Teoría de Grafos Introducción Grafos isomorfos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de Grafos Introducción Grafos isomorfos"

Transcripción

1 Capítulo 1 Teoría de Grafos 1.1. Introducción Definición. Denominaremos pseudomultigrafo a una terna (V,E, γ), donde V y E son conjuntos y γ : E {{u,v}: u,v V }. El conjunto V se denomina conjunto de vértices y sus elementos vértices y el conjunto E, conjunto de aristas, y sus elementos aristas. Se denotará G = (V, E) o si se referencian más de un grafo, V (G) y E(G) serán los conjuntos de vértices y aristas, respectivamente. Diremos que u,v V son adyacentes si {u,v} E. Denotaremos #V el número de vértices y #E el número de aristas. Diremos que una arista a es un lazo si γ(a) = (u,u) para algún u V. Diremos que dos aristas a,a son paralelas si γ(a) γ(a ). Diremos que un pseudomultigrafo es un grafo si no tiene lazos ni aristas paralelas. Diremos que es un pseudografo si no tiene aristas paralelas y diremos que es un multigrafo si no tiene lazos. Ejemplo 1.1. Ejemplos de multigrafos, pseudografos y grafos. Definición. Denominamos digrafo o grafo dirigido a (V, E,s, t), donde V,E son conjuntos y s,t: E V son aplicaciones. Es decir, las aristas consisten en pares ordenados de vértices (s(a) sería el vértice origen de la arista a y t(a) el destino). Ejemplo 1.2. Ejemplos de digrafos Grafos isomorfos Definición. Dados dos grafos G = (V, E, γ) y G = (V,E,γ ), diremos que son isomorfos si existen biyecciones f : V V, g: E E tales que g(γ(a)) = γ (f(a)). Es decir, si renombrando los vértices y aristas del primer grafo obtenemos el segundo. 13

2 Ejemplo 1.3. Ejemplos de grafos isomorfos. Definición. Sea G un grafo y u V (G). Se llama grado de u al número de aristas que lo tienen como extremo y se denota gr(u). Proposición 1.4. Si G y G son isomorfos y f es la biyección entre los vértices, entonces gr(u) = gr(f(u)). Ejemplo 1.5. Uso del grado para ver que dos grafos no son isomorfos. Teorema 1.6. Sea G = (V, E) un grafo y V = {v 1,...,v p }. Entonces p gr(v i ) = 2#E. i=1 Corolario 1.7. Todo grafo tiene un número par de vértices de grado impar. Ejemplo 1.8. Comprobemos el resultado con un ejemplo. Definición. Sea G un grafo. Un subgrafo de G es cualquier grafo H tal que V (H) V (G) y E(H) E(G). Diremos que un subgrafo H de un grafo G es completo si se verifica que si a E(G) y γ(a) V (H), entonces a E(H). Es decir, si dos vértices del subgrafo estaban conectados por una arista en el grafo, entonces también lo están en el subgrafo, o, dicho de otro modo, H se ha obtenido eliminando vértices de G. Ejemplo 1.9. Ejemplos de subgrafos de un grafo dado. Proposición Si H es un subgrafo de G, entonces #V (H) #V (G), #E(H) #V (G) y gr H (u) gr G (u) para todo u V (H) Grafos regulares y completos Definición. Un grafo se dice que es regular si todos sus vértices tienen el mismo grado. Si ese grado es k, entonces el grafo es k-regular. Ejemplo Grafos regulares. Todos los grafos regulares de 6 vértices. Definición. Un grafo se dice completo si todo par de vértices son los extremos de una arista. Ejemplo Grafos completos. Proposición Dos grafos completos son isomorfos si y sólo si tienen el mismo número de vértices. Proposición El grafo completo de k vertices es (k 1)-regular. 14

3 1.2. Grafos eulerianos y hamiltonianos Definición. Un camino de un grafo G es una sucesión de vértices de G. Un camino de un multigrafo G es una sucesión alterna de vértices y aristas que los conectan. Se denominan extremos del camino al primer y al último vértice. El primer vértice se denomina extremo inicial y el último extremo final. Decimos que un camino es cerrado si los extremos son el mismo vértice. Decimos que dos vértices de un grafo están conectados si existe un camino que los tiene como extremos. En ese caso también se dice que el camino conecta dichos vértices. La longitud de un camino es el número de aristas que comprende. En el caso de grafos coincide con el número de vértices del camino menos uno. Decimos que un camino es simple si no repite vértices. Decimos que un camino cerrado es un ciclo si no repite vértices salvo los extremos. Decimos que un camino cerrado es un circuito si no se repite ninguna arista (en particular, todo ciclo es un circuito). Ejemplo Ejemplos de ciclos y circuitos. Teorema Si en un grafo G existe un camino que conecta dos vértices distintos, entonces existe un camino simple que conecta los mismos vértices. Ejemplo Construcción de un camino simple a partir de un camino Grafos conexos Definición. Decimos que un grafo es conexo si todo par de vértices están conectados. Si un grafo no es conexo se dice disconexo. La relación estar conectados es una relación de equivalencia. Dado un grafo, cada una de las clases de equivalencia por la relación anterior se denominan componentes conexas. Proposición Un grafo es conexo si y sólo si tiene una única componente conexa. Ejemplo Componentes conexas Grafos eulerianos Definición. Decimos que un camino es euleriano si contiene todas las aristas sin repetir ninguna. Decimos que un circuito es euleriano si contiene todas las aristas. Ejemplo Caminos y circuitos eulerianos. 15

4 Ejemplo Transformación de multigrafos en grafos. Definición. Decimos que un grafo es euleriano si admite un circuito euleriano. Es decir, existe un camino cerrado que recorre todas las aristas sin repetir ninguna. Ejemplo Grafos eulerianos y no eulerianos. Teorema Un grafo conexo es euleriano si y sólo si todo vértice tiene grado par. Un grafo conexo admite un camino euleriano si y sólo si todo vértice tiene grado par excepto dos que tienen grado impar. Demostración. Algoritmo para la obtención de un circuito/camino euleriano Grafos hamiltonianos Definición. Decimos que un camino simple es hamiltoniano si contiene todos los vértices. Decimos que un ciclo es hamiltoniano si contiene todos los vértices. Decimos que un grafo es hamiltoniano si admite un ciclo hamiltoniano. Teorema Sea G un grafo con n 3 vértices. Entonces Si el número de lados es mayor o igual que (n 1)(n 2)/2 + 2, entonces el grafo es hamiltoniano. Si para cada par de vértices no adyacentes se verifica que gr(v) + gr(w) n, entonces G es hamiltoniano. Teorema Sea G = (V, E) tal que #V 3. Si G es hamiltoniano, entonces para cada subconjunto U V, el subgrafo de G cuyos vértices son los de V \U y cuyas aristas son las de G que no tienen extremos en U (es decir, el subgrafo obtenido eliminando los vértices de U y las aristas que contienen dichos vértices) tiene a lo sumo #U componentes. Demostración. Basta considerar el ciclo hamiltoniano. Ejemplo Un grafo no hamiltoniano. Teorema Todo grafo completo con tres o más vértices es hamiltoniano. Ejemplo Relación entre euclidiano y hamiltoniano. 16

5 1.3. Grafos dirigidos. Árboles. Exploración de grafos Matriz de adyacencia Definición. Sea G = (V, E) un grafo y V = {v 1,...,v n } su conjunto de vértices. Se define la matriz de adyacencia de G, M G, como la matriz cuadrada M G = (m i,j ) 1 i n,1 j n, tal que m i,j = 1 si v i y v j son adyacentes y m i,j = 0 si v i y v j no son adyacentes. Si G es un digrafo, se define la matriz de adyacencia de modo que m i,j = 1 si hay una arista que comienza en v i y termina en v j y m i,j = 0 en otro caso. Proposición Si G y G tienen la misma matriz de adyacencia, entonces son isomorfos. Teorema Dos grafos G y G son isomorfos si y sólo si existe una matriz de permutaciones P (es decir, en cada fila/columna de P hay exáctamente una posición en la que hay un 1 y en todas las demás un 0) tal que PM G = M G P. Ejemplo Ejemplos de grafos con distinta matriz de adyacencia e isomorfos Digrafos Definición. Sea G un digrafo. Se denomina camino en G a toda sucesión de vértices v 1 v 2...v n tales que existe una arista que comienza en v i y termina en v i+1. El vértices v 1 se denomina origen y el v n fin. Denominamos longitud de un camino al número de aristas que comprende. Teorema Sea G = (V,E) un grafo (digrafo), V = {v 1,...,v n } y M G su matriz de adyacencia. Entonces la posición (i,j) de la matriz MG k es el número de caminos de longitud k que comienzan en v i y terminan en v j. Demostración. Se demuestra por inducción. Ejemplo Algunos ejemplos. Corolario Sea G = (V, E) un grafo (digrafo), V = {v 1,...,v n } y M G su matriz de adyacencia. Sea C = M 1 G + M 2 G M n 1 G, C = (c i,j) 1 i n,1 j n. Existe un camino entre v i y v j si y sólo si c i,j 0. En particular G es conexo si y sólo si c i,j 0 para todo i,j. Ejemplo Ejemplo de aplicación del corolario. 17

6 Recorrido de grafos Definición. Decimos que G = (V,E) es un grafo etiquetado si existe una función d: E N que asigna un valor a cada arista. Denominamos etiqueta o distancia de e E al valor d(e). Si {u,v} E denotamos d(u,v) = d({u,v}). Si {u,v} E, podemos considerar d(u, v) = +. En un grafo etiquetado, definimos longitud de un camino como la suma de las etiquetas de las aristas. Teorema 1.36 (Algoritmo de Dijkstra). Sea G = (V,E) un grafo etiquetado por una función L. Sean x,y V. El camino de longitud mínima entre x e y se puede obtener por el siguiente procedimiento: 1. Generamos T = V y L(x) = 0, L(v) = + para todo v V. 2. Calculamos v V tal que L(v) = mín{l(w): w T }. 3. Si v = y, entonces hemos terminado y la distancia es L(y). 4. En caso contrario, hacemos T T \{v}, L(w) mín{l(w),l(v) + d(v, w)} y volvemos a Árboles Definición. Decimos que un grafo G es un árbol si es conexo y no tiene ciclos. Si no es conexo ni tiene ciclos decimos que es un bosque. Teorema Un grafo T es un árbol si y sólo si cada dos vértices distintos de T se conectan por un único camino simple. Demostración. Se demuestran las dos implicaciones Ejemplo Ejemplo de árbol Definición. Dado un grafo conexo G, se denomina árbol maximal recubridor o generador de G a cualquier árbol que sea subgrafo de G y contenga todos los vértices. Definición. Dado un grafo etiquetado conexo G, se denomina árbol generador minimal de G a un árbol generador de modo que la suma de los pesos de sus aristas sea mínima dentro del conjunto de todos los árboles generadores Mapas Grafos planos Definición. Un grafo (multigrafo) se dice que es plano si admite una representación gráfica en el plano de modo que cada arista corta únicamente 18

7 a otra arista en un vértice que sea extremo de ambas. Dicha representación gráfica se denomina mapa. Ejemplo Ejemplos de grafos planos y no planos. Definición. Dado un mapa, se denomina región a un camino cerrado tal que en su interior no hay ni vértices ni aristas. El número de regiones de un grafo es independiente del mapa asociado y se denota #R. El camino cerrado que rodea una región no siempre es un circuito. Ejemplo Ejemplos de regiones de grafos. Definición. Se denomina grado de una región a la longitud del camino que la rodea. Teorema Sea G un grafo plano y R el conjunto de regiones de un mapa asociado. Entonces gr(r i ) = 2#E. r R Ejemplo Poliedros regulares. Teorema Sea M un mapa conexo, que representa al grafo G = (V, E). Entonces #V #E + #R = 2. Corolario Sea G = (V,E) un grafo plano conexo, con #V 2. Entonces #E 3#V 6. Demostración. (El grado de las regiones es al menos tres) Ejemplo K 5 no es plano. Corolario Sea G = (V, E) un grafo plano, conexo, #V > 2. Supongamos que en G no existe ningún subgrafo isomorfo a K 3. Entonces Ejemplo K 3,3 no es plano. #E 2#V Teorema de K. Kuratowsky Definición. Sea G = (V, E) un grafo, u,v V y {u,v} E. Una subdivisión elemental de G a partir de la arista {u,v} es un nuevo grafo G = (V,E ) tal que V = V {w} y E = (E\{u,v}) {u,w} {w, v}, donde w V. Una subdivisión de un grafo G es un grafo G resultande de hacer un número finito de subdivisiones elementales a G (puede ser 0). 19

8 Ejemplo Ejemplo de subdivisión Teorema 1.49 (Teorema de Kuratowsky). Un grafo G es plano si y sólo si no contiene ningún subgrafo que sea isomorfo a una subdivisión de K 5 o K 3,3. Ejemplo Ejemplo de aplicación Pseudomultigrafo dual Definición. Sea M un mapa. Diremos que dos regiones son adyacentes si tienen una arista en común. Dado un grafo plano G, el pseudomultigrafo dual G M se define como un pseudomultigrafo construido del siguiente modo: 1. Los vértices de G M son las regiones de G. 2. Para cada arista e E, definimos una arista de G M que conecta las dos regiones adyacentes a e. El pseudomultigrafo dual G M es un grafo plano. Basta representar G como un mapa y G M encima de modo que cada vértice esté en una región del mapa y cada arista de G M corte a G únicamente en la arista e que es adyacente a las dos regiones. Ejemplo Algunos pseudomultigrafos duales Problema de los cuatro colores Definición. Sea G = (V,E) un grafo y C = {1,...,k} un conjunto al que denominaremos de k colores. Una coloración de G con k colores es una aplicación γ : V C de modo que si u,v V y {u,v} E, entonces γ(u) γ(v). Ejemplo Ejemplos de coloraciones Teorema 1.53 (K. Appel, W. Haken, J. Koch). Todo grafo plano admite una coloración con a lo sumo cuatro colores. Corolario Todo mapa admite una coloración de las regiones con a lo sumo cuatro colores de modo que dos regiones adyacentes tengan distinto color. Definición. Un grafo G = (V, E) se dice que es bipartito si existe una coloración con dos colores. Un grafo se dice bipartito completo si es bipartito y todo vértice coloreado con el primer color esta conectado con todo vértice coloreado con el 20

9 segundo color. Estos grafos están determinados por los números n 1,n 2 de vértices coloreados con el primer y segundo color, respectivamente, y los denotaremos K n1,n 2. Teorema Un grafo es bipartito si y sólo si no tiene ciclos con longitud impar. Demostración. Por inducción sobre el número de aristas. Definición. Denominamos número cromático de un grafo G al menor número de colores que son necesarios para colorearlo. Dado un grafo G y n N. Denotaremos p(g,n) al número de coloraciones distintas con n colores que admite el grafo G. Teorema Sea G un grafo y u,v dos vértices adyacentes. Sea e el lado que los une. Entonces p(g e,n) = p(g, n) + p(g e,n), donde G e es el subgrafo de G obtenido al eliminar e de G y G e es el grafo obtenido al identificar en G e los vértices u y v. Ejemplo Obtención del polinomio cromático de un grafo y de su número cromático. 21

TEMA IV TEORÍA DE GRAFOS

TEMA IV TEORÍA DE GRAFOS TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,

Más detalles

GRAFOS. 1. La matriz de adyacencia del grafo G es

GRAFOS. 1. La matriz de adyacencia del grafo G es GRAFOS. La matriz de adyacencia del grafo G es entonces, A) G es un pseudografo B) G es un grafo completo. G no es conexo Supongamos V={v,v,v,v } son los vértices del grafo. En los pseudografo están permitidas

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

Un grafo G = (V, E) se dice finito si V es un conjunto finito.

Un grafo G = (V, E) se dice finito si V es un conjunto finito. 1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

2007 Carmen Moreno Valencia

2007 Carmen Moreno Valencia Tema VIII. Grafos Grafos 1 2007 Carmen Moreno Valencia 1. Grafos, digrafos y multigrafos 2. Grafos eulerianos 3. Matrices de adyacencia e incidencia 4. Exploración de grafos pesados 1. Grafos, digrafos

Más detalles

Los elementos de V son los vértices (o nodos) de G y los elementos de A son las aristas (o arcos) de G.

Los elementos de V son los vértices (o nodos) de G y los elementos de A son las aristas (o arcos) de G. MATERIAL TEÓRICO º Cuatrimestre Año 03 Prof. María Elena Ruiz Prof. Carlos Roberto Pérez Medina UNIDAD III: GRAFOS Definición: Llamaremos grafo a una terna G= (V, A, ϕ), donde V y A son conjuntos finitos,

Más detalles

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30 Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar

Más detalles

Tema 5 Árboles y Grafos.

Tema 5 Árboles y Grafos. Tema 5 Árboles y Grafos. Definiciones básicas de teoría de grafos. Un grafo consta de un conjunto de nodos, un conjunto de aristas y una correspondencia f del conjunto de aristas al conjunto de nodos.

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Conceptos Simples, Problemas Difíciles Héctor Ramírez C. 1 1 Departamento de Ingeniería Matemática Universidad de Chile Curso MA3701: Optimización Héctor Ramírez C. (U.

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Minicurso de Teoría de Gráficas Escuela de Verano 014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Índice 1. Conceptos básicos 1 1.1. Nomenclatura...................................

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos 1 Semestre A2005 Teoría Introducción a la Teoría de Grafos 1. Grafos. Conceptos fundamentales Un grafo G es un par G = (V,E), donde V es un conjunto finito (vértices, nodos) y E es un multiconjunto de

Más detalles

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios Teoría de Grafos 1 1. Tipos de grafos Indice 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios 5. Caminos y conectividad 6. Grafos Bipartitos 2 Tipos de Grafos Un grafo

Más detalles

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos. Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos

Más detalles

Tema 1: Introducción a la Teoría de Grafos

Tema 1: Introducción a la Teoría de Grafos Tema 1: Introducción a la Teoría de Grafos MATEMÁTICA A DISCRETA Nociones básicas Subgrafos. Operaciones con grafos Formas de definir un grafo Isomorfismo de grafos Tema 1: 1 Nociones básicas: Grafo: G

Más detalles

Hamilton, Euler y Dijkstra

Hamilton, Euler y Dijkstra UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 2 Hamilton, Euler y Dijkstra 1. Sea G = un multigrafo no dirigido donde

Más detalles

1. GRAFOS : CONCEPTOS BASICOS

1. GRAFOS : CONCEPTOS BASICOS 1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos

Más detalles

Tema 5: Grafos. CIS - UABJB - Estructura de Datos II Ing. Freddy Melgar Algarañaz 1

Tema 5: Grafos. CIS - UABJB - Estructura de Datos II Ing. Freddy Melgar Algarañaz 1 Tema 5: Grafos 1 Indice 1. Tipos de grafos 2. Conceptos Básicos 3. Representación de grafos 4. Caminos y conectividad 5. Grafos Bipartitos 6. Recorridos, eulerianos 2 Tipos de Grafos Un grafo G es un par

Más detalles

Definiciones y ejemplos.

Definiciones y ejemplos. V. Grafos Definiciones y ejemplos. Módulo 5 DEF. Sea V un conjunto finito no vacío, y sea El par (V, E) es llamada entonces grafo dirigido en V, donde V es el conjunto de vértices o nodos y E es su conjunto

Más detalles

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv DEFINICIÓN 1: Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv φ donde: V = {v 1, v 2,, v n }: conjunto finito de vértices o nodos. A = {a 1, a 2,, a n }: conjunto finito de aristas o lados

Más detalles

Introducción a la teoría de grafos

Introducción a la teoría de grafos Capítulo 5 Introducción a la teoría de grafos 51 Generalidades sobre grafos En esta sección vamos a comenzar el estudio de la teoría de Grafos El inicio de esta teoría tuvo lugar en 1736, en un artículo

Más detalles

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} }

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} } Unidad 1 Parte 1 - Teoría de Grafos Introducción En este capítulo veremos la noción matemática de grafo y propiedades de los mismos. En capítulos subsiguientes veremos las estructuras de datos utilizadas

Más detalles

El origen: Los puentes de Königsberg. Grafos. Algoritmos y Estructuras de Datos III. Leonhard Euler ( )

El origen: Los puentes de Königsberg. Grafos. Algoritmos y Estructuras de Datos III. Leonhard Euler ( ) El origen: Los puentes de Königsberg Grafos Algoritmos y Estructuras de Datos III Leonhard Euler (1707 1783) El origen: Los puentes de Königsberg La ciudad de Königsberg (hoy Kaliningrado) tenía en el

Más detalles

Teoría de Grafos. 5.1 Introducción.

Teoría de Grafos. 5.1 Introducción. Capítulo Teoría de Grafos.. Introducción. Los grafos se utilizan para modelar situaciones en las que se relacionan entre sí pares de objetos de una determinada colección. Gráficamente, el modelo consiste

Más detalles

TEORIA DE GRAFOS. Estructuras Discretas Ing. Jenny Paredes Aguilar

TEORIA DE GRAFOS. Estructuras Discretas Ing. Jenny Paredes Aguilar TEORIA DE GRAFOS Estructuras Discretas Ing. Jenny Paredes Aguilar INTRODUCCION Teoria de grafos se usa en numerosos problemas cuantificables, en las organizaciones, intervienen una serie de elementos entre

Más detalles

Análisis de Algoritmos Teoría de grafos

Análisis de Algoritmos Teoría de grafos Análisis de Algoritmos Teoría de grafos Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Teoría de grafos p. 1 Grafos Un grafo G es un par de conjuntos G = (V,E) Teoría de grafos p. 2

Más detalles

Teoría de Grafos y Árboles. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Teoría de Grafos y Árboles. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Teoría de Grafos y Árboles UCR ECCI CI- Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Teoría de Grafos Los grafos son estructuras discretas que aparecen ubicuamente en cada disciplina donde

Más detalles

Capítulo 7. Grafos. Continuar

Capítulo 7. Grafos. Continuar Capítulo 7. Grafos Continuar Introducción Uno de los primeros resultados de la teoría de grafos fue el que obtuvo Leonhard Euler en el siglo XVIII al resolver el problema de los puentes de Königsberg.

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

Matemáticas discretas II

Matemáticas discretas II Matemáticas discretas II (Teoría de gráficas) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 15-P Sergio Luis Pérez (UAM CUAJIMALPA) Curso de matemáticas discretas II 1 / 44 Conceptos

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS Facultad de Ingeniería Industrial Investigación de Operaciones Tema: Teoría de los Grafos Elaborado por: Ing. Carlos Alberto Moreno. Docente: Ing. Pastrana

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

Tema 5: Grafos. Índice. E. Martín, A. Méndez, C. Ortiz y J. Sendra. Febrero de Guía del tema. 1. Grafos 1

Tema 5: Grafos. Índice. E. Martín, A. Méndez, C. Ortiz y J. Sendra. Febrero de Guía del tema. 1. Grafos 1 Tema 5: Grafos E. Martín, A. Méndez, C. Ortiz y J. Sendra Febrero de 2011 Índice Guía del tema II 1. Grafos 1 2. Pseudografos, Multigrafos, Digrafos 3 3. Isomorfismos entre grafos 4 4. Primer teorema de

Más detalles

Trayectorias y circuitos Eulerianos y Hamiltonianos,

Trayectorias y circuitos Eulerianos y Hamiltonianos, Trayectorias y circuitos Eulerianos y Hamiltonianos, Eulerianos Trayectoria de Euler: recorrer una gráfica G utilizando cada arista de la gráfica sólo una vez, puede ser necesario o no comenzar y terminar

Más detalles

Representaciones Matriciales de Grafos Isomorfismos de Grafos Grafos Planos. Matemática Discreta. Agustín G. Bonifacio UNSL. Teoría de Grafos III

Representaciones Matriciales de Grafos Isomorfismos de Grafos Grafos Planos. Matemática Discreta. Agustín G. Bonifacio UNSL. Teoría de Grafos III UNSL Teoría de Grafos III Matriz de Adyacencia Matriz de Incidencia a b c d e a 0 1 0 0 1 b 1 0 1 0 1 c 0 1 2 0 1 d 0 0 0 0 2 e 1 1 1 2 0 Dado un grafo G = (V,E), la matriz de adyacencia de G, denotada

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 5 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 30 Sep 2013-6 Oct 2013 Primeras Definiciones Grafo Un grafo está definido por dos conjuntos, un

Más detalles

Apuntes de Matemática Discreta 14. Grafos

Apuntes de Matemática Discreta 14. Grafos Apuntes de Matemática Discreta 14. Grafos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 14 Grafos Contenido 14.1 Generalidades.....................................

Más detalles

TEMA 2 FUNDAMENTOS Y APLICACIONES DE LA TEORIA DE GRAFOS. DIAGRAMAS EN ARBOL.

TEMA 2 FUNDAMENTOS Y APLICACIONES DE LA TEORIA DE GRAFOS. DIAGRAMAS EN ARBOL. 1. Introducción. 2. Definición de grafo. 2.1. Grafo Simple. 2.2. Grafo General. 2.3. Grafo Orientado. 2.4. Grafo Nulo. 2.5. Grafo Completo. 2.6. Grafo Regular. 2.7. Grafo Bipartido. 3. Operaciones entre

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Ejercicios de Grafos Hoja 1 2 curso I.T.I.S. Universidad de Salamanca 2009/10

Ejercicios de Grafos Hoja 1 2 curso I.T.I.S. Universidad de Salamanca 2009/10 Ejercicios de Grafos Hoja 1 2 curso I.T.I.S. Universidad de Salamanca 2009/10 1. Dibujar los grafos, la rueda W 3, el cubo Q 3, los grafos completos K 3, K 4 y los grafos bipartitos completos K 2,5, K

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

Grafos: Fundamentos Representaciones, etc. Jose Aguilar

Grafos: Fundamentos Representaciones, etc. Jose Aguilar Grafos: Fundamentos Representaciones, etc. Jose Aguilar Introducción Las estructura de datos no lineales se caracterizan por tener una relación de adyacencia genérica entre sus elementos, es decir, un

Más detalles

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS. INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.7 GRAFOS CONEXOS7 ÁRBOLES..7 BOSQUES DE ÁRBOLES...8 RECORRIDO DE UN GRAFO..8

Más detalles

A5 Introducción a la optimización en redes

A5 Introducción a la optimización en redes 48 Materials David Pujolar Morales A5 Introducción a la optimización en redes Definición 1. Grafo finito. Sea un V un conjunto no vacío con un número finito de elementos y E una familia finita de pares

Más detalles

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Contenido TEMA 4. Grafos 4.1. Grafos 4.1.1. Definición 4.1.2.Conceptos 4.2. Modelado de problemas típicos 4.3. Representación de un grafo a través

Más detalles

Índice Unidad 1: Lógica y teoría de conjuntos... 2

Índice Unidad 1: Lógica y teoría de conjuntos... 2 MATEMÁTICA DISCRETA Índice Unidad 1: Lógica y teoría de conjuntos... 2 1. Definiciones... 2 2. Leyes de la lógica... 2 3. Reglas de inferencia... 3 4. Lógica de predicados... 3 5. Teoría de conjuntos...

Más detalles

Matemática Discreta TEORIA DE GRAFOS. Ester Simó Marisa Zaragozá. Departamento Matemática Aplicada IV EPSEVG - UPC

Matemática Discreta TEORIA DE GRAFOS. Ester Simó Marisa Zaragozá. Departamento Matemática Aplicada IV EPSEVG - UPC Matemática Discreta TEORIA DE GRAFOS Mercè Claverol Ester Simó Marisa Zaragozá Departamento Matemática Aplicada IV EPSEVG - UPC Índice general 1. Grafos: Definiciones Básicas 3 1.1. Introducción............................

Más detalles

Fundamentos de la teoría de grafos

Fundamentos de la teoría de grafos Fundamentos de la teoría de grafos 3º I.T.I. de Sistemas Mª Teresa Cáceres Sansaloni 1 Tema 1: Nociones básicas Conceptos básicos sobre grafos. Representación de grafos. Multigrafos, grafos dirigidos y

Más detalles

Francis Guthrie Planteo el problema de los cuatro colores, después de colorear el mapa de Inglaterra 9/15/2015 3

Francis Guthrie Planteo el problema de los cuatro colores, después de colorear el mapa de Inglaterra 9/15/2015 3 INTRODUCCION GRAFOS La Teoria de Grafos nace del análisis sobre una inquietud presentada en la isla Kueiphof en Koenigsberg (Pomerania) ya que el río que la rodea se divide en dos brazos. Sobre los brazos

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Observación En algunas fuentes, estas coloraciones se denominan coloraciones admisibles; aquí, por comodidad, las denominamos coloraciones.

Observación En algunas fuentes, estas coloraciones se denominan coloraciones admisibles; aquí, por comodidad, las denominamos coloraciones. Coloración de grafos Hay muchos problemas, como la asignación de tareas y los problemas de almacenamiento, donde es necesario partir el conjunto de vértices (resp. aristas) de un grafo asociado de tal

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos

Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Capítulo 4: Grafos Clase 3: Grafos planares y Colorabilidad de Grafos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 18 Problema de las utilidades

Más detalles

Teoría de grafos. Coloración de vértices

Teoría de grafos. Coloración de vértices Teoría de grafos Coloración de vértices Problema: cuántas jaulas son necesarias para transportar a estos cinco animales de forma que lleguen sanos y salvos a un mismo destino? León Hámster Si dos animales

Más detalles

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos

Más detalles

Hacia las gráficas: una introducción básica

Hacia las gráficas: una introducción básica Hacia las gráficas: una introducción básica Ilán A. Goldfeder Versión 0.0.21 1 Gráficas Definición 1. Una gráfica G es un par ordenado(v(g),a(g)) donde, para el presente texto, V(G) es un conjunto arbitrario

Más detalles

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa

Más detalles

Algoritmo de Fleury. por. Ramón Espinosa Armenta

Algoritmo de Fleury. por. Ramón Espinosa Armenta Algoritmo de Fleury por Ramón Espinosa Armenta El siguiente algoritmo, debido a Fleury (191), permite construir un circuito Euleriano en un multigrafo Euleriano. Algoritmo Fleury (G) Entrada. Un multigrafo

Más detalles

Coloreo de Grafos. Algoritmos y Estructuras de Datos III

Coloreo de Grafos. Algoritmos y Estructuras de Datos III Coloreo de Grafos Algoritmos y Estructuras de Datos III Coloreo de nodos Definiciones: Un coloreo (válido) de los nodos de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u, v) E.

Más detalles

Núcleos por trayectorias monocromáticas. digráficas m-coloreada

Núcleos por trayectorias monocromáticas. digráficas m-coloreada en digráficas m-coloreada Hortensia Galeana Sánchez Ma. Rocío Rojas Monroy Guadalupe Gaytán Gómez Marzo 20, 2013 Definiciones Básicas Definición Una digráfica D consiste de un conjunto finito no vacío

Más detalles

Coloreo de vértices. Coloreo de Grafos. Cota superior para χ(g) Algoritmos y Estructuras de Datos III. Definiciones:

Coloreo de vértices. Coloreo de Grafos. Cota superior para χ(g) Algoritmos y Estructuras de Datos III. Definiciones: Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo de los vértices de un grafo G = (V, E) es una asignación f : V C, tal que f (v) f (u) (u, v) E. Para

Más detalles

Grafos Los siete puentes de Königsberg: Teoría de Grafos

Grafos Los siete puentes de Königsberg: Teoría de Grafos Grafos Los siete puentes de Königsberg: Un ciudadano de Königsberg (Prusia) se propuso dar un paseo cruzando cada uno de los siete puentes que existen sobre el río Pregel una sola vez. Los dos brazos del

Más detalles

Grafos clique K 5 -free con cada triángulo contenido en a lo sumo un K 4 con un único generador crítico

Grafos clique K 5 -free con cada triángulo contenido en a lo sumo un K 4 con un único generador crítico 1 / 21 Grafos clique K 5 -free con cada triángulo contenido en a lo sumo un K 4 con un único generador crítico Lic. Gabriela Ravenna Dra. Liliana Alcón UMA- Bahía Blanca 21 de Septiembre de 2016 Esquema

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos...

Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos... Contenido Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix Parte I Fundamentos... 1 Capítulo I Lógica, conjuntos e inducción... 2 1.1 Introducción... 4 1.2

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Curso de Posgrado: Tópicos avanzados en teoría de grafos

Curso de Posgrado: Tópicos avanzados en teoría de grafos Curso de Posgrado: Tópicos avanzados en teoría de grafos 1. Grafos planares 1.1. Preliminares Recordemos algunos conceptos: Una curva es la imagen de una función contínua f : [0, 1] R 2. Una curva poligonal

Más detalles

Lógica de Proposiciones y de Predicado

Lógica de Proposiciones y de Predicado Lógica de Proposiciones y de Predicado Franco D. Menendez LABIA FACET - UNT »Grafos: Definiciones y Ejemplos. Representación Matricial. Adyacencia de Nodos y Aristas. SubGrafos, Complementos e Isomorfismos

Más detalles

Problemas y Conjeturas

Problemas y Conjeturas U UNIVERSITAT DE BARCELONA B Problemas y Conjeturas de la Teoría de Grafos (Trabajo Académicamente Dirigido) Autora: Cristina Araúz Lombardía Trabajo Académicamente Dirigido por F. Javier Soria de Diego

Más detalles

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios CLASE GRAFOS Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión

Más detalles

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

CIRCUITOS DE EULER Y HAMILTON

CIRCUITOS DE EULER Y HAMILTON CIRCUITOS DE EULER Y HAMILTON Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 8 de septiembre de 2008 Contenido Circuitos de Euler Definición Algoritmo

Más detalles

Teoría de Grafos. Herramientas de programación para procesamiento de señales

Teoría de Grafos. Herramientas de programación para procesamiento de señales Teoría de Grafos Herramientas de programación para procesamiento de señales Indice Nociones básicas: Definiciones Ejemplos Propiedades Nociones avanzadas: Grafos planares Árboles Representación en computadora

Más detalles

Introducción a la Teoría de las Gráficas

Introducción a la Teoría de las Gráficas UNIVERSIDAD AUTÓNOMA METROPOLITANA UNIDAD CUAJIMALPA DIVISION DE CIENCIAS NATURALES E INGENIERÍA Introducción a la Teoría de las Gráficas Abril 2017 Dr. Diego Antonio González-Moreno Departamento de Matemáticas

Más detalles

Algoritmos y Estructuras de Datos III

Algoritmos y Estructuras de Datos III Árboles Algoritmos y Estructuras de Datos III Árboles Definición: Un árbol es un grafo conexo sin circuitos simples. Árboles Teorema: Dado un grafo G = (V, X ) son equivalentes: 1. G es un árbol. 2. G

Más detalles

Teoría de grafos. Estructuras de datos en la representación de grafos. Teoría de grafos 1

Teoría de grafos. Estructuras de datos en la representación de grafos. Teoría de grafos 1 Teoría de Grafos Teoría de grafos 1 Teoría de grafos En matemáticas y en ciencias de la computación, la teoría de grafos (también llamada teoría de las gráficas) estudia las propiedades de los grafos (también

Más detalles

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos

Más detalles

Espectros de grafos. Mariano Suárez-Álvarez. 12 de mayo, 2015

Espectros de grafos. Mariano Suárez-Álvarez. 12 de mayo, 2015 Espectros de grafos Mariano Suárez-Álvarez 12 de mayo, 2015 Grafos Un grafo es un par Γ = (V, E) con V un conjunto finito de vértices E V V un conjunto simétrico e irreflexivo de lados Grafos Un grafo

Más detalles

Contribución a la teoría de redes con enlaces bidireccionales derivadas de los digrafos línea

Contribución a la teoría de redes con enlaces bidireccionales derivadas de los digrafos línea Universidad Politécnica de Cataluña Dep. de Matemática Aplicada y Telemática Contribución a la teoría de redes con enlaces bidireccionales derivadas de los digrafos línea Tesis Doctoral realizada por J.L.

Más detalles

Transparencias de Matemática Discreta Doble Grado en Ingeniería en Informática y. Administración de Empresas Curso 2013 2014

Transparencias de Matemática Discreta Doble Grado en Ingeniería en Informática y. Administración de Empresas Curso 2013 2014 ESCUELA POLITÈCNICA SUPERIOR UNIVERSIDAD CARLOS III DE MADRID Transparencias de Matemática Discreta Grado en Ingeniería en Informática Doble Grado en Ingeniería en Informática y Administración de Empresas

Más detalles

por María Luisa Pérez Seguí

por María Luisa Pérez Seguí Teoría de Gráficas por María Luisa Pérez Seguí Introducción Se presenta aquí el material correspondiente al curso de maestría de Teoría de Gráficas, el cual se imparte en el Posgrado Conjunto de Matemáticas

Más detalles

Sobre digrafos adjuntos y (h, j) adjuntos de multidigrafos k regulares

Sobre digrafos adjuntos y (h, j) adjuntos de multidigrafos k regulares Revista Colombiana de Matemáticas Volumen 37 (2003), páginas 81 86 Sobre digrafos adjuntos y (h, j) adjuntos de multidigrafos k regulares Elsa Osio Teresa Braicovich Cora Bernardi Cristina Costes Universidad

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel

Más detalles

Lógica de Proposiciones y de Predicado

Lógica de Proposiciones y de Predicado Lógica de Proposiciones y de Predicado Franco D. Menendez LABIA FACET - UNT UT3: Lógica de Predicados»Propiedad Conmutativa (E1 E2) (E2 E1)»Propiedad Distributiva»Propiedad Asociativa»Leyes de De Morgan»Doble

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

4. Espacios vectoriales

4. Espacios vectoriales Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................

Más detalles

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias

Relaciones Binarias. Matemática Discreta. Agustín G. Bonifacio UNSL. Relaciones Binarias UNSL Relaciones Binarias Relaciones Binarias (Sección 3.1 del libro) Definición Una relación (binaria) R de un conjunto X a un conjunto Y es un subconjunto del producto cartesiano X Y. Si (x,y) R, escribimos

Más detalles

Grafos. CCIR / Depto Matemáticas CB102

Grafos. CCIR / Depto Matemáticas CB102 CB102 Conceptos Los grafos son una técnica de modelación de problemas atractiva y útil. Problemas de diferentes áreas pueden ser modelados mediante su uso: redes de transporte de bienes de consumo, redes

Más detalles

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado Grafos Sea V un conjunto finito no vacío, y E V V. El par ( V, E) es un grafo sobre V, one V es el conjunto e vértices y E el conjunto e aristas. Lo anotaremos G ( V, E). Vértice(s) repetio(s) Arista(s)

Más detalles

Unidad 2: Problemas de camino mínimo

Unidad 2: Problemas de camino mínimo Representación Recorrido de grafos Camino mínimo Unidad 2: Problemas de camino mínimo Representación Matriz de adyacencia Matriz de incidencia Listas de vecinos Recorrido de grafos Estructuras de datos

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Sesión 4: Teoría de Grafos

Sesión 4: Teoría de Grafos Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 4: Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y

Más detalles

por María Luisa Pérez Seguí

por María Luisa Pérez Seguí Teoría de Gráficas por María Luisa Pérez Seguí Introducción Se presenta aquí el material correspondiente al curso de maestría de Teoría de Gráficas, el cual se imparte en el Posgrado Conjunto de Matemáticas

Más detalles

Algoritmos Elementales de Grafos DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Algoritmos Elementales de Grafos DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Análisis álii y Diseño de Algoritmos Algoritmos Elementales de Grafos DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Buscar en un grafo significa sistemáticamente seguir las aristas

Más detalles

OBJETIVOS ÍNDICE BIBLIOGRAFÍA

OBJETIVOS ÍNDICE BIBLIOGRAFÍA OBJETIVOS Tema 9: GRAFOS Primera Parte Estructuras de Datos y Algoritmos Curso 2002/03 Definiciones formales de grafo y conceptos relacionados Estructuras de datos para representar grafos Algoritmos para

Más detalles