Tema 6: Introducción a la Probabilidad
|
|
|
- José Ramón Henríquez Correa
- hace 7 años
- Vistas:
Transcripción
1 Tema 6: Introducción a la Probabilidad 1. Introducción 2. La regularidad estadística 3. Concepto de probabilidad i. Definición clásica ii. Concepto frecuencialista de la probabilidad iii. Definición axiomática de la probabilidad iv. Definición de probabilidad condicionada 4. Teoremas de probabilidad i. Teorema de las probabilidades totales ii. Teorema de Bayes iii. Regla del producto Tema 6 1
2 6.1. Introducción Relación entre probabilidad y estadística: Probabilidad = Vehículo que sirve para usar la información de la muestra y, a partir de ella, hacer inferencia a la población Objetivos de probabilidad: 1. Describir (deducción) 2. Interpretar (inducción) Terminología: Fenómenos: Fenómenos Deterministas Aleatorios Experimentos aleatorios: Posibles resultados conocidos Imposible saber resultado Condiciones iniciales iguales resultados iguales Tema 6 2
3 Espacio muestral asociado a un experimento aleatorio (W): Conjunto de los diferentes resultados Espacio Muestral Sucesos: Acontecimientos que se pueden dar al hacer un experimento Sucesos Finito Infinito Numerable Infinito Seguros Distintos Iguales Imposibles Complementarios Disjuntos Incluidos Tema 6 3
4 Tema 6: Introducción a la Probabilidad 1. Introducción 2. La regularidad estadística stica 3. Concepto de probabilidad i. Definición clásica ii. Concepto frecuencialista de la probabilidad iii. Definición axiomática de la probabilidad iv. Definición de probabilidad condicionada 4. Teoremas de probabilidad i. Teorema de las probabilidades totales ii. Teorema de Bayes iii. Regla del producto Tema 6 4
5 6.2. La regularidad estadística A medida que se incrementa el número de veces que se repite un experimento, la probabilidad de que ocurra un suceso se estabiliza. La probabilidad se puede definir como la frecuencia relativa de un suceso determinado P(A) = Frecuencia relativa Tema 6 5
6 Tema 6: Introducción a la Probabilidad 1. Introducción 2. La regularidad estadística 3. Concepto de probabilidad i. Definición clásica ii. Concepto frecuencialista de la probabilidad iii. Definición axiomática de la probabilidad iv. Definición de probabilidad condicionada 4. Teoremas de probabilidad i. Teorema de las probabilidades totales ii. Teorema de Bayes iii. Regla del producto Tema 6 6
7 6.3. Concepto de probabilidad Definición clásica: Todos los resultados tienen que tener la misma probabilidad de ocurrencia (equiprobables) P(A) = Casos Favorables Casos Posibles Definición frecuencialista: No se puede usar en fenómenos no experimentales n A P(A) = lim = lim n n n Donde n A = nº de veces que ocurre A n = número de veces que se repite el experimento f A Tema 6 7
8 Definición axiomática: La probabilidad es una aplicación que cumple los siguientes axiomas: Cualquier suceso tiene probabilidad positiva La probabilidad total vale 1 Para un conjunto de sucesos excluyentes se cumple: Otros teoremas que se cumplen son: P ( ) = 0 Sean A y B sucesos no excluyentes A B Si entonces Conclusión: PA P UAi = P Ai i= 1 i= 1 Tema 6 8 ( ) P(A B) = P(A) + P(B) - P(A B ) ( ) 1 PA PB ( ) ( )
9 Definición de probabilidad condicionada Sean 2 sucesos A y B: N A = nº de veces que aparece A N B = nº de veces que aparece B N AB = nº de veces que aparecen A y B conjuntamente N = nº de veces que se repite el experimento NAB NAB ( ) ( / ) N P A B PA B= = = N N B B P( B) N Si A y B son sucesos independientes, entonces se cumple que P( A B) = P( A) P( B) y, por tanto PA ( B) PAB ( / ) = = PA ( ) PB ( ) Tema 6 9
10 Tema 6: Introducción a la Probabilidad 1. Introducción 2. La regularidad estadística 3. Concepto de probabilidad i. Definición clásica ii. Concepto frecuencialista de la probabilidad iii. Definición axiomática de la probabilidad iv. Definición de probabilidad condicionada 4. Teoremas de probabilidad i. Teorema de las probabilidades totales ii. Teorema de Bayes iii. Regla del producto Tema 6 10
11 6.4. Teoremas de probabilidad Teorema de las probabilidades totales Sean los sucesos A 1,A 2,...,A n βque cumplen: La unión de todos los sucesos es igual a W La intersección de 2 sucesos cualesquiera da Todos los sucesos tienen probabilidad > 0 Sea el suceso B β. Entonces se cumple: n P( B) = P Ai P B/ Ai i= 1 ( ) ( ) Tema 6 11
12 Teorema de Bayes De aplicación cuando disponemos de información a priori. Nos permite conocer la probabilidad de que, ocurrido un suceso B y conocida P(B), la causa que lo haya producido sea A i. Sean los sucesos A 1,A 2,...,A n β que cumplen: La unión de todos los sucesos es igual a W La intersección de 2 sucesos cualesquiera da Todos los sucesos tienen probabilidad > 0 P( Ai B) P( B/ Ai) P( Ai) P( B/ Ai) P( Ai) PA ( i / B) = = = P( B) P( B) P( B/ A) P( A) i i Tema 6 12
13 Regla del producto Se deduce de la definición de probabilidad condicionada. Sean los sucesos A y B del espacio W PA ( B) P( A B) PA ( / B) = y PB ( / A) = PB ( ) PA ( ) De donde PB ( ) PA ( / B ) con PB ( ) > 0 PA ( B) = PA ( ) PB ( / A ) con PA ( ) > 0 Generalizando para n sucesos (con interacción no vacía) PA ( A... A) = PA ( ) PA ( / A) PA ( / A A) n P( An/ A1 A 2... An 1) Tema 6 13
CALCULO DE PROBABILIDADES
CALCULO DE PROBABILIDADES Los experimentos o fenómenos aleatorios son aquellos que al ser repetidos en condiciones uniformes presentan resultados variables de manera que no puede predecirse con exactitud
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
En el resultado de los experimentos aleatorios interviene el azar, cuando ésto no ocurre así, hablaríamos de sucesos deterministas.
1.- EXPERIMENTOS ALEATORIOS Y SUCESOS Un experimento aleatorio es aquel que cumple las siguientes condiciones: Se conocen todos sus posibles resultados No se puede conocer el resultado que se obtendrá
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
Tipos de fenómenos. Deterministas: Previsibles de antemano sin recurrir a la observación. Aleatorios: Inciertosw.
Tipos de fenómenos Deterministas: Previsibles de antemano sin recurrir a la observación. Aleatorios: Inciertosw. Variable aleatoria: Tiene comportamiento incierto. Aleatoriedad =incertidumbre Aleatoriedad
TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.
I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los
Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto
Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Tema 4. Axiomática del Cálculo de Probabilidades
Tema 4. Axiomática del Cálculo de Probabilidades [email protected] Curso 2007/2008 Espacio muestral finito equiprobable El espacio muestral contiene un número finito de sucesos elementales todos ellos con
Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2017-2018 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Combinatoria. Regla del producto 1.2.- Probabilidad condicionada.
Tema 9: Probabilidad: Definiciones
Tema 9: Probabilidad: Definiciones 1. CONCEPTOS Experimento aleatorio Suceso Espacio muestral 2. DEFINICIÓN DE PROBBILIDD Enfoque clásico Enfoque frecuencialista 3. PROBBILIDD CONDICIONL 4. TEOREMS BÁSICOS
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
Experimento Aleatorio o ensayo
Clase 5 1 Experimento Aleatorio o ensayo Es un proceso o acción cuyo resultado es incierto, es decir no es predecible. Es factible de ser repetido infinitas veces, sin modificar las condiciones. Repetición
Tema 3: Probabilidad. Teorema de Bayes.
Estadística 36 Tema 3: Probabilidad. Teorema de Bayes. 1 Definiciones básicas. En Estadística se utiliza la palabra experimento para designar todo acto que proporciona unos datos. Se van a distinguir dos
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes
Objetivo del Cálculo de Probabilidades:
Objetivo del Cálculo de Probabilidades: Establecer y desarrollar modelos matemáticos adaptados al estudio de situaciones que presentan cierto grado de incertidumbre Definición de Estadística (Barnett,
Experimentos aleatorios Es posible repetir cada experimento indefinidamente sin cambiar esencialmente las condiciones Aunque en general no podemos ind
Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
2. Conceptos Básicos de Probabilidad. ESTADÍSTICA Esp. Paola G. Herrera S.
2. Conceptos Básicos de Probabilidad ESTADÍSTICA Esp. Paola G. Herrera S. Introducción La probabilidad es la rama de las matemáticas que estudia los fenómenos con incertidumbre. Es un mecanismo por medio
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN Conocida ahora la probabilidad de un evento, se pueden reunir ciertas características conocidas como axiomas de probabilidad que satisfacen la probabilidad
PROBABILIDAD Probabilidad Clásica y Frecuencial. Probabilidad frecuencial y regularidad estadística Las frecuencias relativas de un evento tienden a
Probabilidad Clásica y Frecuencial. Probabilidad frecuencial y regularidad estadística Las frecuencias relativas de un evento tienden a estabilizarse cuando el número de observaciones se hace cada vez
Bloque I: Estadística y Probabilidad
Bloque I: Estadística y Probabilidad 1. Probabilidad 1. Teoría de la probabilidad 2. Probabilidad condicionada 3. Dependencia e independencia de sucesos 4. Técnicas de recuento: diagramas de árbol, tablas
Capítulo 5: Probabilidad e inferencia
Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos Aleatorios. 2) Espacio Muestral. 3) Operaciones con Sucesos. 4) Enfoques de la Probabilidad.
n A i ) = 1 Ejemplo. El experimento consiste en tirar una moneda. Se considera S = {cara, ceca} La familia de eventos es P(S) = {,{cara}, {ceca}, S}
2.4 Probabilidad de un Evento CONCEPTO DE PROBABILIDAD La probabilidad de un evento A P(S), denotada con P(A), es una medida de la posibilidad de que se realice A si se ejecuta el experimento una vez.
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Tema 4 Probabilidad. Fenómeno aleatorio: es aquel cuyos resultados son impredecibles.
Tema 4 robabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un alumno entre los 30 de
1.- Definiciones Básicas:
Tema 3 PROBABILIDAD Y COMBINATORIA 1.- Definiciones Básicas: El objetivo del cálculo de probabilidades es el estudio de métodos de análisis del comportamiento de fenómenos aleatorios en lo relativo a su
MÓDULO I. TEORÍA DE LA PROBABILIDAD
UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 1.1. Aleatoriedad e incertidumbre 1.2 Probabilidad
6. PROBABILIDAD I. Eugenio Hernández. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso Universidad Autónoma de Madrid
6. PROBABILIDAD I Universidad Autónoma de Madrid COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 6.1. Frecuencia y probabilidad. Modelos de probabilidad FENÓMENO ALEATORIO Un
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
1. Combinatoria Sucesos aleatorios...
PROBABILIDAD Índice: Página. Combinatoria..... Sucesos aleatorios...... Experimento aleatorio...... Tipos de sucesos....3. Operaciones con sucesos..... Sistema completo de sucesos....5. Experimentos compuestos...
deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y
CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)
TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
Probabilidad. 1. Conceptos previos. Teoría de conjuntos. Conceptos básicos
. Conceptos previos Teoría de conjuntos. Conceptos básicos Dado un conjunto M, se llama conjunto de partes de M, y se denota por P(M), al conjunto de todos los subconjuntos de M (incluido el conjunto vacio,,
ESTADISTICA GENERAL. PROBABILIDADES Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PROBABILIDADES Profesor: Celso Celso Gonzales OBJETIVOS Desarrollar la comprensión de los conceptos básicos de probabilidad. Definir que es probabilidad Definir los enfoques clasico,
Estadística. Tema 7: Teoría de Probabilidad.. Estadística. UNITEC Tema 7: Teoría de Probabilidad Prof. L. Lugo
Estadística Teoría de onjuntos ONJUNTO: colección de objetos de cualquier clase, definida de forma tal que no queden dudas acerca de la pertenencia de un elemento o no. Formas de definir conjuntos: i.-
Probabilidades. Gerardo Arroyo Brenes
Probabilidades Gerardo Arroyo Brenes Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o
EXPERIENCIAS ALEATORIAS. SUCESOS
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 3º Evaluación Probabilidad EXPERIENCIAS ALEATORIAS. SUCESOS Experiencias Deterministas y Aleatorias Experiencias deterministas: son aquellos
Colegio Sagrada Familia Matemáticas 4º ESO
ÁLULO OMBINATORIO La combinatoria tiene por fin estudiar las distintas agrupaciones de los objetos, prescindiendo de la naturaleza de los mismos pero no del orden. Estudiaremos como se combinan los objetos,
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Probabilidad y Estadística
Probabilidad y Estadística Sondeo Que tanto han visto sobre temas relacionados con probablidad y estadística? Por ejemplo: combinaciones, permutaciones, teorema del binomio, teoría de conjuntos? Probabilidad
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES EXPERIMENTOS ALEATORIOS.ESPACIO MUESTRAL Experimento determinista: Aquel cuyo resultado se puede predecir de antemano, está regido por leyes, sean o no de la Naturaleza. Ej.-
Probabilidad. 1. -Si A y B son dos sucesos de un espacio muestral, entonces:..
1 -Si A y son dos sucesos de un espacio muestral, entonces: a) P (A ) = P(A) + P() X b) P(A ) = P(A) + P() P(A ) c) P (A ) = P(A)P() Se cumple P(A ) = P(A) + P() P(A ) Siendo P(A ) = P(A) + P() cuando
Introducción a la probabilidad. Introducción a la probabilidad. Introducción a la probabilidad. Introducción. Objetivos del tema:
Introducción a la probabilidad Introducción a la probabilidad Introducción Objetivos del tema: l final del tema el alumno será capaz de: Comprender y describir los sucesos de un experimento mediante gráficos,
Teoría elemental de la probabilidad
La es el medio por el cual a partir de la información muestral tomamos decisiones o hacemos afirmaciones que se refieren a toda una población, mediante el proceso llamado inferencia estadística La nos
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
Probabilidad 2º curso de Bachillerato Ciencias Sociales
PROBABILIDAD Índice: 1. Experimentos aleatorios. Espacio muestral----------------------------------------------------- 2 2. Suceso aleatorio ------------------------------------------------------------------------------------
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo García
Probabilidad y Combinatoria
Probabilidad y Definiciones básicas. Definiciones de Probabilidad Probabilidad condicionada. Teoremas Ejercicios Definiciones Básicas Experimento: cualquier proceso que genere un conjunto de datos. Deterministas:
TEMA 5. Probabilidad
TEMA 5. Probabilidad Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 5. Probabilidad 1 / 7 Hasta ahora hemos aprendido a describir datos mediante: gráficas (histogramas y diagramas
Repaso de Probabilidad y Estadística
Repaso de Probabilidad y Estadística Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Probabilidad 2 Definición.............................................................
Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia
PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Introducción Jacob Berooulli (1654-1705), Abraham de Moivre (1667-1754), el reverendo Thomas Bayes (1702-1761) y Joseph Lagrange (1736-1813) desarrollaron
PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos
PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque
Introducción a la probabilidad
Estadística Introducción a la probabilidad El término probabilidad se utiliza habitualmente en relación con que ocurra un determinado suceso cuando se lleva a cabo un experimento. Definición: Un experimento
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD PRESENTA DRA. EN ING. RITA VICTORIA DE LEÓN ARDÓN 2.Trabajo en equipo 3. Estudio independiente 1.
2.3 PROPIEDADES DE LA PROBABILIDAD
2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos
Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD
Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma
ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE
ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE En la anterior sesión vimos los conceptos básicos de probabilidad y
La probabilidad y otras mentiras
La probabilidad y otras mentiras Ejercicios tres y cuatro de selectividad. Todo esto de la probabilidad comenzó con la intención, de dado un experimento aleatorio, (es decir, un experimento el cual, repetido
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Maestría en Bioinformática Probabilidad y Estadística: Clase 1
Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría
Esquema Matemáticas CCSS
Esquema Matemáticas CCSS 3. Probabilidad 3.1 Conocer la terminología básica del Cálculo de Probabilidades. Construir el espacio muestral asociado a un experimento aleatorio simple. Describir sucesos y
HABLEMOS DE PROBABILIDAD JORGE MARTINEZ COLLANTES PROFESOR PENSIONADO UNIVERSIDAD NACIONAL
HABLEMOS DE PROBABILIDAD JORGE MARTINEZ COLLANTES PROFESOR PENSIONADO UNIVERSIDAD NACIONAL Ganaremos el partido con Bolivia el próximo viernes? Cree que vamos a ganar el partido con Bolivia el viernes?
NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo
NIVELACIÓN DE ESTADISTICA Qué es la probabilidad? La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Por ejemplo: tiramos un dado al aire y
