Doc. Juan Morales Romero
|
|
|
- Susana Cano Duarte
- hace 9 años
- Vistas:
Transcripción
1 Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica que representa la relación entre dos variables denominada nube de puntos VARIABLE DEPENDIENTE Llamada también variable efecto o variable que se pretende explicar variable explicada. La evolución de la variable dependiente efecto se explica por las fluctuaciones de la variable causa. VARIABLE INDEPENDIENTE Llamada también variable causa o variable explicadora variable explicativa. COEFICIENTE DE CORRELACION Originado por el investigador Karl Pearson en Describe la intensidad de la relacion entre dos variables. Puede tomar cualquier valor de -1 a = Perfectamente relacionados en sentido lineal negativo = Perfectamente relacionados en sentido lineal positivo 0 = No existe relacion alguna entre dos variables -0.9 o +0.9 = Correlación lineal muy intensa CORRELACION NEGATIVA PERFECTA CORRELACION POSITIVA PERFECTA
2 FORMULA DEL COEFICIENTE DE CORRELACION r XY X Y X X Y Y Donde : n = Numero de observaciones SX = Suma de los valores de la variable X SY = Suma de los valores de la variable Y SX = Suma de los valores de X elevados al cuadrado SX = Cuadrado de la suma de los valores de X SY = Suma de los valores de Y elevados al cuadrado SY = Cuadrado de la suma de los valores de Y SX Y = Suma de los productos de X e Y FORMA GENERAL DE LA ECUACION DE REGRESION LINEAL SIMPLE Y = a + b X Y = Valor pronosticado de la variable Y variable dependiente X = Valor de la variable x variable independiente a = Es la ordenada de la intersección en el eje Y. Es decir Y cuando X= 0 b = Es la pendiente de la recta es decir el cambio promedio en Y por unidad de cambio en la variable X. FORMULA DE a a Y / n b X / n FORMULA DE b b XY X Y X X FORMA GENERAL DE LA ECUACION DE REGRESION MULTIPLE Y = a + b 1 X 1 + b X +... b k X k Y = Valor pronosticado de la variable Y variable dependiente X1 = Valor de la variable x 1 variable independiente 1 X = Valor de la variable x variable independiente b1 = Es el cambio en Y por unidad de cambio en la variable X1 manteniendo X constante b = Es el cambio en Y por unidad de cambio en la variable X manteniendo X1 constante. En la ecuación de regresión lineal múltiple la variable efecto dependiente se encuentra explicada por múltiples causas muchas variables independientes o muchas variables explicativas.
3 ECUACION DE TENDENCIA Y = a + b T Calculo de una ecuación de regresión teniendo como variable independiente, causa o explicativa al tiempo. La ecuación de tiempo permite predecir o pronosticar por periodos cortos siempre que el coeficiente de determinación indique un alto grado de explicatividad. Y = Valor pronosticado de la variable Y variable dependiente T = Valor de la variable T variable independiente a = Es la ordenada de la intersección en el eje Y. Es decir Y cuando T= 0 b = Es la pendiente de la recta es decir el cambio promedio en Y por unidad de cambio en la variable T. FORMULA DE a a Y / n b T / n FORMULA DE b b TY T Y T T ECUACION DE TENDENCIA PARA REALIZAR PRONOSTICO PROSPECCION Y RETROSPECCION PASADO El primer paso es establecer las variables en este caso las variables son dos : La Variable dependiente efecto la que se pronosticara y la Variable independiente causa que es el tiempo a partir del cual se explicaría la evolución de la variable efecto. EJEMPLO En la tabla se presenta numero de los delitos de Estados Unidos en miles de personas de 1989 a 1995 se pide proyectar el numero de delitos para 1996 prospección y 1988 retrospección. AÑO NUMERO Por ser una ecuación de tendencia la variable independiente-causa o explicativa es el tiempo y la variable dependiente - efecto o explicada es el numero de delitos. Codificando la variable tiempo asignamos cero para el primer año 1989 t = 0, 1990 t=1,1991 t=,199 t=3,1993 t=4, 1994 t=5, 1995 t=6 y 1997 t=7 y 1988 t = -1 CODIFICACION : T NUMERO
4 Construyendo diagrama de dispersión : Uniendo intersectos de la variable dependiente delitos con variable independiente tiempo es decir pares X,Y N DELITOS DIAGRAMA DE DISPERSION DELITOS VS TIEMPO TIEMPO Ahora calculamos los coeficientes necesarios para estimar la ecuación de regresión : Variable Independiente X= Variable Dependiente Y= AÑO TIEMPO DELITOS T Y T Y TY ST SY ST SY STY ST SY N de observaciones 7 Coeficiente de Correlación y Determinación : r = R Reemplazando datos en las formulas a Y / n b T / n b TY T Y T T a = b= Entonces la ecuación de regresión es : Y = a + b T DELITOS = * T
5 ECUACION DE REGRESION DELITOS VS TIEMPO y = x DELITOS = T R = ECUACION DE TENDENCIA DE DELITOS PRONOSTICO DE DELITOS Prospeccion PRONOSTICO REAL Para calcular el numero de delitos ocurridos en 1988 utilizamos t = -1 dado que el primer periodo 1989 se ha codificado como t = 0 Reemplazando t=-1 en la Ecuación de Regresión para estimar el numero de delitos cometidos un año antes DELITOS = * T 1988 t = -1 DELITOS = * -1 = t = 0 DELITOS = * -0 = t = 1 DELITOS = * 1 = Y asi sucesivamente...hasta 1996 t = 7 DELITOS = * 7 = FINALMENTE ELABORANDO UNA TABLA CODIFICACION PRONOSTICO REAL TIEMPO AÑO DELITOS = T HISTORICO
6 CASO APLICATIVO DE PRONOSTICO CON INDICES DE CRIMINALIDAD EN EL PERU I. POBLACIÓN PENAL 8.6 POBLACIÓN RECLUIDA EN ESTABLECIMIENTOS PENITENCIARIOS, SEGÚN DEPARTAMENTOS, Departamento Total Amazonas Ancash Apurímac Fuente: Instituto Nacional Penitenciario - Oficina de Estadística. Con la siguiente información recopilada del Compendio Estadístico del INEI 004 se le pide estimar utilizando una ecuación de tendencia la población recluida en los centros penitenciarios del año 1997 retrospección y la población penal de los años 003,004,005,006 y 007 prospección o proyección Variable Independiente X= Variable Dependiente Y= TIEMPO POBLACION PENAL T Y T Y TY SX SY SX SY SXY SX SY N de observaciones NUMERADOR DENOMINADOR r = R ECUACION DE LA RECTA DE REGRESION Y= a + b X Y= X SI X= PRONOSTICO POBLACION PENAL DIAGRAMA DE DISPERSION TIEMPO VS POBLACION PENAL PER TIEMPO ECUACION DE REGRESION LINEAL POBLACION PENAL VS TIEMPO y = x POB.PENAL = * T R =
7 AÑO PRONOSTICO REAL CODIFICADO AÑO POB.PENAL = * T HISTORICO POBLACION PENAL PERU PRONOSTICO POB.PENAL = * T HISTORICO CALCULANDO COEFICIENTE DE CORRELACION CON EXCEL 1. Ingresar a Microsoft Excell. Digita tu data AÑO POBLACION PENAL X Y Elige el Menú Herramientas - Análisis de datos - Coeficiente de Correlación Luego click en aceptar
8 CALCULANDO LA ECUACION DE REGRESION CON EXCELL 1. Ingresar a Microsoft Excell. Digita tu data AÑO POBLACION PENAL X Y Elige el Menú Herramientas - Análisis de datos - Regresión Luego click en botón aceptar para obtener resumen de estadísticas de la ecuación de regresión Resumen Estadísticas de la regresión Coeficiente de correlación múltiple Coeficiente de determinación R^ R^ ajustado Error típico Observaciones 5 ANÁLISIS DE VARIANZA Grados de libertad Regresión 1 Residuos 3 Total 4 Coeficientes Intercepción Variable X
9 This document was created with WinPDF available at The unregistered version of WinPDF is for evaluation or non-commercial use only. This page will not be added after purchasing WinPDF.
Definición de Correlación
Definición de Correlación En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias: Estudiar cómo influye la estatura del padre sobre la estatura del
Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)
Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre
ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL
ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y
UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL. Tema:
UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL Tema: Correlación múltiple y parcial. Ecuaciones y planos de regresión La Plata, septiembre
Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL
Universidad Técnica de Babahoyo CORRELACIÓN DE VARIABLES Y REGRESIÓN LINEAL OBJETIVO Analizar las Diferentes formas de Describir la Relación entre dos variables numéricas Trazar un diagrama de dispersión
CORRELACIÓN LINEAL SIMPLE
CORRELACIÓN LINEAL SIMPLE ANÁLISIS DE CORRELACIÓN Cuando se trabaja con dos variables, pueden surgir diferentes preguntas como: Existe relación entre lo que una empresa gasta en publicidad y el importe
Lección 3. Análisis conjunto de dos variables
Lección 3. Análisis conjunto de dos variables Estadística Descriptiva Parcialmente financiado a través del PIE13-04 (UMA) GARCÍA TEMA 3. ANÁLII CONJUNTO DE DO VARIABLE 3.1 COVARIANZA COEFICIENTE DE CORRELACIÓN
Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.
UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre
TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN
4.5.- En cuál de los siguientes casos se podría utilizar la varianza residual en lugar del coeficiente de determinación para medir la calidad del ajuste? Con el mismo conjunto de datos y dos ajustes distintos.
ANÁLISIS DE REGRESIÓN
ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
Tema 3: Análisis de datos bivariantes
Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta
Capitulo. Describir la relación entre dos variables Pearson Prentice Hall. All rights reserved
Capitulo 34 Describir la relación entre dos variables Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta fundamental debe ser si podemos utilizar el valor
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN. Tema 9
Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 9 La regresión lineal Tema 9: La regresión lineal Objetivos Conocer
Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal
Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia
4.1 Análisis bivariado de asociaciones
4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis
ANÁLISIS DE REGRESIÓN N LINEAL
ANÁLISIS DE REGRESIÓN N LINEAL Varias partes tomadas de Julio H. Cole "Nociones de Regresión Lineal" en Enciclopedia Multimedia Virtual de Economía EMVI. http://eumed.net/cursecon/medir/index.htm Análisis
2.3.1 Métodos cuantitativos para los pronósticos. MÉTODOS CUANTITATIVOS
2.3.1 Métodos cuantitativos para los pronósticos. MÉTODOS CUANTITATIVOS Los modelos cuantitativos de pronósticos son modelos matemáticos que se basan en datos históricos. Estos modelos suponen que los
Método de cuadrados mínimos
REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,
Matemáticas. Bioestadística. Correlación y Regresión Lineales
Matemáticas Bioestadística Correlación y Regresión Lineales En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo, si se analiza la
3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS
1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias
Ejercicios de Clase. 1. Defina los siguientes términos y explique su significado
Ejercicios de Clase. 1. Defina los siguientes términos y explique su significado a. Coeficiente de elasticidad precio b. Coeficiente de elasticidad ingreso c. Coeficiente de elasticidad cruzado 2. Un estudio
AJUSTE PLANTEAMIENTO DEL PROBLEMA
AJUSTE PLANTEAMIENTO DEL PROBLEMA DIFERENCIA ENTRE INTERPOLACIÓN Y AJUSTE METODOLOGÍA DEL AJUSTE MÉTODO DE MÍNIMOS CUADRADOS MODELO LINEAL MODELO EXPONENCIAL EJEMPLO PLANTEAMIENTO DEL PROBLEMA Cuando los
Elaboró: Luis Casas Vilchis
Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con
Regresión lineal simple y correlación
Regresión lineal simple y correlación Regresión y Correlación Los análisis de regresión y correlación nos mostrarán cómo determinar tanto la naturaleza como la fuerza de una relación entre dos variables.
Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias
Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados
PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI
PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.
T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar.
EXAMEN TEÓRICO FINAL I T1. Dado y = f(x). Definir función continua en un punto, en un intervalo abierto y en un intervalo cerrado. T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar
REGRESIÓN LINEAL SIMPLE
REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias
Problema 1.- Tengamos las puntuaciones de X, las predichas y las residuales:
DISEÑO Y ANÁLISIS DE DATOS II. ENEO 6. Problema.- Tengamos las puntuaciones de X, las predichas y las residuales:.- Calcular la ecuación de regresión.- Correlación entre X e Y.- Por cada punto que aumenta
Tema 3. Relación entre dos variables cuantitativas
Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas [email protected] 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por
1 JESTADIS\REGRES.DOC
CONTENIDOS 1. Introducción 2. Diagrama de dispersión 3. El coeficiente de correlación de Pearson 4. Regresión 1. Introducción Una de las metas frecuentes en la investigación consiste en determinar si existe
PLANES DE ESTUDIO PARA PRIMER CURSO
1. Porcentaje e interés Porcentajes Hacer las comparaciones más fáciles Tanto por ciento Valor del porcentaje Valor base Cálculos básicos con porcentajes Interés Interés compuesto Porcentajes en todos
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.
EJERCICIOS RESUELTOS TEMA 4. Tarea realizada 68 (84,8) --- (---) 96 (112,8) --- (---)
Nivel de ansiedad Ansiedad INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 4. 4.1. Con los datos de la Tabla 1, el valor de es igual a: A) 7,17; B) 11,80 C) 16,8. Tabla 1. En un estudio se investigó
CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES
TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no
TEMA 2: DISTRIBUCIONES BIDIMENSIONALES
TEMA : DISTRIBUCIONES BIDIMENSIONALES 1.- DISTRIBUCIONES BIDIMENSIONALES Cuando estudiamos un solo carácter estadístico, los datos que obtenemos forman una variable estadística unidimensional. También
Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada
Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas
CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña
CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE
ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago
UNIDAD Nº4. Ejemplo.- Dados los Gastos de publicidad en los meses enero a julio, los cuales generan los sgts. Ingresos:
UNIDAD Nº4 TEORÍA DE REGRESIÓN Y CORRELACIÓN 1.- Teoría de Regresión.- En términos de estadística los conceptos de regresión y ajuste con líneas paralelas son sinónimos lo cual resulta estimar los valores
Distribuciones Bidimensionales.
Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra
ESTRUCTURA ATÓMICA. Utilizando el siguiente esquema vamos a configurar los electrones de los átomos e iones del ejercicio:
ESTRUCTURA ATÓMICA 1.- Escriba la configuración electrónica de los siguientes iones o elementos: 8 O -2, 9 F - y 10 Ne, e indique el período y grupo de los elementos correspondientes. Utilizando el siguiente
Tema 2. Descripción Conjunta de Varias Variables
Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis
Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.
1 de 5 15/10/2006 06:04 a.m. Bioestadística. Correlación y regresión lineales. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo,
Coeficiente de Correlación
Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las
REGRESIÓN LINEAL SIMPLE
REGREIÓN LINEAL IMPLE ANÁLII DE REGREIÓN Al continuar con el estudio de la relación entre dos variables X y Y, ahora es pertinente considerar el caso en que es necesario pronosticar la variable dependiente
Tema 2: Análisis de datos bivariantes
1 Tema 2: Análisis de datos bivariantes En este tema: Tabla de contingencia, tabla de doble entrada, distribución conjunta. Frecuencias relativas, marginales, condicionadas. Diagrama de dispersión. Tipos
Tema 2: Análisis de datos bivariantes
Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.
Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística
Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012
Práctica 5. Modelos empíricos a partir de datos experimentales
Grado en Ciencia y Tecnología de los Alimentos Fundamentos de Ingeniería de los Alimentos Práctica 5 Modelos empíricos a partir de datos experimentales 1 1.- Regresión lineal La regresión consiste en deducir,
Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda.
Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se deja caer una piedra, existe una fórmula que nos permite
Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1
Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta
Tema 2. Regresión Lineal
Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite
Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión
Estadís6ca y Métodos Numéricos Tema 6. Modelos de Regresión Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo
El ejemplo: Una encuesta de opinión
El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar
Estadística de dos variables
Versión: Estadística de dos variables 19 de septiembre de 013 1 Introducción En el Tema 1 se consideran las variables estadísticas unidimensionales, es decir, cada individuo de la muestra se describe de
Curso de nivelación Estadística y Matemática
Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo
Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión
Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en
15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:
15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo
ADMINISTRACION DE OPERACIONES
Sesión4: Métodos cuantitativos ADMINISTRACION DE OPERACIONES Objetivo específico 1: El alumno conocerá y aplicara adecuadamente los métodos de pronóstico de la demanda para planear la actividad futura
3 Regresión y correlación lineales
3 Regresión y correlación lineales 3.1 Introducción En esta unidad se analizará la relación entre dos o más variables y desarrollamos una ecuación que nos permite estimar una variable con base en otra.
Estadística descriptiva bivariante y regresión lineal.
Estadística descriptiva bivariante y regresión lineal. 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en su libro Natural inheritance (1889) refiriéndose a la
EJEMPLOS DE PRONÓSTICOS
2 PRONÓSTICO > ES UNA TÉCNICA QUE PERMITE PREDECIR EL FUTURO, BASÁNDOSE EN: > ACONTECIMIENTOS PASADOS. > INFORMACIÓN ESTADÍSTICA RECABADA SOBRE EXPERIENCIAS SIMILARES. > ESTIMACIONES BASADAS EN ESTUDIOS
5. Regresión Lineal Múltiple
1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente
SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas
SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria
CORRELACIÓN Y REGRESIÓN. Raúl David Katz
CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable
4. Regresión Lineal Simple
1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para
ANÁLISIS DE DATOS EXPERIMENTALES POR MÍNIMOS CUADRADOS
ANÁLISIS DE DATOS EXPERIMENTALES POR MÍNIMOS CUADRADOS CONTENIDO 1 Ajuste de Curvas 2 Análisis de Regresión 2.1 Métodos de Mínimos Cuadrados 2.2 Regresión Lineal AJUSTE DE CURVAS Uno de los objetivos en
SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante
SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras
USO HERRAMIENTAS EXCEL PARA LA PREDICCION
USO HERRAMIENTAS EXCEL PARA LA PREDICCION Nassir Sapag Chain MÉTODO DE REGRESIÓN LINEAL SIMPLE El método de Regresión Lineal (o Mínimos cuadrados) busca determinar una recta, o más bien la ecuación de
ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple
ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes
Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión
Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo
Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple
Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción
Regresión y Correlación
Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios
Tema 4. Regresión lineal simple
Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias
Análisis de Datos y Métodos Cuantitativos para la D.T. VI versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magister en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la D.T. VI versión MGM Antofagasta, Junio de 2013 Profesor: Fernando
ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN
CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)
Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal.
Excel: Regresión Lineal Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Como hacer la gráfica. Ejemplo Los datos de la tabla adjunta, x e y exacto, cumplen
TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)
TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión
Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se
Distr ibuciones bidim ensionales Relación funcional Dos variables x e y están relacionadas funcionalmente cuando conocida la primera se puede saber con exactitud el valor de la segunda. Ejemplos Si se
REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)
1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN
Relación entre la altura y la distancia del suelo al ombligo
Relación entre la altura y la distancia del suelo al ombligo JULIA VIDAL PIÑEIRO Los 79 datos usados para realizar el estudio estadístico de la relación altura- distancia al ombligo, se tomaron a personas
ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL
ANÁLISIS ESTADÍSTICO CORRELACIÓN LINEAL Jorge Fallas [email protected] 2010 1 Temario Concepto de correlación Diagramas de dispersión Correlación: dirección, intensidad Coef. Correlación lineal de Pearson
