Probabilidad y Estadística
|
|
|
- Vicenta Guzmán Velázquez
- hace 7 años
- Vistas:
Transcripción
1 Probabilidad y Estadística
2
3 Sondeo Que tanto han visto sobre temas relacionados con probablidad y estadística? Por ejemplo: combinaciones, permutaciones, teorema del binomio, teoría de conjuntos?
4 Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana Probablemente llegaremos tarde Seguramente tendré notable en Métodos Matemáticos para la Física... Pero, qué es la probabilidad?
5
6 Diferentes interpretaciones de la probabilidad... Interpretación clásica de probabilidad: esta interpretación está basada en la idea de eventos igualmente posibles (probables). Ejemplo. Si existen n posibles resultados, todos ellos con la misma posibilidad de que ocurran, entonces la probabilidad de cada evento es 1/n Pero, el concepto de igualmente probable está basado en el concepto de probabilidad que queremos definir! Qué hacemos cuando los eventos no son igualemente probables?
7 Diferentes interpretaciones de la probabilidad... Probabilidad como frecuencia de sucesos: Aquí la probabilidad se obtiene a través de la frecuencia relativa, si el proceso se repitiera muchas veces bajo las mismas condiciones. Pero, cuánto es mucho? Qué significa condiciones similares?
8 Diferentes interpretaciones de la probabilidad... Interpretación subjetiva de la probabilidad: Esta es la probabilidad que una persona asigna a los posibles eventos de una situación. El juicio para la asignación de probabilidades está basada en creencias o información del individuo. Obviamente, aquí la probabilidad cambia de persona a persona.
9 Teoría de Probabilidades Aquí veremos una teoría de probabilidades sin considerar las controversias respecto a la interpretación de lo que es una probabilidad. Por supuesto, la teoría que veremos es formalmente correcta y podrá utilizarse para la asignación de valores de probabilidad en problemas reales. En resumen: La teoría de probabilidades nos dará una forma de cuantificar que tan probable es que ocurra un evento en un experimento
10 Comentario: La teoría de probabilidades es toda una área de las matemáticas
11 Conceptos preliminares Un experimento es cualquier proceso, real o hipotético, cuyo posible resultado puede identificarse de antemano. Un evento es un conjunto bien definido de los posibles resultados de un experimento.
12
13 Conceptos preliminares Espacio muestral: es la colección de todos los posibles resultados de un experimento. Usualmente, denotaremos por S al espacio muestral. Un posible resultado x de S se dice que es un miembro del espacio muestral y se denota como
14 Conceptos preliminares Cuando se realiza un experimento y se dice que un evento ha ocurrido, significa que el resultado del experimento satisface las condiciones que especifican a ese evento. Cada evento puede considerarse como un subconjunto del espacio muestral
15 Ejemplo: Conceptos preliminares Experimento: lanzamiento de un dado de seis caras Espacio muestral S : Sea A el evento de obtener un número par:
16 Conceptos preliminares Sea B el evento de obtener un número mayor o igual que 2 Vemos que los elementos de conjunto A también están en B
17
18 Teoría de conjuntos Se dice que un evento A está contenido en otro evento B, si cada resultado que pertece al subconjunto que define a A, también pertenece al subconjunto que define B : o bien
19 Teoría de conjuntos Si dos eventos A y B son tales que y Entonces A y B tienen los mismos elementos, es decir,
20 Teoría de conjuntos (Transitividad) Si A, B y C son tres eventos tales que y se sigue entonces que:
21 Conjunto vacío: Teoría de conjuntos Algunos eventos son imposibles de obtener. Por ejemplo, obtener un número negativo al lanzar un dado. Es decir, el evento está definido por un subconjunto de S sin resultados. A este subconjunto de S se le llama conjunto vacío y se denota por: Para un evento arbitrario A es lógicamente correcto decir que cada elemento del pertenece a A :
22 Teoría de conjuntos Conjuntos finitos e infinitos El número de elementos de un conjunto puede ser finito o infinitos Un conjunto infinito puede ser a su vez contable o Un incontable conjunto es contable si hay una correspondencia uno a uno de sus elementos con los números naturales {1,2,3,...}. Un conjunto es incontable si no es finito ni contable
23 Diagramas de Venn Una representación gráfica de los resultados de un experimento son los diagramas de Venn
24 Diagramas de Venn
25
26 Diagramas de Venn Regiones: i) Resultados que pertenecen al evento A, pero no al evento B ii) Resultados que pertenecen al evento B, pero no al evento A iii) Resultados que pertenecen a ambos eventos A y B iv) Resultados que no pertenecen ni a A ni a B
27 Teoría de conjuntos Algunas operaciones elementales entre conjuntos: Si A y B son dos eventos cualesquiera, la intersección de A y B esta definida por los resultados que pertenecen a ambos conjuntos, A y B. La unión de dos eventos A y B está definida por el conjunto de resultados que pertenecen a A, o a B, o a ambos A y B.
28
29 Teoría de conjuntos Algunas relaciones entre las operaciones de unión e intersección: Conmutatividad Asociatividad Distributividad Idempotencia
30 Teoría de conjuntos Leyes de Morgan:
31
32 Teoría de Probabilidades
33 Teoría de Probabilidades
34 Teoría de Probabilidades Queremos asignar un valor/número Pr(A) a cada evento de A en un espacio muestral S. Pr(A) indicará la probabilidad de que ese evento ocurra.
35 Teoría de probabilidades Axioma 1. Para cada A en un espacio muestral S, Axioma 2. Para un espacio espacio muestral S Axioma 3. Si dos eventos A y B son mutuamente excluyentes Para una serie infinita de eventos disjuntos asumimos que
36 Teoría de Probabilidades Definición matemática de probabilidad: Una probabilidad en un espacio muestral S es una especificación de números Pr(A) que satisfacen los axiomas 1, 2 y 3
37 Teoría de Probabilidades Algunos teoremas: 1) 2) Para cada serie finita de eventos disjuntos 3) Para cada evento A
38 Teoría de probabilidades 4) Si entonces 5) Para cada evento A 6) Para dos eventos A y B
39 Teoría de probabilidades Ejemplo: Un paciente visita al médico por un dolor de garganta y fiebre. Después de examinar al paciente, el médico piensa que el paciente sufre o una infección bacteriana, o una de tipo viral. El doctor decide que hay una probabilidad de 0.7 que el paciente tenga una infección bacteriana y una probabilidad de 0.4 que la persona tenga una infección viral. Cuál es la probabilidad de que el paciente tenga ambos tipos de infección?
40
41 Teoría de probabilidades (espacio muestral simple) Un espacio muestral simple si la probablidad asignada a cada posible resultado es 1/n se le llama Si un evento A en este espacio contiene m resultados, entonces
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad, un concepto básico el cual puede considerarse como indefinido, expresando de algún modo un grado de creencia, o la frecuencia límite de una serie aleatoria. Ambos
Probabilidad y Estadística
Probabilidad y Estadística Programa Probabilidad Teoría de conjuntos Diagramas de Venn Permutaciones y combinaciones Variables aleatorias y distribuciones Propiedades de distribuciones Funciones generadoras
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
1. Teoría de conjuntos
Introducción a la probabilidad Universidad de Puerto Rico ET 3041 Prof. Héctor D. Torres ponte 1. Teoría de conjuntos Definición 1.1. La colección de todos los posibles resultados de un experimento se
Capítulo 1. Teoría de la probabilidad Teoría de conjuntos
Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral
Probabilidad y Estadística
y Estadística Unidad 2 Tipos de probabilidad Prof. Héctor Ulises Cobián L. [email protected] February 29, 2016 1 Definition (Experimento aleatorio) Es el que no podemos predecir su resultado,
Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia
Tema 3: Fundamentos de Probabilidad Introducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos Aleatorios. 2) Espacio Muestral. 3) Operaciones con Sucesos. 4) Enfoques de la Probabilidad.
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia
PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Introducción Jacob Berooulli (1654-1705), Abraham de Moivre (1667-1754), el reverendo Thomas Bayes (1702-1761) y Joseph Lagrange (1736-1813) desarrollaron
2016 IV o Medio Introducción a la Probabilidad Eventos. Profesor Alberto Alvaradejo Ojeda
2016 IV o Medio Introducción a la Probabilidad Eventos Profesor Alberto Alvaradejo Ojeda 1. Evento o Suceso Se llama evento o suceso a todo subconjunto de un espacio muestral. También se define como una
Resultan impredecibles, al tratarse de un proceso aleatorio, no podemos anticipar lo que sucederá. Vídeo de YouTube
Debes acceder a las actividades EDUCAPLAY y repasar los conceptos vistos en clase. 1. La estadística y su importancia La estadística es en sí misma una disciplina, que muchos le dan el carácter de científica,
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
LECTURA No. 1: TEORIA DE CONJUNTOS
9 1 LECTUR No. 1: TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN Conocida ahora la probabilidad de un evento, se pueden reunir ciertas características conocidas como axiomas de probabilidad que satisfacen la probabilidad
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y
CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD
Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones
BASES DE LA PROBABILIDAD
BASES DE LA PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus UPIICSA Instituto Politécnico Nacional Primavera 2004 IPN c 2004 Juan C. Gutiérrez Matus IPN c 2004 Juan C. Gutiérrez Matus 1 Introducción
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
1. Experimentos aleatorios
1. Eperimentos aleatorios La eperimentación es útil porque si se supone que llevamos a cabo ciertos eperimentos bajo condiciones esencialmente idénticas se llegará a los mismos resultados. En estas circunstancias,
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2017-2018 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Combinatoria. Regla del producto 1.2.- Probabilidad condicionada.
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.
CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer
Experimento Aleatorio o ensayo
Clase 5 1 Experimento Aleatorio o ensayo Es un proceso o acción cuyo resultado es incierto, es decir no es predecible. Es factible de ser repetido infinitas veces, sin modificar las condiciones. Repetición
Métodos Estadísticos Capítulo II
Métodos Estadísticos Capítulo II Dr. Gabriel Arcos Espinosa Contenidos El campo de la probabilidad y estadística Conceptos básicos Enfoque para asignar probabilidades Contenidos Reglas de probabilidad
LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD
LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD TEMA 20: DEFINICIONES BASICAS DE PROBABILIDAD 1. EXPERIMENTO Un experimento
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes
2.- Teoría de probabilidades
2.- Teoría de probabilidades La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados
MÓDULO I. TEORÍA DE LA PROBABILIDAD
UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
ESTADISTICA GENERAL. PROBABILIDADES Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PROBABILIDADES Profesor: Celso Celso Gonzales OBJETIVOS Desarrollar la comprensión de los conceptos básicos de probabilidad. Definir que es probabilidad Definir los enfoques clasico,
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD PRESENTA DRA. EN ING. RITA VICTORIA DE LEÓN ARDÓN 2.Trabajo en equipo 3. Estudio independiente 1.
2. Conceptos Básicos de Probabilidad. ESTADÍSTICA Esp. Paola G. Herrera S.
2. Conceptos Básicos de Probabilidad ESTADÍSTICA Esp. Paola G. Herrera S. Introducción La probabilidad es la rama de las matemáticas que estudia los fenómenos con incertidumbre. Es un mecanismo por medio
2.3 PROPIEDADES DE LA PROBABILIDAD
2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:
Conceptos básicos de la probabilidad
Mathieu Departamento de Matemática Aplicada y Estadística Universidad Politécnica de Cartagena Cartagena, Enero 2010 Guión 1 Introducción 2 Algunos conceptos básicos Experimento aleatorio Espacio muestral
Introducción. 1. Sucesos aleatorios. Tema 3: Fundamentos de Probabilidad. M. Iniesta Universidad de Murcia
Tema 3: Fundamentos de Probabilidad Introducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira
UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira Levin & Rubin. Estadística para Administradores Gómez Barrantes, Miguel. Elementos de estadística descriptiva 1
TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.
I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Objetivo del Cálculo de Probabilidades:
Objetivo del Cálculo de Probabilidades: Establecer y desarrollar modelos matemáticos adaptados al estudio de situaciones que presentan cierto grado de incertidumbre Definición de Estadística (Barnett,
Probabilidades. Gerardo Arroyo Brenes
Probabilidades Gerardo Arroyo Brenes Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o
Bloque I: Estadística y Probabilidad
Bloque I: Estadística y Probabilidad 1. Probabilidad 1. Teoría de la probabilidad 2. Probabilidad condicionada 3. Dependencia e independencia de sucesos 4. Técnicas de recuento: diagramas de árbol, tablas
Probabilidad. Conceptos básicos. Carlos Gamero Burón José Luis Iranzo Acosta Departamento de Economía Aplicada Universidad de Málaga
Probabilidad Conceptos básicos Carlos Gamero Burón José Luis Iranzo Acosta Departamento de Economía Aplicada Universidad de Málaga Parcialmente financiado a través del PIE13-024 (UMA) Parcialmente financiado
UNIDAD V TEORÍA DE CONJUNTOS. ISC. Claudia García Pérez
UNIDAD V TEORÍA DE CONJUNTOS ISC. Claudia García Pérez http://www.uaeh.edu.mx/virtual 1 PRESENTACIÓN La teoría de conjuntos es una parte de las matemáticas, también, es la teoría matemática dónde fundamentar
- Determinísticos. - Aleatorios. Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo.
Probabilidad - Determinísticos Experimentos - leatorios Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo. Un experimento aleatorio, también llamado ensayo o acción
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos
Tema 7: Introducción a la probabilidad
Tema 7: Introducción a la probabilidad A veces, la probabilidad es poco intuitiva. (1) El problema de Monty Hall (El problema de las tres puertas) (2) El problema del cumpleaños. Hay n personas en una
Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto
Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................
Tema 4 Probabilidad. Fenómeno aleatorio: es aquel cuyos resultados son impredecibles.
Tema 4 robabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un alumno entre los 30 de
En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.
nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas
1. Introducción Experimento aleatorio. Sucesos y espacio muestral 2
Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 2. Probabilidad 1. Introducción 1 2. Experimento aleatorio. Sucesos y espacio muestral 2 3. Operaciones
Introducción a la Probabilidad
Introducción a la Probabilidad Dr. Francisco Javier Tapia Moreno Octubre 12 de 2016. Introducción. Existen varios tipos de sucesos aleatorios, conocerás todos los existentes. Aprenderás las tres relaciones
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
UNIDAD IV PROBABILIDAD
UNIDAD IV PROBABILIDAD Probabilidad de un evento M. en C. Mario Arturo Vilchis Rodríguez EXPERIMENTOS, RESULTADOS Y CONJUNTOS La probabilidad es la posibilidad numérica de que ocurra un evento. La probabilidad
Apuntes de Métodos estadísticos de la Ingeniería
Apuntes de Métodos estadísticos de la Ingeniería Mathieu Kessler Departamento de Matemática Aplicada y Estadística Universidad Politécnica de Cartagena [email protected] Ésta es una versión preliminar,
TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.
TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos
Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada.
5. PROBABILIDAD Objetivo Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada. Bibliografia recomendada Peña y Romo (1997),
Probabilidad condicional
4 Profra. Blanca Lucía Moreno Ley March 18, 2014 Sumario 1 Resumen 2 Probabilidad Supongamos que un experimento E tiene un espacio muestral U y un evento A está definido en dicho espacio muestral, entonces
Conjunto de todos los posibles resultados de una experiencia aleatoria. Los sucesos admiten una representación gráfica que facilita su interpretación
www.clasesalacarta.com 1 Experimentos aleatorios Tema 10.- Distribuciones Discretas. Distribución inomial Existen experimentos en los que podemos predecir el resultado antes de que finalicen o incluso
Introducción a la probabilidad. Introducción a la probabilidad. Introducción a la probabilidad. Introducción. Objetivos del tema:
Introducción a la probabilidad Introducción a la probabilidad Introducción Objetivos del tema: l final del tema el alumno será capaz de: Comprender y describir los sucesos de un experimento mediante gráficos,
Probabilidad PROBABILIDAD
PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
(DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 )
PROBABILIDAD (DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 ) La probabilidad mide la frecuencia relativa (proporción) de un resultado determinado
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
Colegio Sagrada Familia Matemáticas 4º ESO
ÁLULO OMBINATORIO La combinatoria tiene por fin estudiar las distintas agrupaciones de los objetos, prescindiendo de la naturaleza de los mismos pero no del orden. Estudiaremos como se combinan los objetos,
Teoría de la decisión
Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría
Tema 3 Espacios de probabilidad: Definición axiomática y propiedadades básicas de la probabilidad
Tema 3 Espacios de probabilidad: Definición axiomática y propiedadades básicas de la probabilidad 1. Objetivo del Cálculo de Probabilidades El objetivo del Cálculo de Probabilidades es establecer y desarrollar
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de
Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.
Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos [email protected] niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección
Maestría en Bioinformática Probabilidad y Estadística: Clase 1
Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría
Ejemplo 8 Los niños nacidos en un país del continente americano.
UNIDAD 1: CONJUNTOS La teoría de conjuntos juega un papel muy importante en campos de la matemática como el cálculo, el análisis, el álgebra y la probabilidad. Gracias a los conjuntos se pueden construir
TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles
2.2. PROBABILIDAD BÁSICA. Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional.
2.2. PROBABILIDAD BÁSICA Saber: Definir el concepto de probabilidad. Enunciar los teoremas elementales de probabilidad y probabilidad condicional. Hacer: Resolver problemas de probabilidad básica. Introducción
Estadística I. Unidad II: Introducción a la probabilidad
Estadística I Unidad II: Introducción a la probabilidad Conceptos claves Experimento Evento Espacio muestral Evento simple Eventos mutuamente excluyentes Los administradores (y también los futuros ingenieros
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Experimento aleatorio, Espacio muestral, Suceso
El siguiente material se encuentra en etapa de corrección y no deberá ser considerado una versión final. Alejandro D. Zylberberg Versión Actualizada al: 4 de mayo de 2004
E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA
E.U.I.T.I. Bilbao Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 3: ROBABILIDAD La estadística en comic L. Gocking, W. Smith
CALCULO DE PROBABILIDADES
CALCULO DE PROBABILIDADES Los experimentos o fenómenos aleatorios son aquellos que al ser repetidos en condiciones uniformes presentan resultados variables de manera que no puede predecirse con exactitud
EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO
EXPERIMENTO ALEATORIO, EPAIO MUETRAL Y UEO Experimento aleatorio: Es una acción o proceso que puede tener distintos resultados posibles, y cuyo resultado no se conoce hasta que no se lleva a cabo. Ejemplos:
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
Guía N 1 Introducción a las Matemáticas
Glosario: Guía N 1 Introducción a las Matemáticas - Aritmética: Es la rama de las matemáticas que se dedica al estudio de los números y sus propiedades bajo las operaciones de suma, resta, multiplicación
