6. VARIABLES ALEATORIAS
|
|
|
- Esperanza Lara Valverde
- hace 9 años
- Vistas:
Transcripción
1 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta ahora, hemos tratado de sucesos, por ejemplo A = la suma de dos tiradas de un dado es 7. Ahora queremos generalizar y tratar de variables, por ejemplo la suma de las dos tiradas o el número de llamadas telefónicas en una hora. 275
2 Variables aleatorias Definición 29 Una variable aleatoria es una función que asocia un valor numérica a todos los posibles resultados de un experimento aleatorio. Ejemplo 132 Consideramos el experimento de lanzar un dado equilibrado dos veces. Sea X = suma de las dos tiradas. El espacio muestral es {(1, 1), (1, 2),..., (6, 6)} y para cada suceso elemental, podemos calcular el valor de X. Por ejemplo si el resultado del experimento es (3, 4) luego X = 7. La tabla muestra los sucesos elementales asociados con cada posible valor de X. 276
3 x Sucesos elementales 2 (1, 1) 3 (1, 2) (2, 1) 4 (1, 3) (2, 2) (3, 1) 5 (1, 4) (2, 3) (3, 2) (4, 1) 6 (1, 5) (2, 4) (3, 3) (4, 2) (5, 1) 7 (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1) 8 (2, 6) (3, 5) (4, 4) (5, 3) (6, 2) 9 (3, 6) (4, 5) (5, 4) (6, 3) 10 (4, 6) (5, 5) (6, 4) 11 (5, 6) (6, 5) 12 (6, 6) Este es un ejemplo de una variable discreta. 277
4 Como en el ejemplo, a menudo, se denotan variables aleatorias por letras mayúsculas, por ejemplo X, y sus posibles valores con letras minúsculas, por ejemplo X = x 1. Observamos que variables pueden ser discretas, como en el ejemplo, o continuas, por ejemplo el tiempo que dure mi siguiente llamada telefónica. El tratamiento de los dos tipos de variable es algo distínto. Para variables discretas, podemos definir directamente la distribución de la variable. 278
5 La distribución de una variable aleatoria Definición 30 Sea X una variable aleatoria discreta con posibles valores x 1, x 2,.... Sean p i = P (X = x i ) para i = 1, 2,... las correspondientes probabilidades. Este conjunto de probabilidades se llama la función de probabilidad o la función de masa de la variable. Ejemplo 133 Supongamos que el dado es equilibrado. Entonces la función de probabilidad de la variable X = suma de las dos tiradas es la siguiente. 279
6 La distribución de X La función de probabilidad de X es la siguiente: x P (X = x) Total 1 Para ver la forma de la distribución, es habitual dibujar la función de probabilidad. 280
7 Gráfico de la función de probabilidad de X P (X = x) x Vemos que la distribución es simétrica y unimodal. 281
8 Propiedades de la distribución de una variable discreta X 1. 0 P (X = x i ) 1 para todos los valores x i. 2. i P (X = x i ) = P (X x) = i, x i x P (X = x i ). 4. P (X > x) = 1 P (X x). Ejemplo 134 Volviendo al Ejemplo 132, hallamos las siguientes probabilidades. 1. la suma es menos o igual a la suma es entre 6 y 8 inclusive. 3. la suma es mayor de
9 1. Queremos P (X 4) P (X = 4) = P (X = 2) + P (X = 3) + P (X = 4) = 7. P (6 X 8) = P (X = 6) + P (X = 7) + P (X = 8) = 16. P (X > 3) = 1 P (X 3) = 1 {P (X = 2) + P (X = 3)} =
10 Ejemplo 135 En ocasiones, algunas lineas aéreas venden más pasajes que los disponibles en un vuelo. Una compañia ha vendido 205 billetes que corresponden a un avión con 200 plazas. Sea X la variable aleatoria que expresa el número de viajeros que se presentan en el aeropuerto para viajar en el avión. La distribución de X es x P (X = x),05,09,15,20,23,17,09,02 Hallar la probabilidad de que todos los pasajeros que llegan a tomar el vuelo tengan plaza. Cuál es la probabilidad de que se quede sin plaza alguno de los pasajeros que se presentan en el aeropuerto? Ejemplo tomado de Pe~na y Romo (1997). 284
11 Queremos calcular P (X 200). P (X 200) = P (X = 198) + P (X = 199) +P (X = 200) =,05 +,09 +,15 =,29 La probabilidad de que todos los pasajeros tengan viaje es,29. Igualmente, la probabilidad de que se quede sin viaje algún pasajero es P (X > 200) = 1 P (X = 200) =,
12 La función acumulada de distribución Definición 31 La función (acumulada) de distribución de una variable X es la función F (x) = P (X x). Para una variable discreta, la función de distribución es una función escalón, es decir que tiene las siguientes propiedades: 1. F ( ) = 0 2. F ( ) = 1 3. F (x) F (x + ɛ) para cualquier ɛ >
13 Ejemplo 1 Volviendo al Ejemplo 132, tabulamos la función acumulada de distribución. x P (X = x) F (x) Total 1 Construimos un gráfico de la función de distribución. 287
14 Gráfico de la función acumulada de distribución de X F (x) x 288
15 Ejemplo 137 En el Ejemplo 135, tenemos x P (X = x),05,09,15,20,23,17,09,02 F (x),05,14,29,49,72,89,98 1 F (x) 1,9,8,7,6,5,4,3,2, x 289
16 Media o esperanza de una variable discreta Supongamos que se repite un experimento (tirar un dado 2 veces) n veces y que se observan los resultados (suma de las dos tiradas) cada vez. Supongamos que se observa n i repeticiones del valor x i. Luego, la media muestral es x = 1 n i x i = f i x i n i i donde f i es la proporción de veces que ha ocurrido x i. Si supongamos un número infinito de repeticiones, tenemos f i P (X = x i ) y x E[X] = i P (X = x i ) x i Luego E[X] es una medida de localización de la distribución de X. 290
17 Definición 32 La esperanza o media de una variable aleatoria discreta X es E[X] = i P (X = x i ) x i A menudo, también se utiliza la letra griega µ para representar la media de X. Ejemplo 138 Volvemos al Ejemplo 132. La media de X es E[X] = = 7 291
18 Ejemplo 139 En el Ejemplo sobre los pasajeros, el número medio de pasajeros que llegan al aeropuerto es µ =, , , = 201,44 Observamos que la media no siempre es uno de los valores posibles de X. 292
19 Esperanza de una función de X Definición 33 Sea g(x) una función de X. Luego la esperanza de g(x) es E[g(X)] = i P (X = x i ) g(x i ) Ejemplo 140 En el Ejemplo 135 supongamos que la compañia aréa recibe 250 euros por cada billete que vende pero que tiene que devolver el precio del ticket y además pagar una multa de 1000 euros a cada pasajero que no puede montar en el avión. Calcular la cantidad de dinero que espera cobrar la compañia en este vuelo. 293
20 Sea g(x) las ganancias de la compañia. Las ventas totales de tickets son = euros. Si llegan x 200 personas entonces g(x) = Si llegan x > 200 personas, g(x) = (x 200) (1250). Entonces E[g(X)] = 51250, , ,15 + (51250 ( ) 1250),20 + (51250 ( ) 1250), (51250 ( ) 1250),02 = 49212,5 euros 294
21 En particular tenemos los siguientes resultados Teorema 11 E[c] = c para una constante c E[bX] = be[x] E[g(X) + h(x)] = E[g(X)] + E[h(X)] E[a + bx] = a + be[x] Demostración E[c] = i P (X = x i ) c = c i P (X = x i ) = c 1 = c E[bX] = P (X = x i ) (bx i ) i = b i P (X = x i ) x i = be[x] 295
22 E[g(X) + h(x)] = i P (X = x i ) (g(x i ) + h(x i )) = i i P (X = x i ) g(x i ) + P (X = x i ) h(x i ) = E[g(X)] + E[h(X)] El último resultado es consecuencia de los demás. Ejemplo 141 Volvemos al Ejemplo 135. Supongamos que cada pasajero que se presenta al aeropuerto compra una bebida para 2 euros. Calcular las ganancias en promedio recibido por Coca Cola c. Queremos E[2X] = 2 E[X] = 2 201,44 = 402,88 euros. 296
23 Varianza y desviación típica Recordamos que la desviación típica muestral es una medida de la desviación de la muestra en torno de la media. Podemos definir de manera semejante la desviación típica de una variable. Definición 34 La varianza de una variable X que tiene media µ es V [X] = E [ (X µ) 2] = i P (X = x i ) (x i µ) 2. La desviación típica es DT [X] = V [X]. A menudo se escribe σ 2 para representar la varianza y σ para la desviación típica. 297
24 Ejemplo 142 Retomamos el Ejemplo sobre los dados. Tenemos V [X] = 1 (2 7)2 + 2 (3 7) (12 7)2 = 6,38 8 6,389 La desviación típica es DT [X] = 6,38 8 2,53. Es lioso calcular la varianza así. Existe una manera más fácil 298
25 Teorema 12 La varianza de X es V [X] = E [ X 2] E[X] 2 = i P (X = x i ) x 2 i E[X]2 Demostración V [X] = E [ (X E[X]) 2] = E [ X 2 2XE[X] + E[X] 2] = E [ X 2] 2E[X]E[X] + E[X] 2 = E [ X 2] E[X] 2 299
26 Ejemplo 143 En el Ejemplo 135, E[X 2 ] =, , = 40580,88 σ 2 = E[X 2 ] µ 2 = 40580,88 201,44 2 = 2,8064 Luego la desviación típica es σ 1,675 pasajeros. 300
Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.
Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales
Variables aleatorias
Estadística Variables aleatorias Supongamos que realizamos el experimento: tirar dos veces un dado. Hasta ahora, hemos tratado sucesos, por ejemplo: A2 = la suma de dos tiradas de un dado es 2. Podemos
Variables Aleatorias Discretas
Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.
Estadística I Tema 5: Modelos probabiĺısticos
Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.
Relación de Problemas. Variables Aleatorias
Relación de Problemas. Variables Aleatorias 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias:
4.1. Definición de variable aleatoria. Clasificación.
Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces
Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada.
5. PROBABILIDAD Objetivo Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada. Bibliografia recomendada Peña y Romo (1997),
Tema 3. Probabilidad y variables aleatorias
1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad
5. VARIABLES ALEATORIAS Y SUS MOMENTOS
5. VARIABLES ALEATORIAS Y SUS MOMENTOS Una variable aleatoria Objetivos Introducir la idea de una variable aleatoria y su distribución y sus características como la media, la varianza, los cuartíles etc.
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.
Tema 5: Modelos probabilísticos
Tema 5: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Tema 12: Distribuciones de probabilidad
Tema 12: Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E, de un experimento aleatorio, un número real: X:
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica ([email protected]) Marí Benlloch, Manuel ([email protected]) Departamento Centro Estadística,
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.
Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos
3. Variables aleatorias
3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
Estadística I Tema 5: Modelos probabiĺısticos
Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y Función de distribución.
Estadística. Grado en Biología. Universidad de Alcalá. Curso Capítulo 4: Variables Aleatorias. Fernando San Segundo. Actualizado:
Grado en Biología. Universidad de Alcalá. Curso 2017-18. Fernando San Segundo. Actualizado: 2017-10-16 Fernando San Segundo. Actualizado: 2017-10-16 1 Qué es una variable aleatoria? Pronto veremos una
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved
Cap 6 36 Distribuciones de Distribuciones de probabilidad discreta probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio
SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 3 DE 2008
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE 9- TIPO DURACIÓN
Tema 3. VARIABLES ALEATORIAS.
3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
DISTRIBUCIONES DE PROBABILIDAD DISCRETA
Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos
TEMA 2.- VARIABLES ALEATORIAS
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
2. VARIABLE ALEATORIA. Estadística I Dr. Francisco Rabadán Pérez
2. VARIABLE ALEATORIA Estadística I Dr. Francisco Rabadán Pérez Índice 1. Variable Aleatoria 2. Función de Distribución 3. Variable Aleatoria Discreta 4. Variable Aleatoria Continua 5. Esperanza Matemática
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #3 Tema: Distribución Discreta Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Definir la función de probabilidad
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
6-1 y. Sec Distribuciones de probabilidad discreta Pearson Prentice Hall. All rights reserved
Sec. 6-1 y 3 6-2 Distribuciones de probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio Su valor se determina al
VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos
1 Definiciones VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos Aleatoria: Azar 1. Una variable aleatoria ( v.a.) es una función que asigna un número real a cada resultado en el
Tema 4: Modelos probabilísticos
Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Tema 6: Modelos probabilísticos
Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Capítulo 5: Probabilidad e inferencia
Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos
Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial
Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
1. Variables Aleatorias Discretas
Tema 4: Variables Aleatorias Modelos de Probabilidad 1. Variables Aleatorias Discretas Lo que pretendemos en este tema es transformar el problema de la asignación de probabilidades a otro consistente en
Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :
Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)
TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar
Tema 4: Variable aleatoria. Métodos Estadísticos
Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función
Resumen de Probabilidad
Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
Relación de Problemas. Tema 4
Relación de Problemas. Tema 4 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias: 1) Número
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Variables aleatorias
Capítulo 5 Variables aleatorias 5.1. Introducción Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
Matemáticas II. 2º Bachillerato. Capítulo 12: Distribuciones de probabilidad
Matemáticas II. º Bachillerato. Capítulo : Distribuciones de probabilidad Autora: Raquel Caro Revisores: Leticia González y Álvaro Valdés 475 Distribuciones de probabilidad Índice. DISTRIBUCIONES DE PROBABILIDAD..
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
Distribuciones discretas. Distribución binomial
Variables aleatorias discretas y continuas Se llama variable aleatoria a toda función definida en el espacio muestral de un experimento aleatorio que asocia a cada elemento del espacio un número real.
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD
UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD La Distribución de Probabilidad (DP) es la relación que se da entre los diferentes eventos de un espacio muestral y sus respectivas probabilidades de ocurrencia.
Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales
Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
6. PROBABILIDAD. Eugenio Hernández. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso
6. PROBABILIDAD COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2012-2013 6.1. Frecuencia y probabilidad. Modelos de probabilidad 6.1. Frecuencia y probabilidad. Modelos de probabilidad
Distribuciones de Probabilidad
Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #2 Tema: Esperanza y Decisiones Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Entender los conceptos básicos
Tema 4: Variables aleatorias.
Estadística 46 Tema 4: Variables aleatorias. El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos aleatorios, que en muchos
LA FUNCIÓN VARIABLE ALEATORIA (va.)
LA FUNCIÓN VARIABLE ALEATORIA (va.) Una variable aleatoria X es una función que asocia un número real con cada elemento del espacio muestral. Ej: Se sacan fichas de manera sucesiva sin reemplazo de una
Tema 5 Modelos de distribuciones de Probabilidad
Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
Ejemplo: Si lanzamos un dado 7 veces y 3 de ellas nos sale par, la frecuencia
Probabilidad La probabilidad mide la frecuencia con la que se obtiene un resultado (o conjunto de resultados) al llevar a cabo un experimento aleatorio, del que se conocen todos los resultados posibles,
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMAS 14 y 15.- DISTRIBUCIONES DISCRETAS. LA DISTRIBUCIÓN BINOMIAL. DISTRIBUCIONES CONTINUAS. LA DISTRIBUCIÓN NORMAL 1 1.- VARIABLES ALEATORIAS DISCRETAS Concepto
Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}
1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,
Dagoberto Salgado Horta Variables aleatorias y distribuciones de probabilidad - 1 TALLER VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD
Dagoberto Salgado Horta Variables aleatorias y distribuciones de probabilidad - 1 TALLER VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD 1. Sea X la variable aleatoria nivel de colesterol, en mg/dl,
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
Bioestadística. Curso Capítulo 3
Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................
Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:
Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno
Tema 5. Variables Aleatorias
Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria
PROBABILIDAD Tema 2.2: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular
VARIABLES ALEATORIAS
VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento
