3. CORRELACIÓN Y REGRE-
|
|
|
- Luis Iglesias de la Fuente
- hace 9 años
- Vistas:
Transcripción
1 3. CORRELACIÓN Y REGRE- SIÓN Objetivo Medir y ajustar una relación lineal entre dos variables cuantitativas. Bibliografia recomendada Peña y Romo (1997), Capítulos 8 y 9. Índice 1. Covarianza y sus propiedades 2. Correlación y sus propiedades 3. Cómo calcular la covarianza y correlación con datos agrupados 4. La recta de regresión y sus propiedades 130
2 Covarianza Se ve en el Ejemplo 63 que existe una relación creciente y más o menos lineal entre el peso pérdido y el peso original de las pacientes. La covarianza es una medida de la fuerza de la relación lineal entre dos variables cuantitativas. Definición 18 Para una muestra de n datos bivariantes (x 1,y 1 ),...,(x n,y n ) la covarianza entre las dos variables es s xy = 1 n n (x i x)(y i ȳ) donde x = n 1 n x i e ȳ = n 1 n y i son las medias de ambas variables. 131
3 Es ineficiente calcular la covarianza directamente a través de esta definición. Ejemplo 64 Volvemos al Ejemplo 63. En primer lugar hallamos las medias de ambas variables. x = 1 ( ) 16 = 181,375 ȳ = 1 ( ) 16 = 18,125 Luego calculamos la covarianza. s xy = 1 {( ,375)(15 18,125)+ 16 ( ,375)(44 18,125) ( ,375)(10 18,125)} 361,64 La covarianza es positiva, que implica una relación creciente entre x e y. 132
4 Otra manera de calcular la covarianza En la práctica, se cálcula la covarianza mediante la siguiente fórmula. Teorema 5 s xy = 1 n n x i y i n xȳ El cálculo a través de este resultado es mucho más rápido, ya que no se tiene que restar las medias de todos los datos. 133
5 Demostración s xy = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n = 1 n n (x i x)(y i ȳ) ( n ) [x i y i x i ȳ xy i + xȳ] ( n x i y i ( n x i y i ȳ ) n n n x i ȳ xy i + xȳ n x i x ) n y i + n xȳ ( n ) x i y i nȳ 1 n x i n x 1 n y i + n xȳ n n ( n ) x i y i nȳ x n xȳ + n xȳ ( n ) x i y i n xȳ 134
6 Ejemplo 65 Retomando el Ejemplo 63, tenemos 16 x i y i = = s xy = 1 ( ,375 18,125) 16 = 361,64 es decir el mismo resultado. Ejemplo 66 Se quería determinar la concentración de ácido úrico en la leche de una especie de vaca y se tomo una muestra de 14 vacas. Los datos son producción de leche (x kg/día) y concentración de ácido (y µmol/litro). Tiemeyer, Stohrer, W. y Giesecke, D. (1984). Metabolites of nucleic acids in bovine milk. J. Dairy Sci., 67,
7 x 42,7 40,2 38,2 37,6 32,2 32,2 28,0 y x 27,2 26,6 23,0 22,7 21,8 21,3 20,2 y Diagrama de dispersión y x 136
8 Vemos que existe una relación negativa entre las dos variables. Calculamos ahora la covarianza. Tenemos: 14 x = 1 14 (42, ,2) 29,56 ȳ = 1 ( ) ,43 x i y i = 42, ,2 213 = 65334,2 s xy = 1 (65334, ,56 167,43) ,2 La covarianza es positiva si existe una relación (lineal) creciente y negativa si existe una relación decreciente. 137
9 La cuasi covarianza Igual que con la varianza, en muchos casos, se prefiere definir la covarianza con un denominador de n 1, es decir s c xy = 1 n 1 n (x i x)(y i ȳ). En este caso, se suele llamar el resultado la cuasi covarianza. Es importante observar que en Statgraphics se emplea esta definición. 138
10 Cálculo de la covarianza para datos agrupados Dada la tabla de doble entrada, Y y 1 y 2... y J x 1 f 11 f f 1J f 1 x 2 f 21 f X.... f 2J. f 2. x I f I1 f I2... f IJ f I f 1 f 2... f J 1 la media de X es x = I f i x i con varianza s 2 x = I f i x 2 i x2. Igualmente se calculan la media y varianza de Y. Ahora covarianza es s xy = I J j=1 f ij x i y j xȳ. 139
11 Ejemplo 67 En el Ejemplo 57 tuvimos la siguiente tabla de frecuencias relativas. Y ,3,1,06,04,5 1,08,16,04,02,3 X 2 0,04,02,06, ,08,08,38,3,12,2 1 y en el Ejemplo 58 demostramos que x =,78 e ȳ =6,14. Ahora, la covarianza es i j s xy = i j f ij x i y j xȳ f ij x i y j = 0 5,3+0 6, ,08 = 5,44 s xy = 5,44,78 6,14 = 0,
12 Correlación Si, por ejemplo las unidades de la variable X son centimetros y las unidades de la variable Y son gramos, entonces las unidades de la covarianza son cm g y si cambiamos la escala de las variables, cambia la covarianza. Esto hace que el valor de la covarianza sea difícil de interpretar. Una medida normalizada es la correlación. Definición 19 Para una muestra bivariante (x 1,y 1 ),...,(x n,y n ), la correlación entre las dos variables es r xy = s xy = s xy s x s y s 2 xs 2 y donde s x y s y son las desviaciones típicas y s 2 x e s 2 y son las varianzas. La correlación es independiente de las unidades de las variables. 141
13 Propiedades 1 r xy 1. r xy =1siysólo si existen constantes α y β>0 donde y i = α+βx i para i =1,...n.Es decir que existe una relación lineal positiva exacta entre las dos variables. r xy = 1 siysólo si existen constantes α y β<0 donde y i = α+βx i para i =1,...n.Es decir que existe una relación lineal negativa exacta entre las dos variables. Si no existe ninguna relación entre las dos variables, la correlación se aproxima a 0. Si la correlación está cerca de 1 o 1, entonces hay una relación aproximadamente lineal. 142
14 Ejemplo 68 Retomamos el Ejemplo 66 sobre las vacas. Calculamos las medias y la covarianza anteriormente. Ya calculamos las varianzas, desviaciones típicas y la correlación. n s 2 x = 1 x 2 i n n x2 = 1 ( 42, , ,56 2) 14 54,43 y de manera parecida, s 2 y 1868,82. Entonces la correlación es 283,2 r xy = 0,89 54, ,82 Existe una relación negativa aproximadamente lineal entre las dos variables. 143
15 Ejemplo 69 Volvemos al Ejemplo 63 sobre los diabéticos. Calculamos la covarianza como s xy = 361,64 en el Ejemplo 64. Ahora, hallamos las varianzas y la correlación. Calculamos que s 2 x 1261,98 y s 2 y 211,23 y luego s x 35,52 y s y 14,53. Entonces r xy = 361,64 35,52 14,53 0,70. Hay una relación lineal positiva bastante fuerte entre las dos variables. Ejemplo 70 En el Ejemplo 67, calculamos la covarianza entre el número de suspensos en Introducción a la Estadística y el número de años en la licenciatura. Recordando que las desviaciones típicas son s x =0,9442 y s y =1,1315, la correlación es 0,6508 r xy = 0,9442 1,1315 0,61. Hay una correlación positiva entre las dos variables. 144
16 Si no hay relación entre las variables, la correlación es aproximadamente cero Ejemplo 71 Los datos son 30 parejas de números aleatorios. (X 10000) 10 Correlación = y (X 10000) x La correlación es casi cero. Al revés no es verdad. 145
17 Ojo! Cero correlación no implica ninguna relación Se ha visto que si hay una relación más o menos lineal, la correlación entre las dos variables es bastante alta pero Qué pasasihay una relación no lineal? Correlación = 0.97 Correlación = y 200 yy x xx En ambas gráficas se ha utilizado la fórmula y = x 2 para generar los datos. Una fuerte relación no lineal. 146
Tema 8: Regresión y Correlación
Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice
Tema 3: Análisis de datos bivariantes
Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
Estadística Descriptiva II: Relación entre variables
Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de
Variables estadísticas bidimensionales: problemas resueltos
Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL MARRERO
Tema 9: Estadística en dos variables (bidimensional)
Tema 9: Estadística en dos variables (bidimensional) 1. Distribución de frecuencias bidimensional En el tema anterior se han estudiado las distribuciones unidimensionales obtenidas al observar sólo un
Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.
UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre
Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable.
1 DEFINICIONES PREVIAS Regresión: implica la obtención de una ecuación mediante la que podamos estimar el valor medio de una variable. Correlación: es la cuantificación del grado de relación existente
Tema 3. Relación entre dos variables cuantitativas
Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas
Técnicas de Investigación Social
Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro
Relación entre la altura y la distancia del suelo al ombligo
Relación entre la altura y la distancia del suelo al ombligo JULIA VIDAL PIÑEIRO Los 79 datos usados para realizar el estudio estadístico de la relación altura- distancia al ombligo, se tomaron a personas
Repaso Estadística Descriptiva
Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:
15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo
Coeficiente de Correlación
Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las
Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística
Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012
Elaboró: Luis Casas Vilchis
Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
3. Correlación. Introducción. Diagrama de dispersión
1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no
Matemáticas. Selectividad ESTADISTICA COU
Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries
3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS
1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias
Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.
CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión
Estadística Descriptiva y Probabilidad FORMULARIO
Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.
Bioestadística. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.
1 de 5 15/10/2006 06:04 a.m. Bioestadística. Correlación y regresión lineales. En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo,
Matemáticas. Bioestadística. Correlación y Regresión Lineales
Matemáticas Bioestadística Correlación y Regresión Lineales En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si. Por ejemplo, si se analiza la
TEMA 3 REGRESIÓN Y CORRELACIÓN
TEMA 3 REGRESIÓN Y CORRELACIÓN Regresión mínimo-cuadrática bidimensional Planteamiento del problema Dadas dos variables aleatorias X e Y definidas sobre un mismo espacio de probabilidad (asociadas a un
6. VARIABLES ALEATORIAS
6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Estadística Descriptiva Bivariante e Intervalos de Confianza
Estadística Descriptiva Bivariante e Intervalos de Confianza Introducción En este guión se presenta el análisis conjunto de dos variables (análisis bivariante) y una introducción a los intervalos de confianza
X Y
Capítulo 2 Distribuciones bivariantes Hasta ahora hemos estudiado herramientas que nos permiten describir las características de un único carácter Sin embargo, en muchos casos prácticos, es necesario estudiar
Calculamos la covarianza. (La covarianza indica el sentido de la correlación entre las variables):
0 81 098 www.ceformativos.com EJERCICIOS RESUELTOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Cinco niñas de 2,3,,7 y 8 años de edad pesan respectivamente 14, 20, 30, 42 y 44 kilos. a) Hallar la ecuación de la recta
MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.
UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía
Distribución conjunta de variables aleatorias
Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:
Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN
Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Estadística II Tema 4. Regresión lineal simple. Curso 2009/10
Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores
ESTADISTICA Y PROBABILIDAD. 1. Encuentra la media, moda, mediana, desviación estándar y varianza de la siguiente distribución de números
ESTADISTICA Y PROBABILIDAD 1. Encuentra la media, moda, mediana, desviación estándar y varianza de la siguiente distribución de números a. 22 24 25 27 32 45 65 34 23 23 23 12 42 34 23 23 18 34 23 12 34
Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79
. Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.
Tema 1: Distribuciones en el muestreo
Tema 1: Distribuciones en el muestreo 1 (transparencias de A. Jach http://www.est.uc3m.es/ajach/) Muestras aleatorias Estadísticos Concepto de distribución muestral Media muestral Distribución muestral
Módulo 1: Nivel I FUNDAMENTOS DE LA INVERSIÓN. Programa de Asesor Financiero. PAF Nivel I_1314. Capítulo 3. Descuento
Programa de Asesor Financiero Nivel I Módulo 1: FUNDAMENTOS DE LA INVERSIÓN Capítulo 1. Conceptos básicos de la inversión Capítulo. Capitalización Capítulo 3. Descuento Capítulo 4. Tipos de interés y rentabilidad
CAPÍTULO 11 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL
CAPÍTULO 11 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL 11.1 DISTRIBUCIONES MARGINALES Y CONDICIONALES Cuando sobre cada individuo de una población se observan dos características aleatorias de naturaleza cuantitativa
Tema 2: Estadística Descriptiva Bivariante.
Estadística 24 Tema 2: Estadística Descriptiva Bivariante. Se va a estudiar la situación en la que los datos representan observaciones, correspondientes a dos variables o caracteres, efectuadas en los
Módulo de Estadística
Módulo de Estadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton
Unidad IV Introducción a la Regresión y Correlación
Unidad IV Introducción a la Regresión y Correlación Última revisión: 25-0ctubre-2009 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 48 IV.1 Conceptos fundamentales Antología de Probabilidad y Estadística
Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión
Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en
Cuaderno de actividades 1º
Cuaderno de actividades 1º 1 ITRODUCCIÓ: Variables estadísticas bidimensionales En numerosas ocasiones interesa estudiar simultáneamente dos (o más) caracteres de una población En el caso de dos (o más)
Regresión y Correlación
Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios
PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2
PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos
1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1
8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
Julio Deride Silva. 4 de junio de 2010
Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal
Estadística aplicada a la comunicación
Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2
Estadística descriptiva bivariante y regresión lineal.
Estadística descriptiva bivariante y regresión lineal. 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en su libro Natural inheritance (1889) refiriéndose a la
CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA
1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática
Regresión Lineal. Dra. Noemí L. Ruiz Limardo 2008 Derechos Reservados, Rev 2010
Regresión Lineal Dra. Noemí L. Ruiz Limardo 008 Derechos Reservados, Rev 010 Objetivos de la Lección Conocer el significado de la regresión lineal Determinar la línea de regresión cuando ha correlación
06 Variables aleatorias conjuntas. Contenido. Variables aleatorias conjuntas. Objetivo
6 Variables aleatorias conjuntas Contenido Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales Variables aleatorias conjuntas Funciones de masa de probabilidad
Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada
Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas
Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas
Tema 2. Descripción Conjunta de Varias Variables
Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA
Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS
Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas
Práctica 3: Regresión simple con R
Estadística II Curso 2010/2011 Licenciatura en Matemáticas Práctica 3: Regresión simple con R 1. El fichero de datos Vamos a trabajar con el fichero salinity que se encuentra en el paquete boot. Para cargar
4 Descripción conjunta de varias variables. Ejemplos y ejercicios.
ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS 7 4 Descripción conjunta de varias variables. Ejemplos y ejercicios. 4.1 Ejemplos. Ejemplo 4.1 La siguiente tabla de frecuencias absolutas corresponde a 200
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
REGRESIÓN LINEAL SIMPLE
REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias
Tema 5: Introducción a la inferencia estadística
Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Variables estadísticas bidimensionales
Variables estadísticas bidimensionales BEITO J GOZÁLEZ RODRÍGUEZ (bjglez@ulles) DOMIGO HERÁDEZ ABREU (dhabreu@ulles) MATEO M JIMÉEZ PAIZ (mjimenez@ulles) M ISABEL MARRERO RODRÍGUEZ (imarrero@ulles) ALEJADRO
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales
Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación
Doc. Juan Morales Romero
Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica
UNIDAD Nº4. Ejemplo.- Dados los Gastos de publicidad en los meses enero a julio, los cuales generan los sgts. Ingresos:
UNIDAD Nº4 TEORÍA DE REGRESIÓN Y CORRELACIÓN 1.- Teoría de Regresión.- En términos de estadística los conceptos de regresión y ajuste con líneas paralelas son sinónimos lo cual resulta estimar los valores
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa
Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de
1. Dado el siguiente volumen de ventas de una empresa y su gasto en I+D en miles. Prediga las ventas de este empresario para un gasto en I+D de 7.
MODELO A Examen de Estadística Económica (2407) 20 de junio de 2009 En cada pregunta sólo existe UNA respuesta considerada más correcta. Si hay dos correctas deberá escoger aquella respuesta que tenga
CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA
Página de CAPÍTULO (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Relaciones entre dos variables cuantitativas A menudo nos va a interesar describir la relación o asociación entre dos variables. Como
El ejemplo: Una encuesta de opinión
El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar
Estadística para la Economía y la Gestión IN 3401
Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)
Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre
Análisis de regresión lineal simple
Análisis de regresión lineal simple El propósito de un análisis de regresión es la predicción Su objetivo es desarrollar un modelo estadístico que se pueda usar para predecir los valores de una variable
CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES
TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no
REPASO DE ESTADÍSTICA DESCRIPTIVA
ÍNDICE: 1.- Tipos de variables 2.- Tablas de frecuencias 3.- Gráficos estadísticos 4.- Medidas de centralización 5.- Medidas de dispersión REPASO DE ESTADÍSTICA DESCRIPTIVA 1.- Tipos de variables La estadística
Probabilidad y Estadística - Clase 3
Probabilidad y Estadística - Clase 3 Relación entre dos variables Karl Pearson (1857-1936). Matemático británico. Mejoró los trabajos de Francis Galton. Se propuso estudiar la relación entre la estatura
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07
TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
MINISTERIO DE EDUCACIÓN. Educación Técnica y Profesional. Familia de especialidades: Economía. Programa: Estadística
MINISTERIO DE EDUCACIÓN Educación Técnica y Profesional Familia de especialidades: Economía Programa: Estadística Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 12mo. Grado AUTORA MSc. Caridad
Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión
Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
CORRELACION Y REGRESIÓN LINEAL
LECCION Nº 5 CORRELACION Y REGRESIÓN LINEAL OBJETIVOS ESPECIFICOS Diferenciar los conceptos de correlación lineal, y regresión lineal. Determinar el índice o coeficiente de correlación en una distribución
