1. Teoría de conjuntos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Teoría de conjuntos"

Transcripción

1 Introducción a la probabilidad Universidad de Puerto Rico ET 3041 Prof. Héctor D. Torres ponte 1. Teoría de conjuntos Definición 1.1. La colección de todos los posibles resultados de un experimento se le conoce como espacio muestral y este lo denotamos con la letra. Un evento es un resultado o un conjunto de resultados de un fenómero aleatorio. Es decir, un evento es un subconjunto de un espacio muestral. Un modelo probabilístico es una descripción matemática de algún fenómeno aleatorio el cual consiste en 2 partes: el espacio muestral y la forma de asignarle probabilidades a los eventos. Ejemplo 1.1. uponga que lanzamos una moneda. olamente tenemos dos posibles eventos: Cara (H) o Cruz (T) por tanto el espacio muestral está definido por = {H, T } Relación con tería de conjuntos ea el espacio muestral para algún experimento. Entonces cada posible resultado s se dice que es parte del espacio muestral, denotado por s. Cuando decimos que un evento acurrió queremos decir que el resultado de nuestro experimento cumple con algunas restriccionoes o caracteristicas ya determinadas. Ejemplo 1.2. uponga que lanzaron un dado de 6 números. El espacio muestral de nuestro experimento es: = {1, 2, 3, 4, 5, 6}. uponga que el evento es obtener números pares, = {2, 4, 6} y es el evento de conseguir números mayores a 2, = {3, 4, 5, 6}. Decimos que el evento está contenido en el evento si todos los elementos del conjunto están en el conjunto (denotamos como ) en este caso. hora, suponga que C es el evento de obtener un número mayor que 1, C = {2, 3, 4, 5, 6}. Entonces decimos que C. Note que para cualquier evento,. i dos eventos y están relacionadas talque y entonces =. Conjunto vacío lgunos eventos son imposibles. Por ejemplo en el ejemplo de los dados nunca vamos a ontener un número negativo. Por tal razón el evento que obtenga un número negativo es definido por el subconjunto que no contenga ningún resultado. Este conjunto se le conoce como el conjunto vacío y es denotado por. Note que para cada evento es cierto que. 1

2 1.2. Operaciones con conjuntos Unión: i y son eventos, la unión de y es definida por el evento que contiene a o contiene a o contiene a ambos. Lo denotamos como. En el siguiente diagrama de Venn el área roja es el área que representa. La unión de dos conjuntos tiene varias propiedades: = = = = demás, si entonces = La unión de n eventos 1, 2,..., n es definida por el evento de que al menos uno de estos n eventos ocurra. La notación para esta unión es: 1 2 n = n i=1 i. Para una colección infinita de eventos lo denotamos como 1 2 = i=1 i. La unión también cumple con la propiedad asociativa: C = ( ) C = ( C). 2

3 Intersección: i y son dos eventos, la intersección de y es definida por el evento que contenga a todos los resultados en y en. La notación para la intersección es. El área roja en el siguiente diagrama de Venn denota el área para la intersección de los conjuntos y. La intersección de dos conjuntos tiene varias propiedades: = = = = demás, si entonces =. l igual que la unión, si tenemos n eventos, la intersección se denota como 1 2 n = n i=1 i. La intersección tambíen tiene una propiedad asociativa: C = ( ) C = ( C). 3

4 Complementos: El complemento del evento es definifo por el evento que contiene todos los elementos del espacio muestral que no están contenidos en, se denota como c. c El complemento de un conjunto cumple las siguientes propiedades: ( c ) c = c = c = c = c = Eventos disjuntos: Decimos que dos eventos y son disjuntos o mutuamente excluyentes si =. Para n eventos 1, 2,..., n los eventos son disjuntos si para cualquier i j tenemos que i j = para todo i j. 4

5 2. Probabilidad En ciertos experimentos es necesario asignar a cada evento en el espacio muestral un número P () el cual denota la probabilidad que el evento ocurra. Para esto, el número P () debe cumplir los siguientes axiomas: xioma 2.1. Para todo evento, P () 0. xioma 2.2. P () = 1 xioma 2.3. i 1, 2 son eventos dijuntos entonces P ( 1 2 ) = P ( 1 ) + P ( 2 ). i tenemos una colección infinita de eventos 1, 2,... entonces P ( i=1 i ) = i=1 P ( i). Estos tres axiomas nos describe lo que se llama una distribución de probabilidad. continuación trabajaremos sobre los teoremas fundamentales para la probabilidad. Teorema 2.4. P ( ) = 0 Demostración. Considere que existe una sucesión infinita de eventos 1, 2,... talque i = para i = 1, 2,... (En otras palabras, todos los eventos son el conjunto vacío). Esta es una sucesión de conjuntos disjúntos ya que =. demás, i=1 i =, por el xioma2.3 tenemos que ( ) P ( ) = P i = P ( i ) = P ( ) = 0. i=1 i=1 Teorema 2.5. Para todo evento, P ( c ) = 1 P (). Demostración. Como y c son eventos disjuntos (esto es, c = ) y c =, por el xioma 2.3 tenemos que P () = P () + P ( c ) pero por el xioma 2.2 tenemos que P () = 1 entonces P ( c ) = 1 P (). Teorema 2.6. Para todo evento, 0 P () 1. Demostración. Por el xioma 2.1, P () 0. Como, para cualquier evento tenemos que P () P () = 1 por lo tanto concluimos que 0 P () 1. Ejemplo 2.7. La ley de enford nos indica que los números en la vida real, la primera cifra es 1 con mucha mas frecuencia que el resto de los demás obteniento así los siguientes resultados. Para un dígito d tenemos, d P (d)

6 i queremos calcular la probabilidad de que el primer dígito sea cualquiera distinto a 1 entonces: P (primer dígito no 1) = 1 P (primer dígito 1) = = Utilizando una notación mas corta, sea el evento de que 1 no es el primer dígito, entonces, P () = 1 P ( c ) = = hora, si queremos calcular la probabilidad de que el promer dígito sea 1 o 2, entonces como dígito 1 y dígito 2 son eventos disjuntos entonces P ( dígito 1 o dígito 2 ) = P ( dígito 1 ) + P ( dígito 2 ) = = i 1 = primer dígito 1 y 2 = primer dígito 2 entonces todo se resume a: P ( 1 2 ) = P ( 1 ) + P ( 2 ) = =

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

2.- Teoría de probabilidades

2.- Teoría de probabilidades 2.- Teoría de probabilidades La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados

Más detalles

La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas.

La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas. La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas. Dado un experimento y cualquier evento A: La expresión

Más detalles

Juan Carlos Colonia P. PROBABILIDADES

Juan Carlos Colonia P. PROBABILIDADES Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado

Más detalles

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN

AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN Conocida ahora la probabilidad de un evento, se pueden reunir ciertas características conocidas como axiomas de probabilidad que satisfacen la probabilidad

Más detalles

TEMA 1.- PROBABILIDAD.- CURSO

TEMA 1.- PROBABILIDAD.- CURSO TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

Unidad Temática 2 Probabilidad

Unidad Temática 2 Probabilidad Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste

Más detalles

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe. CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer

Más detalles

MatemáticaDiscreta&Lógica 1. Conjuntos. Aylen Ricca. Tecnólogo en Informática San José 2014

MatemáticaDiscreta&Lógica 1. Conjuntos. Aylen Ricca. Tecnólogo en Informática San José 2014 MatemáticaDiscreta&Lógica 1 Conjuntos Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html CONJUNTOS.::. Definición. Según el diccionario de la Real Academia

Más detalles

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos

Capítulo 1. Teoría de la probabilidad Teoría de conjuntos Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral

Más detalles

EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO

EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO EXPERIMENTO ALEATORIO, EPAIO MUETRAL Y UEO Experimento aleatorio: Es una acción o proceso que puede tener distintos resultados posibles, y cuyo resultado no se conoce hasta que no se lleva a cabo. Ejemplos:

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Programa Probabilidad Teoría de conjuntos Diagramas de Venn Permutaciones y combinaciones Variables aleatorias y distribuciones Propiedades de distribuciones Funciones generadoras

Más detalles

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico Materia: Matemática de Octavo Tema: Sucesos En esta lección aprenderás términos básicos de la estadística y algunas reglas de la probabilidad. También aprenderás cómo enumerar eventos simples y muestras

Más detalles

Probabilidad. Generalidades

Probabilidad. Generalidades robabilidad Generalidades a probabilidad estudia experimentos en los que se pueden esperar varios resultados y no solamente uno. os experimentos se pueden clasificar como aleatorios o determinísticos.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos

Más detalles

Ejemplo 8 Los niños nacidos en un país del continente americano.

Ejemplo 8 Los niños nacidos en un país del continente americano. UNIDAD 1: CONJUNTOS La teoría de conjuntos juega un papel muy importante en campos de la matemática como el cálculo, el análisis, el álgebra y la probabilidad. Gracias a los conjuntos se pueden construir

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

2016 IV o Medio Introducción a la Probabilidad Eventos. Profesor Alberto Alvaradejo Ojeda

2016 IV o Medio Introducción a la Probabilidad Eventos. Profesor Alberto Alvaradejo Ojeda 2016 IV o Medio Introducción a la Probabilidad Eventos Profesor Alberto Alvaradejo Ojeda 1. Evento o Suceso Se llama evento o suceso a todo subconjunto de un espacio muestral. También se define como una

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

UNIDAD 4: ESTUDIEMOS LA PROBABILIDAD. 7. Probabilidad 1

UNIDAD 4: ESTUDIEMOS LA PROBABILIDAD. 7. Probabilidad 1 UNIDAD 4: ESTUDIEMOS LA PROBABILIDAD. 7. Probabilidad 1 Objetivos conceptuales. Comprender lo que es probabilidad. Objetivos procedimentales. Efectuar cálculos de probabilidad. Objetivos actitudinales.

Más detalles

Introducción a la Probabilidad

Introducción a la Probabilidad Introducción a la Probabilidad Dr. Francisco Javier Tapia Moreno Octubre 12 de 2016. Introducción. Existen varios tipos de sucesos aleatorios, conocerás todos los existentes. Aprenderás las tres relaciones

Más detalles

Probabilidades. Gerardo Arroyo Brenes

Probabilidades. Gerardo Arroyo Brenes Probabilidades Gerardo Arroyo Brenes Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos Aleatorios. 2) Espacio Muestral. 3) Operaciones con Sucesos. 4) Enfoques de la Probabilidad.

Más detalles

Probabilidad PROBABILIDAD

Probabilidad PROBABILIDAD PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados

Más detalles

UNIDAD V TEORÍA DE CONJUNTOS. ISC. Claudia García Pérez

UNIDAD V TEORÍA DE CONJUNTOS.  ISC. Claudia García Pérez UNIDAD V TEORÍA DE CONJUNTOS ISC. Claudia García Pérez http://www.uaeh.edu.mx/virtual 1 PRESENTACIÓN La teoría de conjuntos es una parte de las matemáticas, también, es la teoría matemática dónde fundamentar

Más detalles

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD 2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer

Más detalles

Axiomática de la Teoría de Probabilidades

Axiomática de la Teoría de Probabilidades Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles

Más detalles

TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.

TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones. I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de

Más detalles

- Determinísticos. - Aleatorios. Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo.

- Determinísticos. - Aleatorios. Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo. Probabilidad - Determinísticos Experimentos - leatorios Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo. Un experimento aleatorio, también llamado ensayo o acción

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

Experimento Aleatorio o ensayo

Experimento Aleatorio o ensayo Clase 5 1 Experimento Aleatorio o ensayo Es un proceso o acción cuyo resultado es incierto, es decir no es predecible. Es factible de ser repetido infinitas veces, sin modificar las condiciones. Repetición

Más detalles

U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD

U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio

Más detalles

2.3 PROPIEDADES DE LA PROBABILIDAD

2.3 PROPIEDADES DE LA PROBABILIDAD 2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:

Más detalles

Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia

Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Introducción Jacob Berooulli (1654-1705), Abraham de Moivre (1667-1754), el reverendo Thomas Bayes (1702-1761) y Joseph Lagrange (1736-1813) desarrollaron

Más detalles

3.3. TEORÍA BÁSICA DE CONJUNTOS Utilizar tablas de verdad para comprobar la equivalencia lógica p q p q.

3.3. TEORÍA BÁSICA DE CONJUNTOS Utilizar tablas de verdad para comprobar la equivalencia lógica p q p q. 3.3. TEORÍA BÁSICA DE CONJUNTOS 83 a) p q b) p q c) q p 7. Sabiendo que la proposición compuesta ( q) (q p) es falsa, indicar cuál es el valor de verdad de las proposiciones p y q. 8. Utilizar tablas de

Más detalles

2.2. PROBABILIDAD BÁSICA. Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional.

2.2. PROBABILIDAD BÁSICA. Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional. 2.2. PROBABILIDAD BÁSICA Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional. Hacer: Resolver problemas de probabilidad básica. Introducción

Más detalles

TEMA 1.- PROBABILIDAD.-CURSO 2016/2017

TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas

Más detalles

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 4

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 4 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 4 NOCIONES SOBRE CONJUNTOS Un conjunto es una colección de objetos, llamados elementos del conjunto. Un conjunto puede describirse:

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Algunas veces la ocurrencia de un evento A puede afectar la ocurrencia posterior de otro evento B; por lo tanto, la probabilidad del evento B se verá afectada por el hecho de que

Más detalles

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD 2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística y Estadística Unidad 2 Tipos de probabilidad Prof. Héctor Ulises Cobián L. [email protected] February 29, 2016 1 Definition (Experimento aleatorio) Es el que no podemos predecir su resultado,

Más detalles

Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD

Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD PRESENTA DRA. EN ING. RITA VICTORIA DE LEÓN ARDÓN 2.Trabajo en equipo 3. Estudio independiente 1.

Más detalles

1. Experimentos aleatorios

1. Experimentos aleatorios 1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD TEMA 20: DEFINICIONES BASICAS DE PROBABILIDAD 1. EXPERIMENTO Un experimento

Más detalles

2. Conceptos Básicos de Probabilidad. ESTADÍSTICA Esp. Paola G. Herrera S.

2. Conceptos Básicos de Probabilidad. ESTADÍSTICA Esp. Paola G. Herrera S. 2. Conceptos Básicos de Probabilidad ESTADÍSTICA Esp. Paola G. Herrera S. Introducción La probabilidad es la rama de las matemáticas que estudia los fenómenos con incertidumbre. Es un mecanismo por medio

Más detalles

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles

Más detalles

CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107. Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA

CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107. Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107 Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA 10 y 25 de noviembre de 2014 QUÉ ES PROBABILIDAD? Se expresa entre: 0-1, donde 1 = 100% TEORÍA

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Teoría de conjuntos y probabilidad

Teoría de conjuntos y probabilidad Teoría de conjuntos y probabilidad M.Sc. Cindy Calderón Arce Lic. Rebeca Soĺıs Ortega Jornada de capacitación CIEMAC Alajuela 2016 Junio, 2016 Jornada de capacitación 1 / 21 Contenidos 1 2 3 2 / 21 Colección

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

Capítulo. Reglas de Probabilidad Pearson Prentice Hall. All rights reserved

Capítulo. Reglas de Probabilidad Pearson Prentice Hall. All rights reserved Capítulo 35 Reglas de Probabilidad Eventos mutuamente excluyentes Dos eventos son disjuntos o mutuamente excluyentes si no tienen resultados en común. Eventos mutuamente excluyentes son eventos que no

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

LECTURA No. 1: TEORIA DE CONJUNTOS

LECTURA No. 1: TEORIA DE CONJUNTOS 9 1 LECTUR No. 1: TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos

Más detalles

MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades

MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades 1. REGLA DE LAPLACE Cuando un suceso va a ocurrir, en ciertos casos es posible que se pueda predecir su resultado. Si se puede predecir diremos

Más detalles

ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L.

ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. RECUERDA VI. CONOCIMIENTO DE LA ESCALA DE LA PROBABILIDAD Evento Independiente:

Más detalles

4. CONCEPTOS BASICOS DE PROBABILIDAD

4. CONCEPTOS BASICOS DE PROBABILIDAD 4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad

Más detalles

Introducción a la Probabilidad

Introducción a la Probabilidad Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,

Más detalles

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta

Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática

Más detalles

ELEMENTOS DE LA TEORÍA DE CONJUNTOS

ELEMENTOS DE LA TEORÍA DE CONJUNTOS ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Ing. Ivannia Hasbum., M.Eng. Todos los días tomamos decisiones pero no las tomamos a ciegas, imaginar las probabilidades de varios resultados posibles nos ayuda

Más detalles

REGLAS DE PROBABILIDAD

REGLAS DE PROBABILIDAD Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la

Más detalles

Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca

Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones

Más detalles

2.1. TEORÍA DE CONJUNTOS

2.1. TEORÍA DE CONJUNTOS 2.1. TEORÍA DE CONJUNTOS Saber: Definir los conceptos relacionados con conjuntos, Explicar las operaciones básicas entre conjuntos Describir el método de construcción del diagrama de Venn Euler. Hacer:

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 1.1. Aleatoriedad e incertidumbre 1.2 Probabilidad

Más detalles

MATEMÁTICAS BÁSICAS PROBABILIDAD

MATEMÁTICAS BÁSICAS PROBABILIDAD MATEMÁTICAS BÁSICAS PROBABILIDAD Autora: Alejandra Sánchez Departamento de Matemáticas Sede Bogotá 10 de diciembre de 2013 Introducción a la Probabilidad Definición espacio muestral y eventos Definición

Más detalles

CALCULO DE PROBABILIDADES

CALCULO DE PROBABILIDADES CALCULO DE PROBABILIDADES Los experimentos o fenómenos aleatorios son aquellos que al ser repetidos en condiciones uniformes presentan resultados variables de manera que no puede predecirse con exactitud

Más detalles

6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles

6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles TEMA Probabilidad * Experimento aleatorio: Es aquel cuyo resultado es impredecible. Ej. Lanzar un dado, lanzar una moneda. Una reacción química, realizada siempre en las mismas condiciones, no sería un

Más detalles

Material Suplementario

Material Suplementario Material Suplementario Introducción a la teoría de conjuntos Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Original: Prof. Yuitza T. Humarán Martínez Adaptación: Prof. Caroline Rodríguez

Más detalles

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,

Más detalles

2.2. PROBABILIDAD BÁSICA. Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional.

2.2. PROBABILIDAD BÁSICA. Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional. 2.2. PROBABILIDAD BÁSICA Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional. Hacer: Resolver problemas de probabilidad básica. Introducción

Más detalles

Probabilidad condicional (Regla de Bayes) Universidad de Puerto Rico ESTA Prof. Héctor D. Torres Aponte

Probabilidad condicional (Regla de Bayes) Universidad de Puerto Rico ESTA Prof. Héctor D. Torres Aponte Probabilidad condicional (Regla de Bayes) Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Regla de Bayes Utilizando el ejemplo 1.5 (semana #6), sabemos los valores de P (A) y P (A

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5) TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio

Más detalles

Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia

Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia Tema 3: Fundamentos de Probabilidad Introducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce

Más detalles

Probabilidad Condicional

Probabilidad Condicional Otro ejemplo: Suponga que se lanzan dos dados (distinguibles) y se observa que la suma X es un número impar Cuál es la probabilidad de que X sea menor que 8? Regla de multiplicación para probabilidades

Más detalles

CAPÍTULO. Conjuntos. Un conjunto es una colección de objetos de cualquier tipo y a dichos objetos se les denomina elementos del conjunto.

CAPÍTULO. Conjuntos. Un conjunto es una colección de objetos de cualquier tipo y a dichos objetos se les denomina elementos del conjunto. 1 CPÍTULO 1 Conjuntos 1.8.1 Conjuntos Un conjunto es una colección de objetos de cualquier tipo y a dichos objetos se les denomina elementos del conjunto. En nuestro caso todos los elementos considerados,

Más detalles

TEMA 4: Definiciones Básicas de

TEMA 4: Definiciones Básicas de TEM 4: Definiciones Básicas de robabilidad LGUNS DEFINICIONES Experimento leatorio: roceso que produce uno o varios resultados posibles y que no pueden ser predichos con certeza. Espacio Muestral S: Conjunto

Más detalles

TEC Tecnológico. de Costa Rica TEC. Teoría de conjuntos y probabilidad. Jornada de capacitación CIEMAC: Alajuela 2016

TEC Tecnológico. de Costa Rica TEC. Teoría de conjuntos y probabilidad. Jornada de capacitación CIEMAC: Alajuela 2016 TEC Tecnológico de Costa Rica Jornada de capacitación CIEMAC: Alajuela 2016 Teoría de conjuntos y probabilidad Jornada de capacitación CIEMAC Alajuela 2016 Página 2 de 13 Conocimientos: Eventos Relaciones

Más detalles

REGLAS DE PROBABILIDAD

REGLAS DE PROBABILIDAD Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la

Más detalles

Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada.

Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada. 5. PROBABILIDAD Objetivo Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada. Bibliografia recomendada Peña y Romo (1997),

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

b) Cuántas posibilidades hay para que una pareja de candidatos uno de cada partido se oponga entre sí en la elección final?

b) Cuántas posibilidades hay para que una pareja de candidatos uno de cada partido se oponga entre sí en la elección final? Eslin Karina Montero Vargas A1336 1/0/03 REGLA DE LA SUMA Suma de formas REGLA DEL PRODUCTO Multiplicación de formas Ejemplo: 3 panes, cafés y 5 queques 1p 1c c 1 q q 3q 4q 5q 1 q q 3q 4q 5q p 1c c 1 q

Más detalles

{ } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } Probabilidad PREGUNTAS MÁS FRECUENTES Repaso de 1º de Bachillerato 1. A qué se denomina Espacio Muestral? Dada una experiencia aleatoria, se denomina Espacio Muestral al conjunto de los resultados posibles

Más detalles

Matemáticas aliadas a la salud MATE3035

Matemáticas aliadas a la salud MATE3035 Matemáticas aliadas a la salud MATE3035 TEMA: Introducción a la teoría de conjuntos Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Profa. Yuitza T. Humarán Martínez Adaptado por Profa.

Más detalles

Matemáticas Discretas Relaciones y funciones

Matemáticas Discretas Relaciones y funciones Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas y funciones Cursos Propedéuticos 2010 Ciencias Computacionales INAOE y funciones Propiedades de relaciones Clases de equivalencia

Más detalles