2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
|
|
|
- Aarón Camacho Padilla
- hace 8 años
- Vistas:
Transcripción
1 2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn
2 Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer Secciones 1-3 en: Secciones 1-4 de la materia sobre probabilidad en:
3 Índice a) Fenómeno aleatorio, espacio muestral, relaciones entre sucesos. b) Conjuntos y diagramas de Venn. c) Axiomática de Kolmogorov. d) Propiedades elementales de la probabilidad. e) Interpretación de probabilidad como frecuencia.
4 Definiciones básicas Como comentado anteriormente, la probabilidad trata de medir el incertidumbre. A menudo, las situaciones de incertidumbre surgen cuando hacemos experimentos o fenómenos aleatorios.
5 Definiciones básicas Como comentado anteriormente, la probabilidad trata de medir el incertidumbre. A menudo, las situaciones de incertidumbre surgen cuando hacemos experimentos o fenómenos aleatorios. Ejemplos de experimentos: a) Lanzar una moneda dos veces y anotar los resultados de cada tirada. b) Lanzar dos dados y anotar la suma de los puntos obtenidos. c) Observar el número de cartas que recibe una empresa en una semana. d) Medir la tasa de inflación al final del año.
6 El espacio muestral y los sucesos elementales El espacio muestral, Ω, es el conjunto de todos los posibles resultados del experimento. A los elementos de Ω se denominan elementos o sucesos elementales.
7 El espacio muestral y los sucesos elementales El espacio muestral, Ω, es el conjunto de todos los posibles resultados del experimento. A los elementos de Ω se denominan elementos o sucesos elementales. a) Ω = {XX, XC, CX, CC}. b) Ω = {2, 3,..., 12}. c) Ω = {0, 1, 2,...}. d) Ω = (, ).
8 El espacio muestral y los sucesos elementales El espacio muestral, Ω, es el conjunto de todos los posibles resultados del experimento. A los elementos de Ω se denominan elementos o sucesos elementales. a) Ω = {XX, XC, CX, CC}. b) Ω = {2, 3,..., 12}. c) Ω = {0, 1, 2,...}. d) Ω = (, ). El espacio muestral puede ser discreta (a),b),c)) o continuo (d) y finito (a),b)) o infinito (c),d)).
9 Sucesos Un suceso, S, es cualquier subconjunto del espacio muestral.
10 Sucesos Un suceso, S, es cualquier subconjunto del espacio muestral. a) Las dos tiradas salen distíntas: S = {XC, CX}. b) La suma es un número primo: S = {2, 3, 5, 7, 11}. c) Se reciben menos de 100 cartas: S = {0, 1, 2,..., 99}. d) Hay deflación: S = (, 0).
11 Sucesos Un suceso, S, es cualquier subconjunto del espacio muestral. a) Las dos tiradas salen distíntas: S = {XC, CX}. b) La suma es un número primo: S = {2, 3, 5, 7, 11}. c) Se reciben menos de 100 cartas: S = {0, 1, 2,..., 99}. d) Hay deflación: S = (, 0). Dos sucesos importantes son el suceso imposible o vacio, φ = {} y el suceso seguro, Ω.
12 El conjunto de sucesos Se puede definir el conjunto, σ, de todos los sucesos posibles.
13 El conjunto de sucesos Se puede definir el conjunto, σ, de todos los sucesos posibles. a) σ = {φ, {XX}, {XC}, {CX}, {CC}, {XX, XC}, {XX, CX}, {XX, CC}, {XC, CX}, {XC, CC}, {CX, CC}, {XX, XC, CX}, {XX, CX, CC}, {XC, CX, CC}, Ω} El número de sucesos en S es de σ = 16.
14 Cuál es el tamaño de σ? Obviamente, si el espacio muestral es infinito o continuo, el número de subconjuntos del espacio será infinito. Pero qué pasa en el caso finito?
15 Cuál es el tamaño de σ? Obviamente, si el espacio muestral es infinito o continuo, el número de subconjuntos del espacio será infinito. Pero qué pasa en el caso finito? Ω = {1} σ = {φ, {1}} σ = 2
16 Cuál es el tamaño de σ? Obviamente, si el espacio muestral es infinito o continuo, el número de subconjuntos del espacio será infinito. Pero qué pasa en el caso finito? Ω = {1} σ = {φ, {1}} σ = 2 Ω = {1, 2} σ = {φ, {1}, {2}, {1, 2}} σ = 4
17 Cuál es el tamaño de σ? Obviamente, si el espacio muestral es infinito o continuo, el número de subconjuntos del espacio será infinito. Pero qué pasa en el caso finito? Ω = {1} σ = {φ, {1}} σ = 2 Ω = {1, 2} σ = {φ, {1}, {2}, {1, 2}} σ = 4 Ω = {1, 2, 3} σ = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} y luego σ = 8.
18 Cuál es el tamaño de σ? Obviamente, si el espacio muestral es infinito o continuo, el número de subconjuntos del espacio será infinito. Pero qué pasa en el caso finito? Ω = {1} σ = {φ, {1}} σ = 2 Ω = {1, 2} σ = {φ, {1}, {2}, {1, 2}} σ = 4 Ω = {1, 2, 3} σ = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} y luego σ = 8. Más generalmente, si Ω contiene n elementos, entonces σ = 2 n.
19 Conjuntos y diagramas de Venn Operaciones con sucesos Unión. Para dos sucesos, S 1 y S 2 entonces S 1 S 2 es el suceso formado por todos los sucesos elementales en S 1 y S 2. Intersección. S 1 S 2 es el suceso formado por todos los elementos que son, a la vez de S 1 y S 2. Dos sucesos se llaman incompatibles si no tienen ningún elemento en común, es decir que S 1 S 2 = φ. Diferencia. S 1 \ S 2 es el suceso formado por todos los sucesos elementales en S 1 que no son de S 2. Suceso contrario. El suceso S = Ω \ S es el suceso contrario de S. Obviamente, se tiene S 1 \ S 2 = S 1 S 2.
20 b) S = la suma es número primo. V = la suma es mayor de 6. Entonces: S = {2, 3, 5, 7, 11} V = {7, 8, 9, 10, 11, 12} S V = {2, 3, 5, 7, 8, 9, 10, 11, 12} S V = {7, 11} S \ V = {2, 3, 5} V \ S = {8, 9, 10, 12} S = {4, 6, 8, 9, 10, 12} V = {2, 3, 4, 5, 6} Intentamos resolver este ejemplo.
21 Propiedades de las operadores Las operaciones de unión e intersección cumplen ciertas propiedades, resumidas aquí. Se pueden utilizar estas propiedades para demostrar algunos resultados sobre conjuntos.
22 Propiedades de las operadores Las operaciones de unión e intersección cumplen ciertas propiedades, resumidas aquí. Se pueden utilizar estas propiedades para demostrar algunos resultados sobre conjuntos. Lema 1 Para dos sucesos, S 1 y S 2 se tiene: S 1 = (S 1 S 2 ) (S 1 S 2 ) = (S 1 S 2 ) (S 1 \ S 2 )
23 Demostración Utilizando la ley distributiva, A B {}}{{}}{ (S 1 S 2 ) ( S 1 C {}}{ S 2 ) = ((S 1 S 2 ) S 1 ) ((S 1 S 2 ) S 2 ) = S 1 ((S 1 S 2 ) S 2 ) usando la simplificación = (S 1 (S 1 S 2 )) (S 1 S 2 ) la ley distributiva = (S 1 S 2 ) (S 1 S 2 )
24 Diagramas de Venn Se representa el espacio muestral con un cuadro.
25 y los sucesos con círculos.
26 Se pueden incluir varios sucesos a la vez.
27 y ilustrar los distíntos componentes.
28 y ilustrar los distíntos componentes.
29 y ilustrar los distíntos componentes.
30 y ilustrar los distíntos componentes.
31 y verificar algunas reglas de conjuntos. Uno de las leyes de De Morgan dice que S 1 S 2 = S 1 S 2. El otro dice que S 1 S 2 = S 1 S 2.
32 Probabilidad Hay muchas interpretaciones de la probabilidad:
33 Probabilidad Hay muchas interpretaciones de la probabilidad: La interpretación clásica: para juegos justos.
34 Probabilidad Hay muchas interpretaciones de la probabilidad: La interpretación clásica: para juegos justos. La interpretación frecuentista: probabilidad como frecuencia.
35 Probabilidad Hay muchas interpretaciones de la probabilidad: La interpretación clásica: para juegos justos. La interpretación frecuentista: probabilidad como frecuencia. La interpretación subjetiva: probabilidad como grado de creencia.
36 Probabilidad Hay muchas interpretaciones de la probabilidad: La interpretación clásica: para juegos justos. La interpretación frecuentista: probabilidad como frecuencia. La interpretación subjetiva: probabilidad como grado de creencia. La interpretación lógica: extendiendo la interpretación clásica
37 Probabilidad Hay muchas interpretaciones de la probabilidad: La interpretación clásica: para juegos justos. La interpretación frecuentista: probabilidad como frecuencia. La interpretación subjetiva: probabilidad como grado de creencia. La interpretación lógica: extendiendo la interpretación clásica Propensiones. Todas las interpretaciones (salvo quizás propensiones) cumplen las mismas leyes o axiomas de Kolmogorov.
38 Los axiomas de Kolmogorov Dado un espacio muestral, Ω, una σ-álgebra de subconjuntos, σ, entonces la función P : σ R es una función de probabilidad sobre (Ω, σ) si cumple los siguientes axiomas: 1. P (S) 0 para cualquier suceso S. 2. P (Ω) = Si S 1, S 2,..., S n son sucesos incompatibles, entonces P (S 1 S 2..., S n ) = n P (S i ). i=1
39 Propiedades elementales de la probabilidad Se utilizan las leyes de la probabilidad y la teoría de conjuntos para demostrar las propiedades de la probabilidad. Teorema 1 P (S) = 1 P (S).
40 Propiedades elementales de la probabilidad Se utilizan las leyes de la probabilidad y la teoría de conjuntos para demostrar las propiedades de la probabilidad. Teorema 1 P (S) = 1 P (S). Demostración Para cualquier suceso, S, se tiene Ω = S S y luego P (Ω) = P (S S) 1 = P (S) + P (S) por axiomas 2 y 3 P (S) = 1 P (S)
41 Corolario 2 P (φ) = 0. Demostración Ejercicio. Corolario 3 Para cualquier suceso, S, se tiene 0 P (S) 1. Demostración Dado que P (S) 0 por el axioma 1, el Teorema?? implica que P (S) 1 y entonces, para cualquier suceso S, se sabe que 0 P (S) 1.
42 La probabilidad de S 1 S 2 Teorema 4 P (S 1 S 2 ) = P (S 1 ) + P (S 2 ) P (S 1 S 2 )
43 La probabilidad de S 1 S 2 Teorema 4 P (S 1 S 2 ) = P (S 1 ) + P (S 2 ) P (S 1 S 2 ) Demostración En primer lugar, observamos que S 1 = (S 1 S 2 ) (S 1 S 2 ) por el Lema?? = (S 1 S 2 ) (S 1 \ S 2 ) y entonces P (S 1 ) = P ((S 1 S 2 ) (S 1 \ S 2 )) = P (S 1 S 2 ) + P (S 1 \ S 2 ) por el axioma 3, y entonces P (S 1 \ S 2 ) = P (S 1 ) P (S 1 S 2 ). Igualmente, P (S 2 \ S 1 ) = P (S 2 ) P (S 1 S 2 ).
44 S 1 S 2 = (S 1 \ S 2 ) (S 1 S 2 ) (S 2 \ S 1 ) P (S 1 S 2 ) = P ((S 1 \ S 2 ) (S 1 S 2 ) (S 2 \ S 1 )) = P (S 1 \ S 2 ) + P (S 1 S 2 ) + P (S 2 \ S 1 ) por el axioma 3 = (P (S 1 ) P (S 1 S 2 )) + P (S 1 S 2 ) + (P (S 2 ) P (S 1 S 2 )) = P (S 1 ) + P (S 2 ) P (S 1 S 2 )
45 Ejemplo En una baraja hemos suprimido varia cartas. Entre las que quedan, se dan las siguientes probabilidades de ser extraídas: P (REY) = 0.15, P (BASTOS) = 0.3, P (carta que no sea REY ni BASTOS) = 0.6 Está entre ellas el REY de BASTOS? En caso afirmativo, probabilidad. da su
46 Ejemplo En una baraja hemos suprimido varia cartas. Entre las que quedan, se dan las siguientes probabilidades de ser extraídas: P (REY) = 0.15, P (BASTOS) = 0.3, P (carta que no sea REY ni BASTOS) = 0.6 Está entre ellas el REY de BASTOS? En caso afirmativo, probabilidad. da su Se tiene R B = R B por la ley de De Morgan. Luego, P (R B) = = 0.4. Ahora, por el Teorema??, se tiene P (R B) = P (R) + P (B) P (R B) y entonces 0.4 = P (R B), es decir que P (R B) = 0.05.
47 Extendiendo el argumento: P (S 1 S 2 S 3 ) etc. P (S 1 S 2 S 3 ) = P (S 1 ) + P (S 2 ) + P (S 3 ) P (S 1 S 2 ) P (S 1 S 3 ) P (S 2 S 3 ) +P (S 1 S 2 S 3 ) Demostrando este resultado utilizando la teoría de conjuntos es un ĺıo pero:
48 Demostración S 1 S 2 S 3 = S 1 (S 2 S 3 ) P (S 1 S 2 S 3 ) = P (S 1 ) + P (S 2 S 3 ) P (S 1 (S 2 S 3 )) = P (S 1 ) + P (S 2 ) + P (S 3 ) P (S 2 S 3 ) P ((S 1 S 2 ) (S 1 S 3 )) = P (S 1 ) + P (S 2 ) + P (S 3 ) P (S 2 S 3 ) (P (S 1 S 2 ) + P (S 1 S 3 ) P ((S 1 S 2 ) (S 1 S 3 ))) = P (S 1 ) + P (S 2 ) + P (S 3 ) P (S 1 S 2 ) P (S 1 S 3 ) P (S 2 S 3 ) +P (S 1 S 2 S 3 )
49 Se puede hacer el resultado para cuatro sucesos (o más) P (S 1 S 2 S 3 S 4 ) = P (S i ) P (S i S j ) i=1 i=1 j=2:j>i P (S i S j S k ) i=1 j=2:j>i k=3:k>j P (S 1 S 2 S 3 S 4 )
50 Ejercicios Demostar que para dos sucesos A y B, se tiene P (Ā B) = 1 P (A) P (B) + P (A B).
51 Ejercicios Demostar que para dos sucesos A y B, se tiene P (Ā B) = 1 P (A) P (B) + P (A B). Se tiene 1 P (A) P (B) + P (A B) = 1 [P (A) + P (B) P (A B)] = 1 P (A B) por el Teorema?? = P (A B) por el Teorema?? = P (Ā B) por la ley de De Morgan.
52 Demostrar que la probabilidad de que ocurra exactamente uno de los sucesos A y B es P (A) + P (B) 2P (A B).
53 Demostrar que la probabilidad de que ocurra exactamente uno de los sucesos A y B es P (A) + P (B) 2P (A B). Recordamos que para un suceso E, se tiene E = (E F ) (E F ) usando la Lema?? y luego P (E) = P (E F ) + P (E F ) porque los dos sucesos son incompatibles, y P (E F ) = P (E) P (A F ) reordenando. Ahora, P (A) + P (B) 2P (A B) = [P (A) P (A B)] + [P (B) P (A B)] = P (A B) + P (Ā B) = P ( (A B) (Ā B)) que es la probabilidad de que exactamente uno de los dos sucesos ocurra.
54 La interpretación frecuentista de la probabilidad Claramente, las frecuencias relativas o proporciones cumplen las mismas propiedades que las probabilidades. Además, se observa que si se repite un experimento muchas veces, por ejemplo tiradas de una moneda, entonces la frecuencia relativa de cruces tiende a acercarse a un ĺımite. Ver el COIN TOSS LLN Experiment de SOCR.
55 La interpretación frecuentista de la probabilidad Claramente, las frecuencias relativas o proporciones cumplen las mismas propiedades que las probabilidades. Además, se observa que si se repite un experimento muchas veces, por ejemplo tiradas de una moneda, entonces la frecuencia relativa de cruces tiende a acercarse a un ĺımite. Ver el COIN TOSS LLN Experiment de SOCR. Formalmente, supongamos que se puede repetir un experimento aleatoria bajo las mismas condiciones. Entonces, se define la probabilidad de un suceso, S, como n i (S) P (S) = lim = f i (S) i i donde n i (S) es el número de veces que ocurre S en i repeticiones del experimento y f i (S) es la frecuencia relativa.
56 Críticas En qué se basa el supuesto de que la frecuencia vaya a un ĺımite? Nunca podemos repetir un experimento tantas veces. No es una definición muy útil en la práctica porque no da una medida a priori del incertidumbre. Sólo permite el uso de la probabilidad en situaciones de experimentos y espacios muestrales claramente definidos.
57 Críticas En qué se basa el supuesto de que la frecuencia vaya a un ĺımite? Nunca podemos repetir un experimento tantas veces. No es una definición muy útil en la práctica porque no da una medida a priori del incertidumbre. Sólo permite el uso de la probabilidad en situaciones de experimentos y espacios muestrales claramente definidos. No obstante, hay muchas situaciones de incertidumbre que no caben en la definición frecuentista de la probabilidad. Había vida en Marte hace un billón de años?
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada.
5. PROBABILIDAD Objetivo Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada. Bibliografia recomendada Peña y Romo (1997),
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia
PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Introducción Jacob Berooulli (1654-1705), Abraham de Moivre (1667-1754), el reverendo Thomas Bayes (1702-1761) y Joseph Lagrange (1736-1813) desarrollaron
deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y
CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD
Probabilidad 2º curso de Bachillerato Ciencias Sociales
PROBABILIDAD Índice: 1. Experimentos aleatorios. Espacio muestral----------------------------------------------------- 2 2. Suceso aleatorio ------------------------------------------------------------------------------------
Tema 9: Probabilidad: Definiciones
Tema 9: Probabilidad: Definiciones 1. CONCEPTOS Experimento aleatorio Suceso Espacio muestral 2. DEFINICIÓN DE PROBBILIDD Enfoque clásico Enfoque frecuencialista 3. PROBBILIDD CONDICIONL 4. TEOREMS BÁSICOS
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
(DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 )
PROBABILIDAD (DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 ) La probabilidad mide la frecuencia relativa (proporción) de un resultado determinado
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Probabilidad PROBABILIDAD
PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados
Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y
Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Tema 4. Axiomática del Cálculo de Probabilidades
Tema 4. Axiomática del Cálculo de Probabilidades [email protected] Curso 2007/2008 Espacio muestral finito equiprobable El espacio muestral contiene un número finito de sucesos elementales todos ellos con
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
1. Combinatoria Sucesos aleatorios...
PROBABILIDAD Índice: Página. Combinatoria..... Sucesos aleatorios...... Experimento aleatorio...... Tipos de sucesos....3. Operaciones con sucesos..... Sistema completo de sucesos....5. Experimentos compuestos...
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)
TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio
Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia
Tema 3: Fundamentos de Probabilidad Introducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
1. Experimentos aleatorios
1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,
2.3 PROPIEDADES DE LA PROBABILIDAD
2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Colegio Sagrada Familia Matemáticas 4º ESO
ÁLULO OMBINATORIO La combinatoria tiene por fin estudiar las distintas agrupaciones de los objetos, prescindiendo de la naturaleza de los mismos pero no del orden. Estudiaremos como se combinan los objetos,
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto
Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
Tema 3 Espacios de probabilidad: Definición axiomática y propiedadades básicas de la probabilidad
Tema 3 Espacios de probabilidad: Definición axiomática y propiedadades básicas de la probabilidad 1. Objetivo del Cálculo de Probabilidades El objetivo del Cálculo de Probabilidades es establecer y desarrollar
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
1. Teoría de conjuntos
Introducción a la probabilidad Universidad de Puerto Rico ET 3041 Prof. Héctor D. Torres ponte 1. Teoría de conjuntos Definición 1.1. La colección de todos los posibles resultados de un experimento se
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
Probabilidad y Estadística
Probabilidad y Estadística Programa Probabilidad Teoría de conjuntos Diagramas de Venn Permutaciones y combinaciones Variables aleatorias y distribuciones Propiedades de distribuciones Funciones generadoras
2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria
2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
El caballero Mere escribe a Pascal en 1654 y le propone el siguiente problema:
Introducción Los fundamentos del cálculo de probabilidades surgen alrededor del año 1650, cuando sugerido por los juegos de dados, de cartas, del lanzamiento de una moneda, se planteó el debate de determinar
Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
Ideas básicas de probabilidad. objetivo Inferencia estadística.
40 Ideas básicas de probabilidad. objetivo Inferencia estadística. Experimento aleatorio (ε) Diremos que un fenómeno es un experimento aleatorio, cuando el resultado de una repetición es incierto pero
6. VARIABLES ALEATORIAS
6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de
Maestría en Bioinformática Probabilidad y Estadística: Clase 1
Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 2 Espacios de probabilidad Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo
Probabilidad. 1. Conceptos previos. Teoría de conjuntos. Conceptos básicos
. Conceptos previos Teoría de conjuntos. Conceptos básicos Dado un conjunto M, se llama conjunto de partes de M, y se denota por P(M), al conjunto de todos los subconjuntos de M (incluido el conjunto vacio,,
E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA
E.U.I.T.I. Bilbao Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 3: ROBABILIDAD La estadística en comic L. Gocking, W. Smith
Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.
PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio
Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:
1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización
Nociones fundamentales de Cálculo de Probabilidades
Índice 1 Nociones fundamentales de Cálculo de Probabilidades 1.1 1.1 Introducción. Experimentos aleatorios........................... 1.1 1.1.1 Determinismo e incertidumbre........................... 1.1
PROBABILIDAD Introducción La Probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO F A C U L T A D D E Q U Í M I C A P R O G R A M A E D U C A T I V O D E Q U Í M I C O E N A L I M E N T O S PROBABILIDAD Y ESTADÍSTICA UNIDAD TEMÁTICA TEORÍA DE
Tema 11 Cálculo de Probabilidades.
Tema 11 Cálculo de Probabilidades. 11.1 Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono
Tema III. Definición Suceso aleatorio es un acontecimiento que ocurrirá o no, dependiendo del azar.
Tema III Cálculo de probabilidades y variables aleatorias 3.1. Introducción La teoría de probabilidad es la base de la inferencia estadística y un instrumento esencial en el análisis de la variabilidad.
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Probabilidad: Fórmulas y definiciones básicas. PROBABILIDAD Fórmulas y definiciones básicas
PROBABILIDAD Fórmulas y definiciones básicas 1) Definiciones básicas Experimento aleatorio: Aquél en el que interviene el azar (no es posible predecir el resultado). Resultado elemental: Todo resultado
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Probabilidades. Gerardo Arroyo Brenes
Probabilidades Gerardo Arroyo Brenes Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o
Tema 3: Probabilidad. Teorema de Bayes.
Estadística 36 Tema 3: Probabilidad. Teorema de Bayes. 1 Definiciones básicas. En Estadística se utiliza la palabra experimento para designar todo acto que proporciona unos datos. Se van a distinguir dos
4. CONCEPTOS BASICOS DE PROBABILIDAD
4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad
PROBABILIDAD. - Lanzar dos monedas y observar los resultados. - Contar el número de piezas defectuosas que produce una máquina cada hora
. ALGEBRA DE SUCESOS SUCESOS: PROBABILIDAD Si fuesemos a lanzar un dado sabemos que podemos obtener como resultado,2,3,4,5 ó 6 ;pero hasta que no lo lancemos no sabremos que resultado que vamos a obtener.
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo García
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
Probabilidad: Fórmulas y definiciones básicas. PROBABILIDAD Fórmulas y definiciones básicas
PROAILIDAD Fórmulas y definiciones básicas 1) Definiciones básicas Experimento aleatorio: Aquél en el que interviene el azar (no es posible predecir el resultado de cada realización del experimento). Resultado
Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia
Tema 3: Fundamentos de Probabilidad Introducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD
TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
TEMA 4: Definiciones Básicas de
TEM 4: Definiciones Básicas de robabilidad LGUNS DEFINICIONES Experimento leatorio: roceso que produce uno o varios resultados posibles y que no pueden ser predichos con certeza. Espacio Muestral S: Conjunto
Introducción a la Probabilidad
Introducción a la Probabilidad Dr. Francisco Javier Tapia Moreno Octubre 12 de 2016. Introducción. Existen varios tipos de sucesos aleatorios, conocerás todos los existentes. Aprenderás las tres relaciones
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :
Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela
1. Introducción Experimento aleatorio. Sucesos y espacio muestral 2
Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 2. Probabilidad 1. Introducción 1 2. Experimento aleatorio. Sucesos y espacio muestral 2 3. Operaciones
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
4.12 Ciertos teoremas fundamentales del cálculo de probabilidades
1 de 9 15/10/2006 05:57 a.m. Nodo Raíz: 4. Cálculo de probabilidades y variables Siguiente: 4.14 Tests diagnósticos Previo: 4.10 Probabilidad condicionada e independencia de 4.12 Ciertos teoremas fundamentales
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
Tema 12: Probabilidad
Tema 12: Probabilidad En el Cálculo de Probabilidades, a menudo se presentan conjuntos demasiado grandes como para poder enumerar exhaustivamente sus elementos aunque, por otra parte, obedecen a unas reglas
Ensayo o prueba: es la realización concreta de un experimento aleatorio.
Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos
Tema 3: Probabilidad. Bioestadística
Tema 3: Probabilidad Bioestadística SUCESOS DETERMINISTAS Y ALEATORIOS Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo.
Tema 1: Teorı a de la Probabilidad
Tema 1: Teorı a de la Probabilidad Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Experimentos Aleatorios y Sucesos 2 Cálculo Combinatorio 3 Probabilidad 4 Probabilidad Condicional 5 Teorema de
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
1.- Definiciones Básicas:
Tema 3 PROBABILIDAD Y COMBINATORIA 1.- Definiciones Básicas: El objetivo del cálculo de probabilidades es el estudio de métodos de análisis del comportamiento de fenómenos aleatorios en lo relativo a su
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
Bloque 4. Estadística y Probabilidad
Bloque 4. Estadística y Probabilidad 2. Probabilidad 1. Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse
Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).
ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas
Probabilidad. Generalidades
robabilidad Generalidades a probabilidad estudia experimentos en los que se pueden esperar varios resultados y no solamente uno. os experimentos se pueden clasificar como aleatorios o determinísticos.
CONJUNTOS Y SISTEMAS NUMÉRICOS
1. CONJUNTOS. 1.1 Conceptos básicos Medir y contar fueron las primeras actividades matemáticas del hombre y ambas nos conducen a los números. Haciendo marcas, medían el tiempo y el conteo de bienes que
