Procesos estocásticos
|
|
- Luis Miguel Rico Juárez
- hace 4 años
- Vistas:
Transcripción
1 Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios
2 Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto: Cadenas de Markov a tiempo discreto. Martingalas a tiempo discreto. 3. Procesos a tiempo continuo: Procesos de Poisson. Procesos de renovación. Cadenas de Markov a tiempo continuo. Procesos de nacimiento y muerte. El movimiento browniano.
3 Sesión 1. Repaso de probabilidad 1. Resumen de teoría de probabilidad. Espacio probabilístico. Probabilidad condicionada. Independencia. 2.. Distribución de probabilidad inducida. Esperanza de una variable. Distribuciones discretas. Binomial. Poisson. Distribuciones continuas. Normal. Exponencial.
4 Definición de la probabilidad Probabilidad condicionada. Independencia. Introducción Distinguimos entre experimentos deterministas, cuyo resultado puede predecirse y es siempre el mismo cuando el experimento se realiza en las mismas condiciones, y experimentos aleatorios, que son los que cumplen las siguientes condiciones: El resultado no puede predecirse antes de su realización. Los resultados posibles están bien definidos de antemano. La probabilidad es una herramienta matemática con la que medimos la variabilidad del resultado de un experimento aleatorio.
5 Definición de la probabilidad Probabilidad condicionada. Independencia. Espacio muestral Dado un experimento aleatorio, cada uno de los posibles resultados del mismo se denomina suceso elemental. El espacio de todos los sucesos elementales se denomina espacio muestral. En un experimento aleatorio estamos interesados en calcular la probabilidad de subconjuntos del espacio muestral, a los que llamaremos sucesos. Entre ellos destacamos: El suceso seguro Ω, que contiene a todos los sucesos elementales. El suceso imposible, que no contiene a ninguno. El conjunto de sucesos sobre los que vamos a calcular la probabilidad se denotará A.
6 Definición de la probabilidad Probabilidad condicionada. Independencia. Operaciones entre sucesos Unión de sucesos: A B := {w A o w B}. Intersección de sucesos: A B := {w A y w B}. Diferencia de sucesos: A \ B := {w A y w / B}. Complementario de un suceso: A := {w / A}. Inclusión de sucesos: A B si w A w B. Sucesos incompatibles o disjuntos: A, B tales que A B =.
7 Definición de la probabilidad Probabilidad condicionada. Independencia. σ-álgebra de sucesos Sea A una clase no vacía formada por subconjuntos del espacio muestral Ω. Diremos que es una σ-álgebra cuando satisface las siguientes propiedades: A A A A. (A n ) n A n A n A. En nuestra definición de probabilidad A tendrá estructura de σ-álgebra, y se dirá σ-álgebra de sucesos del experimento aleatorio.
8 Definición de la probabilidad Probabilidad condicionada. Independencia. Definición axiomática de la probabilidad La siguiente definición fue establecida por Kolmogorov en Sea A la σ-álgebra de sucesos asociada a un experimento aleatorio. Una probabilidad es una función P : A R que verifica los siguientes axiomas: P(A) 0 para todo A A. P(Ω) = 1. Dados (A n ) n disjuntos dos a dos, se cumple P( n A n ) = n P(A n ). (Ω, A, P) se dice espacio de probabilidad.
9 Definición de la probabilidad Probabilidad condicionada. Independencia. Propiedades de una probabilidad A B P(A) P(B). P(A) = 1 P(A). P(A \ B) = P(A) P(A B). P(A B) = P(A) + P(B) P(A B). A 1 A 2 P( n A n ) = lim n P(A n ).
10 Definición de la probabilidad Probabilidad condicionada. Independencia. Ejemplo En una universidad el 50% de los alumnos habla inglés, el 20% francés y el 5% los dos idiomas Cuál es la probabilidad de encontrar alumnos que hablen alguno de los dos idiomas? Solución: Sea A el suceso hablar inglés: P(A) = 0.5. Sea B el suceso hablar francés: P(B) = 0.2 y sea A B el suceso hablar francés e inglés: P(A B) = Así, P(A B) = P(A) + P(B) P(A B) = = 0.65.
11 Definición de la probabilidad Probabilidad condicionada. Independencia. Definición de probabilidad condicionada Sea B Ω un suceso aleatorio de probabilidad no nula, P(B) > 0. Para cualquier otro suceso A se define la probabilidad condicionada de A dado B y se denota P(A B) al valor P(A B) = P(A B). P(B) La probabilidad de A condicionada por B representa la probabilidad de que ocurra A, cuando sabemos que ha ocurrido B. P( B) es una medida de probabilidad, con las propiedades que señalamos anteriormente.
12 Definición de la probabilidad Probabilidad condicionada. Independencia. Ejemplo Es importante no confundir P(A B) con P(B A), lo que se conoce como la falacia de la acusación: es habitual que en los juicios la acusación presente P(Inocencia Hechos) como algo muy pequeño cuando lo que se conoce es P(Hechos Inocencia). También es importante no confundir P(A B) con P(A B): mientras que ésta es necesariamente menor que P(A), P(A B) puede ser menor, igual o mayor que P(A).
13 Definición de la probabilidad Probabilidad condicionada. Independencia. Regla del producto Como consecuencia de la definición anterior, se cumple P(A B) = P(A)P(B A) = P(B)P(A B). Una extensión de esta idea para una cantidad finita de sucesos es la llamada regla del producto: dados sucesos A 1,..., A n para los que P(A 1 A n 1 ) > 0, se cumple P(A 1... A n ) = P(A 1 )P(A 2 A 1 )... P(A n A 1 A n 1 ).
14 Definición de la probabilidad Probabilidad condicionada. Independencia. Independencia de sucesos Decimos que dos sucesos A y B son independientes cuando la ocurrencia de uno de ellos no aporta información acerca de la posible ocurrencia del otro. Matemáticamente, A y B son independientes cuando se cumple cualquiera de las siguientes condiciones equivalentes: P(A B) = P(A)P(B); P(B) > 0 y P(A B) = P(A); P(A) > 0 y P(B A) = P(B).
15 Definición de la probabilidad Probabilidad condicionada. Independencia. Independencia de varios sucesos El concepto anterior se extiende para cualquier cantidad finita de sucesos. Se dice que A 1,..., A n son independientes cuando para cualesquiera i 1,..., i k en {1,..., n}, se cumple P(A i1 A ik ) = P(A i1 )... P(A ik ). Nótese que este concepto no es equivalente a la independencia dos a dos entre los sucesos A 1,..., A n.
16 discretas continuas Concepto de variable aleatoria Consideremos un espacio de probabilidad (Ω, A, P). Una variable aleatoria es una aplicación X definida en Ω, que a cada individuo ω Ω le asigna un valor X(ω) de interés: Consumo de un cierto producto. Ganancia obtenida en un juego de azar. Número de llegadas a una cola en un día determinado. En particular, una función constante también es una variable aleatoria.
17 discretas continuas Ejemplo Lanzamos una moneda dos veces y observamos el resultado obtenido. Puede que no estemos interesado en la probabilidad de un suceso cualquiera (cx, por ejemplo), sino en la probabilidad de conseguir un número determinado de caras (0, 1, 2 caras). Entonces, tendríamos que definir una aplicación: X : Ω R ω X(ω) = número de caras. Así, X((c, c)) = 2, X((c, x)) = X((x, c)) = 1 y X((x, x)) = 0. Se cumple entonces P(X = 1) = P({(c, x), (x, c)}) = P((c, x)) + P((x, c)) = = 1 2.
18 discretas continuas Parámetros de una variable aleatoria Dada una variable aleatoria X, su probabilidad P X contiene toda la información probabilística acerca de X. Sin embargo, podemos querer resumir esta información a través de algunos parámetros. Así, podemos considerar la esperanza, varianza, etc. Estos parámetros son análogos a los de estadística descriptiva, pero utilizando, en lugar de la frecuencia relativa de los distintos valores, su probabilidad.
19 discretas continuas Tipos de variables aleatorias Variables discretas: son aquéllas que pueden tomar una cantidad finita o infinita numerable de valores distintos. Su probabilidad P X viene caracterizada por la función f X dada por f X (x) = P X ({x}). Variables continuas: son aquéllas que pueden tomar una cantidad infinita no numerable de valores distintos, y para las que P(X = x) = 0 para todo x.
20 discretas continuas Función de masa de probabilidad Cuando {X(w) : w Ω} = {x 1, x 2,... } es un conjunto finito o infinito numerable, decimos que la variable aleatoria X es discreta. Si teníamos sobre el espacio muestral Ω la probabilidad P, entonces la probabilidad inducida por X será { P(X = x i ) si x = x i para i = 1, 2,... f X (x) = 0 en el resto. Esta función se denomina función de masa de probabilidad.
21 discretas continuas Cálculo de probabilidades de sucesos A partir de la función de masa de probabilidad podemos calcular la probabilidad de que X tome valores en cualquier subconjunto A del conjunto de resultados: P(X A) = x A P(X = x) = x A f X (x). En particular, x Ω f X (x) = 1.
22 discretas continuas Esperanza y varianza de una variable discreta Se define la esperanza de una variable discreta con valores en un conjunto numerable {x n } n como E(X) = n x n f X (x n ), La noción de esperanza puede aplicarse a cualquier transformación g(x) de una variable X: E(g(X)) = n g(x n )f X (x n ). Dadas dos variables X, Y y constantes a, b R, se cumple que E(aX + by ) = ae(x) + be(y ). Por otro lado, la varianza de X viene dada por Var(X) = n (x n E(X)) 2 f X (x n ) = E(X 2 ) E(X) 2.
23 discretas continuas Vectores aleatorios discretos Un vector aleatorio discreto (X 1, X 2 ) representa el comportamiento simultáneo de 2 variables aleatorias discretas X 1, X 2 sobre un mismo espacio. Viene caracterizada por la función de masa de probabilidad conjunta f (X1,X 2 )(x 1, x 2 ) = P(X 1 = x 1, X 2 = x 2 ). Dados conjuntos A 1, A 2, se cumple P(X 1 A 1, X 2 A 2 ) = x 1 A 1 x 2 A 2 P(X 1 = x 1, X 2 = x 2 ). Análogamente se puede modelizar la observación simultánea de k variables aleatorias.
24 discretas continuas Independencia Se dice que las variables X 1, X 2 son independientes cuando f (X1,X 2 )(x 1, x 2 ) = f X1 (x 1 )f X2 (x 2 ) x 1, x 2. Como consecuencia, si X 1 y X 2 son independientes, también lo son los sucesos (X 1 A 1 ) y (X 2 A 2 ) para cualesquiera subconjuntos A 1, A 2 de R.
25 discretas continuas Procesos de Bernoulli Si consideramos repeticiones (finitas o infinitas) de un ensayo con sólo dos resultados posibles, tal experimento será un proceso de Bernoulli cuando: Las repeticiones son independientes: la probabilidad de éxito en la repetición n-ésima no viene influida por los resultados anteriores. La probabilidad de éxito en cada repetición es la misma (p).
26 discretas continuas Distribución Binomial En un proceso de Bernoulli de n repeticiones, nos interesa estudiar el número de éxitos, así si definimos la variable aleatoria: X = número de éxitos obtenidos en esas n pruebas, decimos entonces que X sigue una distribución binomial de parámetros n y p, la denotamos X B (n, p).
27 discretas continuas Características La función de masa de probabilidad de una binomial es ( ) n P (X = x) = p x (1 p) n x, x donde x = 0, 1,..., n y ( ) n x = n! x!(n x)! = n(n 1) (n k+1) k(k 1) 1. La media y la varianza de una B(n, p) son respectivamente E [X] = np Var [X] = np(1 p).
28 discretas continuas Distribución de Poisson La distribución de Poisson se usa habitualemente en experimentos en los cuales estamos interesados en contar el número de ocurrencias de un suceso para un intervalo fijo de tiempo, cuando se cumple que la probabilidad de ocurrencia de un suceso en un intervalo pequeño de tiempo es proporcional a la longitud del intervalo. Ejemplos: Número de reclamaciones semanales a un servicio. Número de saltos en el precio de mercado de un producto en un intervalo de tiempo. Personas que llegan a un mostrador en una hora.
29 discretas continuas Características La distribución de Poisson tiene un único parámetro λ, también llamado parámetro de intensidad. La función de masa de una P(λ) es: P(X = x) = e λ λ x x = 0, 1,... x! Su media y su varianza son E [X] = λ Var [X] = λ. λ se interpreta como tasa de llegadas por unidad de tiempo.
30 discretas continuas continuas Las variables aleatorias continuas aparecen cuando se estudian características numéricas que pueden tomar una cantidad infinita no numerables de valores (todos los de la recta real o los de un intervalo de la misma). En ellas, la probabilidad se acumula suavemente a lo largo del campo de variación y no sólo en unos cuantos puntos.
31 discretas continuas Función de densidad. Definición Una función de densidad es una aplicación f : R R que cumple las siguientes dos propiedades: f (x) 0 para todo x R. f (x)dx = 1. Podemos ver a la función de densidad como una generalización de los histogramas para variables aleatorias continuas.
32 discretas continuas Función de densidad. Propiedades Dado un conjunto medible A, P(X A) = A f (x)dx. f (x) NO es la probabilidad de que X tome el valor x: En una variable continua la probabilidad de tomar cualquier valor concreto es 0. f (x) puede ser mayor que 1. f (x) NO tiene por qué ser una función continua, pero lo será salvo en una cantidad finita de puntos.
33 discretas continuas Esperanza y varianza de una variable continua Dada una variable aleatoria continua X con función de densidad f x, se definen: E(X) = Var(X) = = xf X (x)dx (x E(X)) 2 f X (x)dx x 2 f X (x)dx E(X) 2. De nuevo se cumple E(aX + BY ) = ae(x) + be(y ) para todo par de variables aleatorias X, Y y todo a, b R.
34 discretas continuas Vectores aleatorios continuos Un vector aleatorio continuo (X 1, X 2 ) representa el comportamiento simultáneo de 2 variables aleatorias continuas X 1, X 2. Viene caracterizado por la función de densidad conjunta f (X1,X 2 )(x 1, x 2 ), para x 1, x 2 R. f (X1,X 2 )(x 1, x 2 ) 0 x 1, x 2. f (X 1,X 2 )(x 1, x 2 )dx 1 dx 2 = 1. Análogamente se modelizaría la observación simultánea de k variables aleatorias continuas.
35 discretas continuas Independencia Se dice que las variables X 1, X 2 son independientes cuando f (X1,X 2 )(x 1, x 2 ) = f X1 (x 1 ) f X2 (x 2 ) x 1, x 2. Como consecuencia, si X 1 y X 2 son independientes, también lo son los sucesos (X 1 A 1 ) y (X 2 A 2 ) para cualesquiera subconjuntos A 1, A 2 de R.
36 discretas continuas Conjuntos de variables independientes Dadas n variables aleatorias X 1,..., X n, se dice que son independientes cuando su función de distribución conjunta es igual al producto de las marginales, o equivalentemente si para cualesquiera subconjuntos A 1,..., A n de R, P(X 1 A 1,..., X n A n ) = n P(X i A i ). i=1 Esta condición implica (pero NO es equivalente a) que todo par de variables X i, X j son independientes. Como consecuencia, se dice que las variables de una sucesión {X n } n son independientes cuando las variables de cualquier subconjunto finito lo son.
37 discretas continuas Distribución exponencial Se dice que X exp(α) cuando su función de densidad es { αe αx si x > 0 f (x) = 0 en otro caso, donde α > 0.
38 discretas continuas Ejemplo A continuación representamos la función de densidad de la distribución exp(2): Cuanto mayor sea el valor del parámetro α, más rápidamente decae la función de densidad.
39 discretas continuas Algunos aspectos de la distribución exponencial Los principales momentos de una distribución exp(α) son E(X) = 1 α, Var(X) = 1 α 2. La principal propiedad de esta distribución es la falta de memoria: se cumple P(X t + h X t) = P(X h) t, h > 0.
40 discretas continuas Relación con la distribución de Poisson Si el número de llegadas a un servicio en un intervalo de tiempo t sigue una distribución de Poisson P(λ), entonces el tiempo entre dos llegadas consecutivas (tomando como unidad t) sigue una distribución exponencial exp(λ). Si queremos usar otras unidades de tiempo, basta con tener en cuenta que si las llegadas en t siguen una Poisson P(λ), entonces las llegadas en kt siguen una distribución P(k λ). La correspondencia anterior es la base de los llamados procesos de Poisson, que veremos más adelante.
41 discretas continuas La distribución normal Decimos que una variable aleatoria X tiene una distribución normal X N(µ, σ) cuando su función de densidad es para x R. E(X) = µ, Var(X) = σ 2. f (x) = 1 2πσ exp (x µ)2 2σ 2, La distribución normal estándar se corresponde con µ = 0, σ = 1.
42 discretas continuas Ejemplo La función de densidad para distintos valores de µ, σ viene dada por: f X (x) = 1 σ 2π e 1 2 ( x µ σ )2 X
43 discretas continuas El Teorema Central del Límite Sea X 1,..., X n una sucesión de variables aleatorias independientes e idénticamente distribuidas, con E(X i ) = µ y Var(X i ) = σ 2 < +. Entonces, Z = X µ σ/ n es una variable aleatoria cuya función de densidad se aproxima a la distribución N(0, 1) cuando n es grande. Suele considerarse aplicable la aproximación cuando n > 30.
Modelos de distribuciones discretas y continuas
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Variables aleatorias. Tema Introducción Variable aleatoria. Contenido
Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos
Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Tema 2: Variables Aleatorias Unidimensionales
Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Tema 4. Axiomática del Cálculo de Probabilidades
Tema 4. Axiomática del Cálculo de Probabilidades mjolmo@ujaen.es Curso 2007/2008 Espacio muestral finito equiprobable El espacio muestral contiene un número finito de sucesos elementales todos ellos con
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
Tema 2: Variables Aleatorias
Estadística Aplicada I. Curso 2009-2010 Tema 2: Variables Aleatorias José G. Clavel 1 1 Departamento de Métodos Cuantitativos para la Economía y la Empresa jjgarvel@um.es Universidad de Murcia 6 de octubre
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Tema 3. VARIABLES ALEATORIAS.
3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.
4.1. Definición de variable aleatoria. Clasificación.
Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :
Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)
Variables aleatorias discretas
Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
Tema 3: Funcio n de Variable Aleatoria
Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una
Distribuciones Paramétricas
Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
Bioestadística. Curso Capítulo 3
Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...
Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme
Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas
Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Colegio Sagrada Familia Matemáticas 4º ESO
ÁLULO OMBINATORIO La combinatoria tiene por fin estudiar las distintas agrupaciones de los objetos, prescindiendo de la naturaleza de los mismos pero no del orden. Estudiaremos como se combinan los objetos,
2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria
2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
4. CONCEPTOS BASICOS DE PROBABILIDAD
4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad
Maestría en Bioinformática Probabilidad y Estadística: Clase 1
Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría
Variables aleatorias bidimensionales discretas
Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,
Ideas básicas de probabilidad. objetivo Inferencia estadística.
40 Ideas básicas de probabilidad. objetivo Inferencia estadística. Experimento aleatorio (ε) Diremos que un fenómeno es un experimento aleatorio, cuando el resultado de una repetición es incierto pero
Tema 3: Probabilidad
Tema 3: Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Probabilidad Curso 2009-2010 1 / 13 Índice 1 Fenómenos Aleatorios
Tema 1. Probabilidad y modelos probabiĺısticos
1 Tema 1. Probabilidad y modelos probabiĺısticos En este tema: Probabilidad Variables aleatorias Modelos de variables aleatorias más comunes Vectores aleatorios 2 Tema 1. Probabilidad y modelos probabiĺısticos
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
1.1. Distribución exponencial. Definición y propiedades
CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -
Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso
Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso 2010-11 Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad y esperanza condicionada: recordatorio
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
1. Teoría de conjuntos
Introducción a la probabilidad Universidad de Puerto Rico ET 3041 Prof. Héctor D. Torres ponte 1. Teoría de conjuntos Definición 1.1. La colección de todos los posibles resultados de un experimento se
Probabilidad 2º curso de Bachillerato Ciencias Sociales
PROBABILIDAD Índice: 1. Experimentos aleatorios. Espacio muestral----------------------------------------------------- 2 2. Suceso aleatorio ------------------------------------------------------------------------------------
Distribuciones de Probabilidad
Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y
CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD
Ideas básicas de probabilidad. objetivo Inferencia estadística.
40 Ideas básicas de probabilidad. objetivo Inferencia estadística. Teoría de probabilidades: Descripción matemática de los fenómenos aleatorios que surgen al realizar experimentos aleatorizados o al tomar
5 DISTRIBUCIONES BINOMIAL Y DE POISSON
5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona
Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung
Tema 5. Variables Aleatorias
Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo García
TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...
TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones
Tema 4: Variable Aleatoria Bidimensional
Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
A. Probabilidad. Resultados. Elementos ω del espacio muestral, también llamados puntos muestrales o realizaciones.
Tema 1. Espacios de Probabilidad y Variables Aleatorias: Espacios de Probabilidad. 1 A. Probabilidad. Un experimento aleatorio tiene asociados los siguientes elementos: Espacio muestral. Conjunto Ω de
Tema 6. Variables Aleatorias Discretas
Presentación y Objetivos. Tema 6. Variables Aleatorias Discretas En esta unidad se presentan algunos ejemplos estándar de variables aleatorias discretas relacionadas de diversas formas dependiendo de su
Introducción a los Procesos de Poisson *
Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22
VARIABLE ALEATORIA. Una variable aleatoria discreta es el modelo teórico de una variable estadística discreta (con valores sin agrupar).
VARIABLE ALEATORIA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA CONTINUA DISTRIBUCIÓN DE PROBABILIDAD. PROBABILIDAD INDUCIDA. FUNCIÓN DE DISTRIBUCIÓN EN VARIABLE DISCRETA FUNCIÓN DE DISTRIBUCIÓN EN VARIABLE
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)
TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio
Martingalas. Es decir, condicionando al pasado, la ganancia neta esperada luego del turno siguiente es cero. Esto es, el juego es justo.
Martingalas Vamos a estudiar una clase de procesos que pueden verse como la fortuna de un jugador que juega repetidamente un juego justo. Así que pensemos que M n es la fortuna del jugador luego de jugar
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Probabilidad PROBABILIDAD
PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados
Tema 3: Variables aleatorias y vectores aleatorios bidimensionales
Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
Ejercicio 1. Ejercicio 2
Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso