CINEMÁTICA: CONCEPTOS BÁSICOS
|
|
|
- María José Rubio Montoya
- hace 9 años
- Vistas:
Transcripción
1 CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar respecto a qué algo se mueve o no. Por tanto, el reposo y el movimiento son conceptos relativos, y para hablar de ellos, es necesario decidir (arbitrariamente) un punto de referencia, respecto del cual realizar el estudio del movimiento. Por eso utilizamos un sistema de referencia, SR: punto o conjunto de puntos que utilizamos para determinar si un cuerpo se mueve o no. Cualquier punto sirve como referencia. En un dibujo, lo indicaremos con las letras P.R., o bien con la letra O (origen). P(x,y,z) Un cuerpo se mueve o permanece en reposo dependiendo del sistema de referencia tomado. Posición. Es la distancia que separa el móvil del P.R. Se indica con el vector de posición (r) que es una magnitud vectorial, es decir es necesario dar su módulo (distancia), dirección y sentido. Si el cuerpo se mueve sobre una línea determinada que es conocida (por ejemplo, una carretera o la vía del tren) llamaremos posición a la distancia que existe en todo momento entre el cuerpo móvil y el punto de referencia elegido. Se indican con signo positivo las posiciones que se encuentran a la derecha o arriba del punto de referencia y negativo las que se encuentran a la izquierda o abajo. Si el cuerpo se mueve por un plano o por el espacio, necesitaremos dos o tres coordenadas respectivamente. Entonces decimos que un cuerpo está en movimiento, cuando cambia su posición respecto de un punto de referencia y estará en reposo cuando tal posición no cambie.
2 Trayectoria. Se define como el camino que describe el móvil durante su movimiento, es decir, el conjunto de puntos por los que pasa mientras se mueve. 2. ESPACIO RECORRIDO Y DESPLAZAMIENTO. Desplazamiento ( r o x en este curso). Es un vector que tiene su origen al inicio del movimiento y su extremo en el punto final de éste. Su módulo es la distancia en línea recta que separa la posición inicial y la final. En el S.I., se mide en metros. Se calcula restando la posición final menos la posición inicial: x = x x 0 donde x es la posición final (o en cualquier instante) y x 0 es la posición inicial. Si consideramos el movimiento en una sola dimensión, un desplazamiento positivo indica que el móvil se ha desplazado hacia la derecha (o hacia arriba) y negativo que se ha desplazado hacia la izquierda (o hacia abajo). Esto significa que el desplazamiento es una magnitud vectorial, pues para su determinación se requiere un número, una dirección y un sentido. Por costumbre, si el objeto se mueve en una línea vertical, utilizaremos la letra y en vez de la letra x para indicar la posición del objeto. Si el objeto se mueve por una trayectoria conocida, aunque no sea rectilínea, como una carretera, se suele utilizar la letra s para indicar la posición del objeto. Espacio recorrido ( S). Es la distancia que realmente recorre el móvil. Coincide con la longitud de la trayectoria. Es una magnitud escalar. En el S.I. se mide en metros (m). Para calcularlo, debemos restar las posiciones medidas sobre la trayectoria: S = S - S 0, siempre que el móvil no se dé la vuelta. Si se da la vuelta, hay que sumar el espacio recorrido en cada tramo. En el lenguaje ordinario, desplazamiento ( x) es sinónimo de distancia recorrida ( s), pero en Física no siempre coinciden: El desplazamiento puede ser positivo, negativo o cero, pero la distancia recorrida siempre es positiva y nunca cero si ha habido movimiento. ACTIVIDADES : Para afianzar los conceptos debes hacer las actividades de la ficha 1.
3 3.Velocidad (v). Es una magnitud vectorial: Su módulo es el cociente entre el espacio recorrido y el tiempo empleado y a dicho módulo se le llama rapidez (v) : En el SI se mide en m/s. v= S/t ; v = S-S 0 ; v = X-X 0 t t La rapidez calculada así es una rapidez media v m, siendo la rapidez instantánea aquella que lleva un móvil en cualquier instante ( es por ej., la marcada por el velocímetro de un coche en cualquier momento). Su dirección es tangente a la trayectoria en cada punto. Su sentido es el del movimiento. Como criterio de signos consideraremos positiva la velocidad (o cualquier otra magnitud vectorial) cuando se dirige hacia la derecha (o hacia arriba) del PR y negativa cuando lo hace hacia la izquierda (o hacia abajo) del PR. 4. Movimiento Uniforme (MU). Este movimiento se caracteriza por tener velocidad constante (en módulo, dirección y sentido).si la dirección es constante la trayectoria es rectilínea. Se suele representar como MRU. Las ecuaciones características de este movimiento son: Si t 0 = 0 entonces la ecuación general del MRU queda: X = X 0 ± V t X= posición en cualquier instante. X 0 = posición inicial. v = rapidez.
4 Debe quedar claro (MUY IMPORTANTE) que la ecuación anterior SÓLO nos indica la posición del móvil en cualquier instante y NO el espacio recorrido que puede deducirse a partir de ella ( S = X X 0 ). Además, la ecuación del movimiento NO nos informa del tipo de trayectoria que lleva el cuerpo. Gráficas del MU NO se puede confundir la recta que nos sale al representar la ecuación del movimiento (s-t), con la trayectoria del movimiento. La misma gráfica s-t, sirve tanto si la trayectoria es rectilínea como curvilínea, lo que importa es que la rapidez es constante en todo el trayecto. Para resolver ejercicios del Movimiento Uniforme conviene seguir los siguientes pasos: 1. Dibujo en el que aparezca el punto de referencia y los signos de las velocidades y posiciones. 2. Escribir los datos y si hay mezcla de unidades en el ejercicio pasarlas todas al S.I. 3. Escribir la ecuación del movimiento rectilíneo uniforme y sustituir las magnitudes que sean conocidas. 4. Aplicar las condiciones que se indiquen en el enunciado y resolver la ecuación o ecuaciones correspondientes. 5. Interpretar el resultado. ACTIVIDADES : Podéis hacer las actividades de las fichas 2 y 3.
5 5. ACELERACIÓN. La aceleración es la magnitud nos mide cuánto cambia la velocidad (vector) en cada unidad de tiempo. Se trata de una magnitud vectorial. Puede ocurrir entonces que: Cambie la dirección de la velocidad: Cuando el móvil lleva una trayectoria curva, la velocidad (que es tangente a la trayectoria), cambia su dirección. Hablaremos de aceleración centrípeta o normal (la estudiaremos en otro tema) Cambie el módulo de la velocidad (rapidez): En este caso hablaremos de aceleración tangencial (para nosotros este año, aceleración a secas ). Matemáticamente definimos esta aceleración como: En el S.I., la aceleración se mide en metros por segundo cada segundo, esto es, en metros por segundo al cuadrado (m/s²). El sentido del vector aceleración se indica mediante un signo: positivo hacia la derecha o arriba, negativo hacia la izquierda o abajo. 6. MUV Dentro de los movimientos variables nos centraremos en aquellos en los que un móvil siempre gana (o pierde) la misma rapidez en un mismo intervalo de tiempo (aceleración constante). Este tipo de movimiento se denomina movimiento uniformemente acelerado. En estos movimientos ya NO se recorren espacios iguales en tiempos iguales. Despejando de la ecuación de la aceleración anterior encontramos la ecuación de velocidad de estos movimientos: V = Vo + a t Con esta ecuación podemos calcular la velocidad del móvil en cualquier instante. Es importante que tengas en cuenta que cada magnitud vectorial lleva su signo correspondiente. Para poder calcular la posición del móvil en cualquier instante utilizaremos la ecuación general de estos movimientos: Con las dos ecuaciones anteriores podremos resolver los problemas de MUV que se nos planteen.
6 Gráficas del MUV ACTIVIDADES : Haced los ejercicios de la ficha 4 y CAÍDA LIBRE.TIRO VERTICAL. El movimiento de caída libre es el movimiento de un objeto sometido exclusivamente a la fuerza peso (la estudiaremos más adelante), es decir, cuando no hay rozamiento con el aire, o éste es despreciable. Todos los cuerpos con este tipo de movimiento tienen una aceleración dirigida hacia abajo cuyo valor depende del lugar en el que se encuentren. En la Tierra este valor es de aproximadamente 9,8 m/s², es decir que los cuerpos dejados en caída libre aumentan su velocidad (hacia abajo) en 9,8 m/s cada segundo. Esta aceleración a la que se ve sometido un cuerpo en caída libre recibe el nombre especial de aceleración de la gravedad y se representa mediante la letra g y es siempre negativa independientemente de que el cuerpo suba o baje (g = - 9,8 m/s 2 ). El movimiento de caída libre es un movimiento acelerado y por tanto las ecuaciones estudiadas en el apartado anterior son válidas sustituyendo simplemente el valor de la aceleración a por la aceleración de la gravedad, g: h = h 0 + v 0 t ½ g t 2 v = v 0 g t
7 Para resolver ejercicios de caída libre o tiro vertical, vamos a considerar siempre las siguientes condiciones: Punto de referencia: independientemente de donde salga el móvil, el punto de referencia (0) siempre será el suelo (aunque se puede tomar cualquier otro) aceleración de la gravedad: independientemente si el movimiento es de subida o de bajada, la aceleración será g = 9,8 m/s 2 Signo de la velocidad: cuando el cuerpo sube la velocidad será positiva y si baja la velocidad será negativa. La letra utilizada para representar la posición del móvil la cambiaremos de x por y o por h. GRÁFICA CAÍDA LIBRE GRÁFICA TIRO VERTICAL ASCENDENTE ACTIVIDADES : Ejercicios ficha 6.
8
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Cinemática I. Vector de posición y vector de desplazamiento.
COLEG IO H ISPA N O IN G L ÉS +34 922 276 056 - Fax: +34 922 278 477 La Cinemática (del griego κινεω, kineo, movimiento) es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos
Ejercicio 2: Cinemática en 1 D
Física Vía Internet 26 Profesores: Nelson Zamorano, Francisco Gutiérrez, Andrés Marinkovic y Constanza Paredes Ejercicio 2: Cinemática en 1 D Fecha: 2 de Julio Duración: 2: HORAS > Por favor no hagan ningún
1. Cinemática: Elementos del movimiento
1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación
CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO
DPTO. DE DE FÍSICA ÁREA. y Tiro
UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA Caída Libre y Tiro Vertical Guillermo Becerra Córdova E-mail: [email protected] 1 TEORÍA La Cinemática es la ciencia de
EL MOVIMIENTO Y SU DESCRIPCIÓN
1. EL VECTOR VELOCIDAD EL MOVIMIENTO Y SU DESCRIPCIÓN Se van a tener dos tipos de magnitudes: Magnitudes escalares Magnitudes vectoriales Las magnitudes escalares son aquellas que quedan perfectamente
Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r
IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4
Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.
UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:
I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN
Diálogo entre el alumno y el profesor - Magnitudes físicas
Diálogo entre el alumno y el profesor - Magnitudes físicas Un alumno le pregunta al profesor: Alumno: Profe, decir que la balanza de la Farmacia me indica que tengo un peso 54 kg, o compro 2 kg de manzanas
INSTITUTO TECNICO MARIA INMACULADA
INSTITUTO TECNICO MARIA INMACULADA ASIGNATURA: FISICA GRADO: NOVENO CAPITULO: GRAVITACION UNIVERSAL TEMA: CAIDA LIBRE DE LOS CUERPOS INDICADORES DE DESEMPEÑO. 1.- Analizar las características del movimiento.
y d dos vectores de igual módulo, dirección y sentido contrario.
MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se
LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO
LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre
DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.
DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto
Prohibida su Venta. para uso didáctico
Formulario de Cinemática M.R.U (Movimiento Rectilíneo Uniforme) El MRU se caracteriza por: Despejes: Movimiento que se realiza en una sola dirección en el eje horizontal. Velocidad constante; implica magnitud
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
TEMA 3: El movimiento rectilíneo. T_m[ 3: El movimi_nto r_]tilín_o 1
TEMA 3: El movimiento rectilíneo T_m[ 3: El movimi_nto r_]tilín_o ESQUEMA DE LA UNIDAD.- Movimiento rectilíneo uniorme...- Características del movimiento rectilíneo uniorme...- Ecuación del m.r.u..3.-
Movimiento en 1 dimensión. Teoría. Autor:
Movimiento en 1 dimensión Teoría Autor: YudyLizeth Valbuena Contenido 1. Requisitos de la unidad 2. Movimiento 2.1. Introducción 2.2. Actividad palabras clave 2.3. El movimiento es relativo 2.4. El movimiento
GUÍA ESCOLAR DE APRENDIZAJE
GUÍA ESCOLAR DE APRENDIZAJE Asignatura: FÍSICA_ DESEMPEÑOS COGNITIVO a. Relaciona las diferentes fuerzas que actúan sobre los cuerpos en reposo o en movimiento, con las ecuaciones del movimiento rectilíneo
MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV
FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante
Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática
Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera
Movimiento de caída libre
Movimiento de caída libre El movimiento de los cuerpos en caída libre (por la acción de su propio peso) es una forma derectilíneo uniformemente acelerado. La distancia recorrida (d) se mide sobre la vertical
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS
I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS ESTATICA DINAMICA CINEMATICA CINETICA II. NOCION DE CINEMATICA La cinemática (del griegoκινεω, kineo,
Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento
De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en 6 es igual a su cuadrado?. Qué número multiplicado por 3 es 40 unidades menor que su cuadrado?
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
Guía realizada por: Pimentel Yender.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR
M.R.U.: MOVIMIENTO RECTILINEO UNIFORME
MOVIMIENTO: Decimos que un cuerpo está en movimiento con respecto a un sistema de referencia elegido como fijo, cuando sus coordenadas varían al transcurrir el tiempo. Y podemos decir que el movimiento
EJERCICIOS PROPUESTOS
LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al
IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 4 : Cinemática. 1. Elementos para la descripción del movimiento
Tema 4 : Cinemática Esquema de trabajo: 1. Elementos para la descripción del movimiento Movimiento Trayectoria Espacio 2. Velocidad 3. Aceleración 4. Tipos de movimientos Movimiento rectilíneo uniforme
Resolución de problemas aplicando leyes de Newton y consideraciones energéticas
UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos
Solución: Según Avogadro, 1 mol de cualquier gas, medido en condiciones normales ocupa 22,4 L. Así pues, manteniendo la relación: =1,34 mol CH 4
Ejercicios Física y Química Primer Trimestre 1. Calcula los moles de gas metano CH 4 que habrá en 30 litros del mismo, medidos en condiciones normales. Según Avogadro, 1 mol de cualquier gas, medido en
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la
LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO
LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO Juan Pirotto, Christopher Machado, Eduardo Rodríguez INTRODUCCIÓN: El trabajo en síntesis se resume al análisis de un movimiento de proyectiles y uno rectilíneo
Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...
ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,
Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.
Movimiento circular Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados
TEMA 1: Funciones elementales
MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace
PRINCIPIOS DE LA DINÁMICA
Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
MOVIMIENTO. Un cuerpo se está moviendo cuando va cambiando su posición a través del tiempo respecto de algún otro cuerpo que se considera fijo 1.
MOVIMIENTO Actividad 1 1- Todas las imágenes que aparecen aquí arriba muestran distintos cuerpos en MOVIMIENTO. Por qué te das cuenta que esos objetos de las imágenes están en MOVIMIENTO? Describí cada
ASOCIACIÓN DE POLEAS
ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores
Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento
Cinemática de la partícula
Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción
1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo.
EJERCICIOS de CINEMÁTICA 1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo. 2. De las gráficas de la figura, cuáles corresponden a un MRU? Cuáles a un MUA? Por qué? Hay alguna
ESTUDIO DEL MOVIMIENTO.
TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas
GPRNV003F2-A16V1. La Caída
GPRNV003F2-A16V1 La Caída ATENCIÓN DESTINAR LOS ÚLTIMOS 20 MINUTOS DE LA CLASE A RESOLVER DUDAS QUE PLANTEEN LOS ALUMNOS SOBRE CONTENIDOS QUE ESTÉN VIENDO EN SU COLEGIO. OBJETIVOS: Determinar las características
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
Derivada. 1. Pendiente de la recta tangente a una curva
Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente
Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.
1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas
UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar
A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s.
ESPOL Actividades en clase Taller Nombre: Paralelo 1) Cuál de las siguientes no es una cantidad vectorial? 1) A) aceleración. B) rapidez. C) todas son cantidades vectoriales D) velocidad. 2) Un avión vuela
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran
b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.
1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,
MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION
MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION Resumen razón de cambio promedio La pendiente de la recta secante que conecta dos puntos en la gráfica de una función representa la razón
Dinámica de la partícula: Leyes de Newton
Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice
FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico
1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué
Movimiento en 1 dimensión. Ejercicios prácticos. Autor:
Movimiento en 1 dimensión Ejercicios prácticos Autor: Yudy Lizeth Valbuena Ejercicios Prácticos 1. Un corredor avanza 3 km en un tiempo de 10 minutos. Calcula su rapidez, es decir, el valor de su velocidad,
Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza
CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos
MRU MRUA CINEMÁTICA 4º E.S.O. Caída y lanzamiento de cuerpos Movimiento Rectilíneo Uniforme 1. Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera. Sol: 8m/s. 2. Un automovilista
GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =
GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO
LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA A ENTREGAR POR EL ALUMNO Ing. RONIO GUAYCOCHEA Ing. MARCO DE NARDI Lic. FABRIZIO FRASINELLI Ing. ESTEBAN LEDROZ AÑO 2014 1 ESTÁTICA CUESTIONARIO 1. Que es una magnitud
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
ESCUELA S UPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2012: GRUPO # 2
ESCUELA S UPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS EXAMEN DE UBICACIÓN DE FÍSICA ADMISIONES 2012: GRUPO # 2 VERSIÓN 0 NOMBRE: Este examen consta de 26 preguntas, entre preguntas conceptuales
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del
Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B
Física y Química 4º ESO Dinámica /11/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 Ptos] Tipo A Tipo B 1. Se lanza horizontalmente un objeto de 400 g con una velocidad de 14,0 m/s sobre una
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
EXPRESION MATEMATICA
TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales
III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Leyes de Newton
ASIGNATURA: GRADO: BLOQUE SABERES DECLARATIVOS PROPÓSITOS Física I Tercer Semestre de Bachillerato III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Define las tres leyes
MÓDULO 8: VECTORES. Física
MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN
La representación gráfica de una función cuadrática es una parábola.
Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación
1.- EL MOVIMIENTO. Ejercicios
Ejercicios 1.- EL MOVIMIENTO 1.- En la siguiente figura se representa la posición de un móvil en distintos instantes. Recoge en una tabla la posición y el tiempo y determina en cada caso el espacio recorrido
FS-2 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Descripción del movimiento I
FS-2 Ciencias Plan Común Física 2009 Descripción del movimiento I Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.
1 EL MOVIMIENTO Y SU DESCRIPCIÓN
EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).
La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan.
CINEMATICA La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. SISTEMA DE REFERENCIA Lo primero que hacemos para saber que un cuerpo
Ejercicios de cinemática
Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez
M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento
RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento
GUIA DE ESTUDIO TEMA: DINAMICA
GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba
Electricidad y Magnetismo. Ley de Coulomb.
Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es
GUÍA Nº 4 DE FÍSICA: EL MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO.
Página 1 de 6 GUÍA Nº 4 DE FÍSICA: EL MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO. Realiza las siguientes conversiones de unidades Respuesta Respuesta 61 m/min 2 km/s 2 1,696 10-5 km/s 2 43,7 m/min 2 km/s
Problemas de Física 1º Bachillerato 2011
Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función
de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.
1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular.
Movimiento circular La Luna se mueve casi en forma circular alrededor de la Tierra. La Tierra se mueve casi circularmente alrededor del Sol, a ese movimiento le llamamos de traslación. Y, además, la Tierra
Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU)
Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) 1. Cuál de los siguientes movimientos es más rápido, el del sonido que viaja a 340 m/s o el de un avión comercial que viaja a 1.080
UNIDAD DIDÁCTICA 5: Geometría analítica del plano
UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La
CAPÍTULO. La derivada. espacio recorrido tiempo empleado
1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la
Ideas básicas sobre movimiento
Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar
