOS Introducción 1. El propósito de esta Declaración es prestar apoyo al auditor a la implantación de la NIA 400, "Evaluación del Riesgo y

Más detalles

LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN

LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN Tabla de Contenidos LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN... 1 Tabla de Contenidos... 1 General... 2 Uso de los Lineamientos Estándares...

Más detalles

Construcción de cubos OLAP utilizando Business Intelligence Development Studio

Construcción de cubos OLAP utilizando Business Intelligence Development Studio Universidad Católica de Santa María Facultad de Ciencias e Ingenierías Físicas y Formales Informe de Trabajo Construcción de cubos OLAP utilizando Business Intelligence Development Studio Alumnos: Solange

Más detalles

Business Intelligence

Business Intelligence BUSINESS INTELLIGENCE El poder de la información. Business Intelligence Los mercados actuales son cada vez más competitivos, lo que obliga a las empresas a aumentar su capacidad de reacción y adaptación

Más detalles

GUIA SOBRE LOS REQUISITOS DE LA DOCUMENTACION DE ISO 9000:2000

GUIA SOBRE LOS REQUISITOS DE LA DOCUMENTACION DE ISO 9000:2000 1 INTRODUCCIÓN Dos de los objetivos más importantes en la revisión de la serie de normas ISO 9000 han sido: desarrollar un grupo simple de normas que sean igualmente aplicables a las pequeñas, a las medianas

Más detalles

IMPACTO DEL DESARROLLO TECNOLOGICO EN LA AUDITORIA

IMPACTO DEL DESARROLLO TECNOLOGICO EN LA AUDITORIA V REUNIÓN DE AUDITORES INTERNOS DE BANCA CENTRAL 8 AL 11 DE NOVIEMBRE DE 1999 LIMA - PERÚ IMPACTO DEL DESARROLLO TECNOLOGICO EN LA AUDITORIA Claudio Urrutia Cea Jefe de Auditoría BANCO CENTRAL DE CHILE

Más detalles

Guía de uso del Cloud Datacenter de acens

Guía de uso del Cloud Datacenter de acens guíasdeuso Guía de uso del Cloud Datacenter de Calle San Rafael, 14 28108 Alcobendas (Madrid) 902 90 10 20 www..com Introducción Un Data Center o centro de datos físico es un espacio utilizado para alojar

Más detalles

EL MARKETING RELACIONAL Y NUEVAS TENDENCIAS DE MARKETING

EL MARKETING RELACIONAL Y NUEVAS TENDENCIAS DE MARKETING APARTADO: 4 DIAPOSITIVA Nº: 2 Factores clave del éxito en los proyectos de CRM PDF Nº 1: Éxitos y fracasos del CRM Éxitos y fracasos del CRM En este mundo globalizado lo más importante para las pequeñas,

Más detalles

Selenne Business Intelligence QUÉ ES BUSINESS INTELLIGENCE?

Selenne Business Intelligence QUÉ ES BUSINESS INTELLIGENCE? QUÉ ES BUSINESS INTELLIGENCE? Según Wikipedia Definición de BI El término inteligencia de negocios se refiere al uso de datos en una empresa para facilitar la toma de decisiones. Abarca la comprensión

Más detalles

UN PASEO POR BUSISNESS INTELLIGENCE

UN PASEO POR BUSISNESS INTELLIGENCE UN PASEO POR BUSISNESS INTELLIGENCE Ponentes: Agreda, Rafael Chinea, Linabel Agenda Sistemas de Información Transaccionales Qué es Business Intelligence? Usos y funcionalidades Business Intelligence Ejemplos

Más detalles

SISTEMA DE GESTIÓN DE INCIDENCIAS Y REQUERIMIENTOS MESA DE AYUDA SINAT MANUAL DE USUARIO

SISTEMA DE GESTIÓN DE INCIDENCIAS Y REQUERIMIENTOS MESA DE AYUDA SINAT MANUAL DE USUARIO SISTEMA DE GESTIÓN DE INCIDENCIAS Y REQUERIMIENTOS MESA DE AYUDA SINAT MANUAL DE USUARIO 1 Objetivo del Manual Elaborado por: Revisado por: Aprobado por: Fecha: 13/08/2015 Difusión: Información del Manual

Más detalles

LiLa Portal Guía para profesores

LiLa Portal Guía para profesores Library of Labs Lecturer s Guide LiLa Portal Guía para profesores Se espera que los profesores se encarguen de gestionar el aprendizaje de los alumnos, por lo que su objetivo es seleccionar de la lista

Más detalles

5 formas de mejorar su negocio con COMPUTACIÓN EN LA NUBE

5 formas de mejorar su negocio con COMPUTACIÓN EN LA NUBE 5 formas de mejorar su negocio con COMPUTACIÓN EN LA NUBE Julio 2012 Introducción. Cada empresa y cada empresario ha entendido que, si hay una constante, ésta es el cambio. Día a día, los negocios se ponen

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

Master en Gestion de la Calidad

Master en Gestion de la Calidad Master en Gestion de la Calidad 3. La Calidad en la Actualidad La calidad en la actualidad 1 / 9 OBJETIVOS Al finalizar esta unidad didáctica será capaz: Conocer la calidad en la actualidad. La familia

Más detalles

MANUAL DE USUARIO SISTEMA DE ALMACEN DIF SONORA

MANUAL DE USUARIO SISTEMA DE ALMACEN DIF SONORA MANUAL DE USUARIO SISTEMA DE ALMACEN DIF SONORA DICIEMBRE 2007. El Sistema de Almacén fue desarrollado con la finalidad de facilitar a los usuarios el proceso de entradas y salidas del almacén mediante

Más detalles

CRM C U S T O M E R R E L A T I O N S H I P M A N A G E M E N T G E S T I Ó N D E L A R E L A C I Ó N C O N L O S C L I E N T E S

CRM C U S T O M E R R E L A T I O N S H I P M A N A G E M E N T G E S T I Ó N D E L A R E L A C I Ó N C O N L O S C L I E N T E S CRM C U S T O M E R R E L A T I O N S H I P M A N A G E M E N T G E S T I Ó N D E L A R E L A C I Ó N C O N L O S C L I E N T E S Introducción CRM (Customer Relationship Management), en su traducción literal,

Más detalles

Tecnologías Aplicadas a Business Intelligence Proyecto Práctico

Tecnologías Aplicadas a Business Intelligence Proyecto Práctico Tecnologías Aplicadas a Business Intelligence Proyecto Práctico Empresa: La empresa en cuestión, es una Importadora y Distribuidora de Autopartes, con más de 30 años de vida. Nació como la distribuidora

Más detalles