Probabilidades. Gerardo Arroyo Brenes
|
|
|
- Bernardo Contreras Caballero
- hace 9 años
- Vistas:
Transcripción
1 Probabilidades Gerardo Arroyo Brenes
2 Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o Escudo; Seleccionar una parte para inspeccionar la Defectuosa o no defectuosa; Lanzar un dado 1, 2, 3, 4, 5, 6; Jugar un partido de fútbol Ganar, perder, empatar Experimentos aleatorios: Son aquellos experimentos en los cuales los resultados no son esencialmente los mismos a pesar de que las condiciones sean aproximadamente idénticas. Diremos que un experimento es aleatorio si se verifican las siguientes condiciones: - Se puede repetir indefinidamente, siempre en las mismas condiciones. - Se conocen todos los posibles resultados antes de realizar el experimento. - Antes de realizarlo, no se puede predecir el resultado que se va a obtener. - Se genera una función que indica el comportamiento de la variable en el experimento.
3 Espacio muestral: Es aquel conjunto que contiene a todos los resultados de un experimento aleatorio. Se denota por la letra E o la letra griega Ω. De acuerdo a la cantidad de elementos que posee el espacio muestral, se puede clasificar en: finito o infinito: Finito o Infinito: Numerable (discreto) y No Numerable (continuo). Punto muestral: Es cada uno de los elementos del espacio muestral (S). Suceso o evento: Es cualquier subconjunto de resultados contenido en el espacio muestral. Ejemplo: Si se lanza una moneda al aire 2 veces, el hecho de que sólo resulte cara es un suceso del espacio muestral.
4 Tipos de sucesos: Suceso cierto o seguro: es aquel que siempre ocurre. Suceso imposible: es aquel que no puede ocurrir. Sucesos mutuamente excluyentes: son aquellos que no pueden ocurrir simultáneamente, por lo que no tienen elementos comunes. Ejemplo: lanzar una moneda al aire, el obtener cara o Escudo es un suceso mutuamente excluyente. Sucesos independientes: son aquellos donde la ocurrencia de uno no afecta la ocurrencia del otro.
5 Sucesos complementarios: dos sucesos son complementarios si la no aparición de uno de ellos obliga a que ocurra el otro. Ejemplo: Si A es el suceso de sacar un número par con un dado, el complemento es sacar un número impar. Evento elemental o simple: es un evento formado por un solo punto del espacio muestral.
6 Teoría de conjuntos Unión: se llama unión o reunión de dos conjuntos A y B, al conjunto C formado por los elementos que pertenezcan a A o a B. Notación simbólica: AυB = {x x є A o x є B} Intersección: se llama intersección de dos conjuntos A y B, al conjunto C formado por los elementos comunes a A y a B. Notación simbólica: A B = {x x є A y x є B} Diferencia: se llama diferencia de dos conjuntos A y B, en este orden, al conjunto C formado por los elementos que pertenecen a A pero no a B. Notación simbólica: A - B = {x x є A y x B}
7 Complemento de un conjunto: el complemento de un conjunto A, se denota por A C o A y es el conjunto de elementos que pertenecen al conjunto universal pero que no pertenecen a A. Nota: se supone que todos los conjuntos bajo investigación en cualquier aplicación de una teoría de conjuntos están contenidos en algún conjunto grande fijo denominado conjunto universal. Notación simbólica: A c = {x x e U y x э A} NOTA: Un evento no es otra cosa que un CONJUNTO. Por lo tanto, los conceptos de teoría de conjuntos se emplearán construir nuevos eventos a partir de eventos dados.
8 Ejemplo Suponga que en el curso de Estadística Inferencial de la Ingeniería de Procesos y Calidad, actualmente se encuentran matriculados 150 personas de un total de 180 estudiantes del 9 nivel, 60 de los 180 no han llevado Calculo Diferencial e Integral y el 60% se encuentran matriculados en ambos cursos. Determine: a. El número de estudiantes que se encuentra matriculado en ambas asignaturas. b. El número de estudiantes que se encuentra cursando el curso de Cálculo Diferencial e integral. c. El número de estudiantes que no se encuentra en alguno de los cursos. d. El número de estudiantes que se encuentra cursando Estadística Inferencial.
9 Solución A: Estadística Inferencia B: Cálculo Diferencial e Integral
10 Probabilidades Supongamos que un E de un total de n posibilidades igualmente probables y se puede representar en A de los casos, entonces la probabilidad del suceso llamado como Éxito (x) viene dada por: P A x n
11 Propiedades de la Probabilidad: P 0 c P A 1 P A, A P E 3. Si A es un subconjunto de B entonces P A PB
12 Regla de la Adición Esta regla afirma que el valor de la unión de un número finito arbitrario de sucesos se puede obtener de la siguiente forma: Para elementos Mutuamente excluyentes: Para elementos Mutuamente Excluyentes: P A B P(A) P(B) P A B P(A) P(B) P A B
13 Probabilidad condicional Si A y B son Cualesquiera eventos en E y P B 0, la probabilidad de A dado B es de: P A B Si A y B son dos sucesos cualesquiera tales que P(B)>0. P A B PB
14 Eventos independientes Dos sucesos son independientes cuando la ocurrencia de un suceso no afecta la ocurrencia del otro suceso. Si A y B son sucesos independientes es natural pensar que la probabilidad de que A y B sucedan es igual al producto de sus probabilidades individuales. A y B son independientes, si sólo si PA B PA y PB A PB De otra forma A y B son dependientes.
15 REGLA DE LA MULTIPLICACIÓN En un experimento que involucra dos sucesos A y B que no son independientes, a menudo es conveniente calcular la probabilidad de que ambos sucesos ocurran utilizando una de las dos ecuaciones siguientes: P P AB PA B PBPA B AB PA B PAPB A Si A y B son independientes: P AB P A B P A P B
16 P(E1 E2) = P(E1) P(E2/E1) Es útil cuando necesitamos encontrar la probabilidad conjunta pero no tenemos las frecuencias relativas. La probabilidad conjunta de dos eventos E1 E2, es el producto de la probabilidad individual de E1 por la probabilidad condicional de E2 dado que ha ocurrido E1. Cuál será la probabilidad de escoger dos ases corridas (sin reemplazo) de un paquete de 52 cartas? P(E1) es la probabilidad de escoger el primer as = 4/52 P(E2) es la probabilidad de escoger el segundo as = 3/51 El resultado será 4/52 * 3/51 = 12/2652 =
17 P(E1 E2) = P(E1) P(E2) La probabilidad conjunta de dos eventos E1 y E2 es el producto de la probabilidad de E1 por la probabilidad de E2. Cuál será la probabilidad de escoger dos Ases corridas (con reemplazo) de un paquete de 52 cartas? P(E1) es la probabilidad de escoger el primer As = 4/52 P(E2) es la probabilidad de escoger el segundo As = 4/52 El resultado sería 4/52 * 4/52 = 16/2704 = 0.006
18 Ejercicio Se la tabla de contingencia donde se clasifica una población de 417 personas según el nivel socioeconómico y el nivel de estudio, Nivel Socioeconómico Nivel de Estudio Bajo Medio Alto Total Absoluto % Absoluto % Absoluto % Pobres No pobres Total Revista X, 1990
19 La probabilidad de tener un nivel de estudio bajo. La probabilidad de ser pobre dado que tiene un nivel de estudio bajo. La probabilidad de ser no pobre y tener un nivel de estudio alto. La probabilidad de tener un nivel de estudio alto dado que es pobre. La probabilidad de ser no pobre dado que no tiene un nivel de estudio alto.
20 TEOREMA DE BAYES Si los eventos B 1,B 2,,B k constituyen una partición del espacio muestral Ω tal que para i = 1,2,,k, entonces para cualquier evento A en Ω tal que, k i i P A P P A B P B A i i1 P ip A Bi k P ip A Bi i1
21 Ejemplo Una empresa consultora renta automóviles de tres agencias, 20% de la agencia D, 20% de la agencia E y 60% de la agencia F. Si 10% de los autos de D, 12% de autos de E y 4% de los autos de F tienen neumáticos en mal estado Cuál es la probabilidad de que la empresa reciba un auto con neumáticos en mal estado?
22 Ejemplo Cuatro técnicos se encargan de regularmente de las reparaciones de una línea de producción automatizada en caso de descomposturas. Josefina, quien ocupa el 20% de las descomposturas, realiza una reparación incompleta 1 vez de 20; Tomás, quién atiende el 60% de las descomposturas realiza una reparación incompleta 1 vez de 10; Griselda, quien atiende el 15% de las descomposturas, realiza una reparación incompleta 1 vez de 10 y Pedro se ocupa del 5% de las descomposturas, realiza una reparación incompleta 1 vez de 20. Para este problema con línea de producción, atribuido en el diagnóstico a una reparación inicial incompleta Cuál es la probabilidad de tal reparación inicial haya sido hecha por Josefina?
23
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
Nociones Básicas Probabilidad
1 Nociones Básicas Probabilidad Experimento aleatorio es aquel que, bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, es decir, no se puede predecir o reproducir
En el resultado de los experimentos aleatorios interviene el azar, cuando ésto no ocurre así, hablaríamos de sucesos deterministas.
1.- EXPERIMENTOS ALEATORIOS Y SUCESOS Un experimento aleatorio es aquel que cumple las siguientes condiciones: Se conocen todos sus posibles resultados No se puede conocer el resultado que se obtendrá
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD PRESENTA DRA. EN ING. RITA VICTORIA DE LEÓN ARDÓN 2.Trabajo en equipo 3. Estudio independiente 1.
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
MATEMÁTICAS BÁSICAS PROBABILIDAD
MATEMÁTICAS BÁSICAS PROBABILIDAD Autora: Alejandra Sánchez Departamento de Matemáticas Sede Bogotá 10 de diciembre de 2013 Introducción a la Probabilidad Definición espacio muestral y eventos Definición
Probabilidad condicional
4 Profra. Blanca Lucía Moreno Ley March 18, 2014 Sumario 1 Resumen 2 Probabilidad Supongamos que un experimento E tiene un espacio muestral U y un evento A está definido en dicho espacio muestral, entonces
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones
Experimentos aleatorios Es posible repetir cada experimento indefinidamente sin cambiar esencialmente las condiciones Aunque en general no podemos ind
Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles
Análisis de Datos. Conceptos básicos de probabilidad y teorema de Bayes. Profesor: Dr. Wilfrido Gómez Flores
Análisis de Datos Conceptos básicos de probabilidad y teorema de Bayes Profesor: Dr. Wilfrido Gómez Flores 1 Teoría de la probabilidad Los fenómenos del mundo real se pueden clasificar en dos tipos: Determinista:
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
Probabilidad PROBABILIDAD
PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
Bloque I: Estadística y Probabilidad
Bloque I: Estadística y Probabilidad 1. Probabilidad 1. Teoría de la probabilidad 2. Probabilidad condicionada 3. Dependencia e independencia de sucesos 4. Técnicas de recuento: diagramas de árbol, tablas
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Curs MAT CFGS-17
Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
Teoría elemental de la probabilidad
La es el medio por el cual a partir de la información muestral tomamos decisiones o hacemos afirmaciones que se refieren a toda una población, mediante el proceso llamado inferencia estadística La nos
CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD
CAPÍTULO IV CONCEPTOS BÁSICOS DE PROBABILIDAD Por qué hablar de Probabilidad En el primer capítulo cuando definimos algunos conceptos hablamos de población y de muestra, dijimos que cuando trabajamos con
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
2.3 PROPIEDADES DE LA PROBABILIDAD
2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos
PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
4. CONCEPTOS BASICOS DE PROBABILIDAD
4. CONCEPTOS BASICOS DE PROBABILIDAD 4.1 Introducción La probabilidad y la estadística son, sin duda, las ramas de las Matemáticas que están en mayor auge en este siglo, y tienen una tremenda aplicabilidad
Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas.
La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas. Dado un experimento y cualquier evento A: La expresión
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Ing. Ivannia Hasbum., M.Eng. Todos los días tomamos decisiones pero no las tomamos a ciegas, imaginar las probabilidades de varios resultados posibles nos ayuda
Introducción a la Probabilidad
La probabilidad es una medida numérica de la posibilidad de que ocurra un evento. Por tanto, las probabilidades son una medida del grado de incertidumbre asociado con cada uno de los eventos previamente
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2017-2018 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Combinatoria. Regla del producto 1.2.- Probabilidad condicionada.
Tema 6: Introducción a la Probabilidad
Tema 6: Introducción a la Probabilidad 1. Introducción 2. La regularidad estadística 3. Concepto de probabilidad i. Definición clásica ii. Concepto frecuencialista de la probabilidad iii. Definición axiomática
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN Conocida ahora la probabilidad de un evento, se pueden reunir ciertas características conocidas como axiomas de probabilidad que satisfacen la probabilidad
NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo
NIVELACIÓN DE ESTADISTICA Qué es la probabilidad? La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Por ejemplo: tiramos un dado al aire y
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un
CALCULO DE PROBABILIDADES
CALCULO DE PROBABILIDADES Los experimentos o fenómenos aleatorios son aquellos que al ser repetidos en condiciones uniformes presentan resultados variables de manera que no puede predecirse con exactitud
ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE
ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE En la anterior sesión vimos los conceptos básicos de probabilidad y
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes
TEMA: AZAR Y PROBABILIDAD.
TEMA: AZAR Y PROBABILIDAD. 1. EXPERIENCIAS ALEATORIAS. SUCESOS. Una experiencia aleatoria es toda aquella cuyo resultado depende del azar. (Extraer una carta de una baraja, lanzar una moneda, lanzar unos
ESTADÍSTICA Y PROBABILIDAD. a) Si el experimento consiste en tirar una moneda y ver qué sale, el espacio muestral es:
ESTADÍSTICA Y PROBABILIDAD 1. ESPACIO MUESTRAL a) Si el experimento consiste en tirar una moneda y ver qué sale, el espacio muestral es: b) Si se lanza un dado y una moneda el espacio muestral es: c) Si
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad, un concepto básico el cual puede considerarse como indefinido, expresando de algún modo un grado de creencia, o la frecuencia límite de una serie aleatoria. Ambos
Apuntes de Probabilidad 4ESO
Apuntes de Probabilidad 4ESO Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible
Apuntes de Probabilidad
Apuntes de Probabilidad Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible conocer
Probabilidad Condicional. Dr. José Dionicio Zacarias Flores
Probabilidad Condicional Dr. José Dionicio Zacarias Flores Introducción Sea E un experimento aleatorio con espacio de probabilidad (Ω,F,P). Algunas veces podemos poseer información incompleta sobre el
UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira
UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira Levin & Rubin. Estadística para Administradores Gómez Barrantes, Miguel. Elementos de estadística descriptiva 1
UNIDAD II: EXRIMENTOS ALEOTORIOS
UNIDAD II: EXRIMENTOS ALEOTORIOS Un experimento aleatorio es aquél en el que si lo repetimos con las mismas condiciones iniciales no garantiza los mismos resultados. Así, por ejemplo, al lanzar una moneda
Tema 4. Axiomática del Cálculo de Probabilidades
Tema 4. Axiomática del Cálculo de Probabilidades [email protected] Curso 2007/2008 Espacio muestral finito equiprobable El espacio muestral contiene un número finito de sucesos elementales todos ellos con
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
II. PROBABILIDAD MTRO. FRANCISCO JAVIER CRUZ ARIZA
II. PROBABILIDAD MTRO. FRANCISCO JAVIER CRUZ ARIZA PROBABILIDAD Es una medida numérica que refleja la posibilidad de que ocurra un evento. Permite obtener conclusiones sobre las características de la variable
1. Experimentos aleatorios
1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,
Probabilidad. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.
Probabilidad Definiciones Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. Experimento aleatorio: Es aquel experimento cuyo resultado no
Experimento Aleatorio o ensayo
Clase 5 1 Experimento Aleatorio o ensayo Es un proceso o acción cuyo resultado es incierto, es decir no es predecible. Es factible de ser repetido infinitas veces, sin modificar las condiciones. Repetición
Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto
Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................
Introducción a la probabilidad
Estadística Introducción a la probabilidad El término probabilidad se utiliza habitualmente en relación con que ocurra un determinado suceso cuando se lleva a cabo un experimento. Definición: Un experimento
- Determinísticos. - Aleatorios. Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo.
Probabilidad - Determinísticos Experimentos - leatorios Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo. Un experimento aleatorio, también llamado ensayo o acción
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
BASES DE LA PROBABILIDAD
BASES DE LA PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus UPIICSA Instituto Politécnico Nacional Primavera 2004 IPN c 2004 Juan C. Gutiérrez Matus IPN c 2004 Juan C. Gutiérrez Matus 1 Introducción
ESTADISTICA GENERAL. PROBABILIDADES Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PROBABILIDADES Profesor: Celso Celso Gonzales OBJETIVOS Desarrollar la comprensión de los conceptos básicos de probabilidad. Definir que es probabilidad Definir los enfoques clasico,
PROBABILIDAD Y ESTADISTICA PROBABILIDAD
Y ESTADISTICA ROBABILIDAD rofesor: Victor Hugo Gil Avendaño UNICATOLICA 24/08/2017 El concepto de probabilidad es manejado por mucha gente. Frecuentemente se escuchan preguntas como las que se mencionan
TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.
I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo García
1.- Definiciones Básicas:
Tema 3 PROBABILIDAD Y COMBINATORIA 1.- Definiciones Básicas: El objetivo del cálculo de probabilidades es el estudio de métodos de análisis del comportamiento de fenómenos aleatorios en lo relativo a su
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad
Cálculo de probabilidad Tema 1: Combinatoria y probabilidad Guión Guión 1.1. Análisis combinatorio Regla de multiplicación Este es el método de conteo más sencillo que existe. Supongamos que realizamos
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades
MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades 1. REGLA DE LAPLACE Cuando un suceso va a ocurrir, en ciertos casos es posible que se pueda predecir su resultado. Si se puede predecir diremos
Capítulo 1. Teoría de la probabilidad Teoría de conjuntos
Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral
Introducción a la probabilidad. Introducción a la probabilidad. Introducción a la probabilidad. Introducción. Objetivos del tema:
Introducción a la probabilidad Introducción a la probabilidad Introducción Objetivos del tema: l final del tema el alumno será capaz de: Comprender y describir los sucesos de un experimento mediante gráficos,
b) Cuál es la probabilidad de que salga un número par? c) Cuál es la probabilidad de que salga un número impar?
La probabilidad es la rama de la matemática que mide la incertidumbre. Debido a eso, es muy utilizad para analizar las posibilidades de ganar en juegos de azar. Sin embargo, sus aplicaciones se diversifican
LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD
LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD TEMA 20: DEFINICIONES BASICAS DE PROBABILIDAD 1. EXPERIMENTO Un experimento
Tiempo completo Tiempo parcial Total Mujeres Hombres Total
ASIGNACION DE ROBABILIDAD A manera de introducción al tema analicemos las diferencias entre eventos mutuamente excluyentes, no mutuamente excluyentes, dependientes e independientes. Ejemplo : En un grupo
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.
Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia
Tema 3: Fundamentos de Probabilidad Introducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce
