CÁLCULO DE PROBABILIDADES
|
|
|
- Lucía Escobar Caballero
- hace 7 años
- Vistas:
Transcripción
1 CÁLCULO DE PROBABILIDADES EXPERIMENTOS ALEATORIOS.ESPACIO MUESTRAL Experimento determinista: Aquel cuyo resultado se puede predecir de antemano, está regido por leyes, sean o no de la Naturaleza. Ej.- Medir la aceleración de un objeto que se deja caer al vacío Experimento aleatorio: Aquel en el que interviene el azar, resultando en consecuencia impredecible. Ej.- Lanzar un dado Al conjunto de todos los posibles resultados de un experimento aleatorio lo llamaremos espacio muestral y lo designamos por E Ej.- Experimento aleatorio lanzar un dado cúbico ; espacio muestral E = {1,2,3,4,5,6} SUCESO ALEATORIO Se llama SUCESO de un experimento aleatorio a cada uno de los subconjuntos del espacio muestral E. El conjunto de todos los sucesos de un experimento aleatorio se denomina espacio de sucesos y se designa por S. Ej.- para E = {1,2,3,4,5,6}, se consideran los siguientes subconjuntos: A= salir nº par ={2,4,6} B= salir nº menor que 5 = {1,2,3,4} En un experimento aleatorio con un espacio muestral de n elementos (n finito), el conjunto de espacio de sucesos tendrá 2 n sucesos distintos. TIPOS DE SUCESOS Suceso elemental: Aquel que está formado por un único punto muestral, es decir, por un único resultado del experimento aleatorio. Suceso compuesto: El que está formado por 2 o más resultados elementales. Suceso seguro: El que está formado por todos los resultados posibles del experimento. Coincide por lo tanto con el espacio muestral. Suceso imposible: El que no se puede realizar, se representa por Sucesos iguales: Aquellos que están formados por los mismos sucesos elementales. Suceso incluido: El suceso A se dirá incluido en el suceso B, si todos los resultados elementales de A, están incluidos en el suceso B. Representamos tal situación como A B Nenina Martín Ossorio 1
2 OPERACIONES CON SUCESOS Diagrama de Venn A Dado cúbico, con las caras numeradas del 1 al 6 Sucesos: A = {1,2,3} ; B = {2,3,4} A B B 6 6 E E 1. Unión de sucesos Dados dos sucesos, A y B, de un mismo experimento aleatorio, se llama suceso unión de A y B el que se produce cuando se realiza A o B, es decir, alguno de los dos. Se designa por AUB 2. Intersección de sucesos Dados dos sucesos, A y B, de un mismo experimento aleatorio, se llama suceso intersección de A y B el que se produce cuando se realizan simultáneamente A y B. Se designa por A B, AUB = {1,2,3,4} ; A B = {2,3} Sucesos compatibles e incompatibles Se consideran ahora los sucesos: C = salir un nº impar = {1,3,5} y D = Salir un múltiplo de 4 ={4} Es evidente que C D =, es decir, el suceso imposible Si la intersección de dos sucesos es el suceso imposible, se dice que dichos sucesos son incompatibles Si A y B son sucesos del mismo experimento aleatorio, se tiene que: *Si A B =, A y B sss iiiiiiiiiiiii *Si A B, A y B sss ccccccccccc LEYES DE MORGAN 1º El contrario de la unión es la intersección de los contrarios A B = A B 2º El contrario de la intersección es la unión de los contrarios A B = A B 3. Diferencia de sucesos Dados dos sucesos, A y B, de un mismo experimento aleatorio, se llama suceso diferencia de A y B el suceso A B, es decir, el que se produce cuando se realiza el suceso A, pero no se realiza B. Se designa por A B Propiedades de la Unión: Dados los sucesos A, B, C S, se verifican las siguientes propiedades: Asociativa: (A UB ) U C = A U (B UC ) Nenina Martín Ossorio 2
3 Conmutativa: A UB = B UA Idempotente: A U A = A Complementación: A A C = E Elemento neutro: A U Φ= A Propiedades de la Intersección: Dados los sucesos A, B, C S, se verifican las siguientes propiedades: Asociativa: (A B) C = A (B C) Conmutativa: A B = B A Idempotente: A A =A Complementación: A A C = Elemento neutro: A E =A Elemento Absorbente: A = Propiedades relacionales de Unión e Intersección: Se trata de tres propiedades que relacionan ambas operaciones: Simplificativas o de absorción: A U (B A) =A ; A (B UA ) = A Distributiva de la Unión respecto de Intersección: A U (B C) = (A UB ) (A UC ) Distributiva de la Intersección respecto de la Unión: A (B U C) = (A B ) U (A C ) La terna (S,, ) con las propiedades reseñadas respecto a Unión e Intersección, asociada al espacio muestral E, recibe el nombre de Álgebra de Boole de sucesos aleatorios. UI FRECUENCIA DE UN SUCESO Si A es un suceso cualquiera de un experimento aleatorio y n es el número de pruebas que se realizan, se define la frecuencia absoluta de A y se denota f(a), como el número de veces que el suceso A se ha presentado a lo largo de las n pruebas. En analogía con la estadística uni y bidimensional, se define la frecuencia relativa y se denota f r (A), como el número de veces que se ha presentado el suceso A, en relación al número total de pruebas n. Así pues: f r (A) = f(a) n De la propia definición, pueden extraerse estas consecuencias: 0 f r (A) 1 ; i fr (A i) = 1 Nenina Martín Ossorio 3
4 DEFINICIÓN CLÁSICA DE PROBABILIDAD. REGLA DE LAPLACE Si un espacio muestral es equiprobable, entonces la probabilidad de un suceso A es el cociente entre el número de casos favorables al suceso A y el número de casos posibles. P(A) = número de casos favorables al suceso A número de casos posibles Esta definición fue enunciada por Laplace, y por ello se conoce como Regla de Laplace. Los casos posibles son todos los resultados del experimento, es decir, todos los elementos del espacio muestral. Los casos favorables son los elementos que componen el suceso A. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD (Kolmogorov) Llamamos Probabilidad a una ley (función o aplicación) que asocia a cada suceso A, de un espacio de sucesos, un número real que llamamos probabilidad de A y representamos por P(A), que cumple los siguientes axiomas: A1. La probabilidad de cualquier suceso es un número positivo o nulo P(A) 0 A2. La probabilidad del suceso cierto es 1. P(E) = 1 A3. Si los sucesos A y B son incompatibles, la probabilidad del suceso A U B es la suma de probabilidades de los sucesos A y B. A B = P(A B) = P(A) + P(B) Consecuencias de la definición axiomática de Probabilidad 1. A B P(A) P(B) 2. A S 0 P(A) 1 3. La probabilidad del suceso A, contrario del suceso A, es igual a 1 menos la probabilidad del suceso A ; P( A ) = 1 P(A) 4. La probabilidad del suceso imposible es cero ; P( ) = 0 PROBABILIDAD DE LA UNIÓN DE SUCESOS COMPATIBLES Si A y B son dos sucesos compatibles de un mismo experimento aleatorio, se verifica que la probabilidad de la unión de A y B es igual a la suma de las probabilidades de cada uno de ellos menos la probabilidad del suceso intersección de A y B P(A B) = P(A) + P(B) P(A B) Esta relación se verifica para cualquier pareja de sucesos, ya sean compatibles o incompatibles. Nenina Martín Ossorio 4
5 Observa que si A y B son incompatibles P(A B) = 0 Esta expresión se puede extender al caso de más de dos sucesos. En el caso de tres sucesos sería: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Nenina Martín Ossorio 5
deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y
CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD
TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.
I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los
Probabilidad PROBABILIDAD
PROBABILIDAD La probabilidad es un método mediante el cual se obtiene la frecuencia de un suceso determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados
Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y
Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
TEMA: AZAR Y PROBABILIDAD.
TEMA: AZAR Y PROBABILIDAD. 1. EXPERIENCIAS ALEATORIAS. SUCESOS. Una experiencia aleatoria es toda aquella cuyo resultado depende del azar. (Extraer una carta de una baraja, lanzar una moneda, lanzar unos
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos
PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque
CALCULO DE PROBABILIDADES
CALCULO DE PROBABILIDADES Los experimentos o fenómenos aleatorios son aquellos que al ser repetidos en condiciones uniformes presentan resultados variables de manera que no puede predecirse con exactitud
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad
Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos Aleatorios. 2) Espacio Muestral. 3) Operaciones con Sucesos. 4) Enfoques de la Probabilidad.
1. Combinatoria Sucesos aleatorios...
PROBABILIDAD Índice: Página. Combinatoria..... Sucesos aleatorios...... Experimento aleatorio...... Tipos de sucesos....3. Operaciones con sucesos..... Sistema completo de sucesos....5. Experimentos compuestos...
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
Tema 4 Probabilidad. Fenómeno aleatorio: es aquel cuyos resultados son impredecibles.
Tema 4 robabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un alumno entre los 30 de
Probabilidad 2º curso de Bachillerato Ciencias Sociales
PROBABILIDAD Índice: 1. Experimentos aleatorios. Espacio muestral----------------------------------------------------- 2 2. Suceso aleatorio ------------------------------------------------------------------------------------
TEMA 14 PROBABILIDAD
Objetivos / Criterios de evaluación TEMA 14 PROBABILIDAD O.16.1 Conocer el concepto de suceso aleatorio y sus tipos y operaciones. O.16.2 Cálculo de probabilidades de sucesos simples. Regla de Laplace.
Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2017-2018 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Combinatoria. Regla del producto 1.2.- Probabilidad condicionada.
PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.
PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio
Probabilidad. 1. Conceptos previos. Teoría de conjuntos. Conceptos básicos
. Conceptos previos Teoría de conjuntos. Conceptos básicos Dado un conjunto M, se llama conjunto de partes de M, y se denota por P(M), al conjunto de todos los subconjuntos de M (incluido el conjunto vacio,,
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
PROBABILIDAD Introducción La Probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO F A C U L T A D D E Q U Í M I C A P R O G R A M A E D U C A T I V O D E Q U Í M I C O E N A L I M E N T O S PROBABILIDAD Y ESTADÍSTICA UNIDAD TEMÁTICA TEORÍA DE
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso
EXPERIENCIA ALEATORIA: aquella cuyo resultado no podemos prever porque éste depende del azar. Cada uno de los resultados obtenidos en la experiencia aleatoria se llama CASO y al conjunto de todos los casos
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Colegio Sagrada Familia Matemáticas 4º ESO
ÁLULO OMBINATORIO La combinatoria tiene por fin estudiar las distintas agrupaciones de los objetos, prescindiendo de la naturaleza de los mismos pero no del orden. Estudiaremos como se combinan los objetos,
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia
PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Introducción Jacob Berooulli (1654-1705), Abraham de Moivre (1667-1754), el reverendo Thomas Bayes (1702-1761) y Joseph Lagrange (1736-1813) desarrollaron
DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA
OBJETIVO 1 DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA EXPERIMENTOS ALEATORIOS Y DETERMINISTAS Experimento determinista es aquel que, una vez estudiado, podemos predecir, es decir, que sabemos
(DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 )
PROBABILIDAD (DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 ) La probabilidad mide la frecuencia relativa (proporción) de un resultado determinado
Conjunto de todos los posibles resultados de una experiencia aleatoria. Los sucesos admiten una representación gráfica que facilita su interpretación
www.clasesalacarta.com 1 Experimentos aleatorios Tema 10.- Distribuciones Discretas. Distribución inomial Existen experimentos en los que podemos predecir el resultado antes de que finalicen o incluso
UNIDAD 1.- PROBABILIDAD
UNIDAD 1.- PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. Definiión: Un fenómeno o experienia se die aleatorio uando al repetirlo en ondiiones análogas no se puede predeir el resultado. Si
Bloque I: Estadística y Probabilidad
Bloque I: Estadística y Probabilidad 1. Probabilidad 1. Teoría de la probabilidad 2. Probabilidad condicionada 3. Dependencia e independencia de sucesos 4. Técnicas de recuento: diagramas de árbol, tablas
Objetivo del Cálculo de Probabilidades:
Objetivo del Cálculo de Probabilidades: Establecer y desarrollar modelos matemáticos adaptados al estudio de situaciones que presentan cierto grado de incertidumbre Definición de Estadística (Barnett,
Tema III. Definición Suceso aleatorio es un acontecimiento que ocurrirá o no, dependiendo del azar.
Tema III Cálculo de probabilidades y variables aleatorias 3.1. Introducción La teoría de probabilidad es la base de la inferencia estadística y un instrumento esencial en el análisis de la variabilidad.
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
Apuntes de Probabilidad para 2º E.S.O
Apuntes de Probabilidad para 2º E.S.O 1. Experimentos aleatorios Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.
Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:
Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:
1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Apuntes de Probabilidad
Apuntes de Probabilidad Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible conocer
Bloque 4. Estadística y Probabilidad
Bloque 4. Estadística y Probabilidad 2. Probabilidad 1. Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse
CLASIFICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL
OBJETIVO 1 CLASIICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL Nombre: Curso: echa: Un experimento determinista es aquel experimento en el que podemos predecir su resultado, es decir, sabemos lo que
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
Taller matemático (Cálculo) Venancio Tomeo Universidad Complutense
Taller matemático (Cálculo) Venancio Tomeo Universidad Complutense Parte II: 6: Conjuntos y operaciones 7: Funciones y gráficas 8: Exponencial y logaritmica 9: Funciones trigonométricas 10: Límites de
MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades
MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades 1. REGLA DE LAPLACE Cuando un suceso va a ocurrir, en ciertos casos es posible que se pueda predecir su resultado. Si se puede predecir diremos
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD
2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer
COMBINATORIA. PROBABILIDAD
COMBINATORIA. PROBABILIDAD VARIACIONES : variaciones de n elementos tomados de k en k son todos los grupos de k elementos que pueden formarse, distinguiéndose entre sí bien por la naturaleza de algún elemento
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
UNIDAD II: EXRIMENTOS ALEOTORIOS
UNIDAD II: EXRIMENTOS ALEOTORIOS Un experimento aleatorio es aquél en el que si lo repetimos con las mismas condiciones iniciales no garantiza los mismos resultados. Así, por ejemplo, al lanzar una moneda
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Probabilidad: Fórmulas y definiciones básicas. PROBABILIDAD Fórmulas y definiciones básicas
PROBABILIDAD Fórmulas y definiciones básicas 1) Definiciones básicas Experimento aleatorio: Aquél en el que interviene el azar (no es posible predecir el resultado). Resultado elemental: Todo resultado
2.3 PROPIEDADES DE LA PROBABILIDAD
2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:
MATEMÁTICAS APLICADAS A LAS CC. SS. I
PROBABILIDAD MATEMÁTICAS APLICADAS A LAS CC. SS. I Alfonso González IES Fernando de Mena Dpto. de Matemáticas I) DEFINICIONES Experimentos Deterministas: al repetirlos en análogas condiciones podemos predecir
EXPERIMENTO ALEATORIO. ESPACIO MUESTRAL.
INTRODUCCIÓN A LA PROBABILIDAD El nacimiento del cálculo de probabilidades estuvo ligado a los juegos de azar. Cardano (que tenía una afición desordenada por el ajedrez y los dados, según reconoce en su
Experimento Aleatorio o ensayo
Clase 5 1 Experimento Aleatorio o ensayo Es un proceso o acción cuyo resultado es incierto, es decir no es predecible. Es factible de ser repetido infinitas veces, sin modificar las condiciones. Repetición
PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.
PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
MATEMÁTICAS BÁSICAS PROBABILIDAD
MATEMÁTICAS BÁSICAS PROBABILIDAD Autora: Alejandra Sánchez Departamento de Matemáticas Sede Bogotá 10 de diciembre de 2013 Introducción a la Probabilidad Definición espacio muestral y eventos Definición
Tema 12: Probabilidad
Tema 12: Probabilidad En el Cálculo de Probabilidades, a menudo se presentan conjuntos demasiado grandes como para poder enumerar exhaustivamente sus elementos aunque, por otra parte, obedecen a unas reglas
Probabilidad: Fórmulas y definiciones básicas. PROBABILIDAD Fórmulas y definiciones básicas
PROAILIDAD Fórmulas y definiciones básicas 1) Definiciones básicas Experimento aleatorio: Aquél en el que interviene el azar (no es posible predecir el resultado de cada realización del experimento). Resultado
Si un objeto x es elemento de un conjunto A, se escribe: x A.
Conjuntos. Dentro de la teoría se consideran como primitivos o términos no definidos los conjuntos y los elementos. En general, se designan los conjuntos usando letras latinas mayúsculas y los elementos
Tema 11 Cálculo de Probabilidades.
Tema 11 Cálculo de Probabilidades. 11.1 Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono
OPERACIONES CON SUCESOS
el blog de mate de aida. CS II: Probabilidad pág. PROBABILIDAD Experimentos aleatorios: Experimentos aleatorios o de azar son aquellos cuyos resultados no se pueden predecir antes de su realización. Son
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
Tipos de sucesos. Suceso elemental
Definición de probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar
Introducción a la Probabilidad
Introducción a la Probabilidad Dr. Francisco Javier Tapia Moreno Octubre 12 de 2016. Introducción. Existen varios tipos de sucesos aleatorios, conocerás todos los existentes. Aprenderás las tres relaciones
Apuntes de Probabilidad 4ESO
Apuntes de Probabilidad 4ESO Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible
Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1
Tema 0 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato TEMA 0 CÁLCULO DE PROBABILIDADES 0. EXPERIECIAS ALEATORIAS. SUCESOS EXPERIECIAS DETERMIISTAS Y ALEATORIAS Se llama experiencia determinista
ELEMENTOS DE LA TEORÍA DE CONJUNTOS
ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por
El caballero Mere escribe a Pascal en 1654 y le propone el siguiente problema:
Introducción Los fundamentos del cálculo de probabilidades surgen alrededor del año 1650, cuando sugerido por los juegos de dados, de cartas, del lanzamiento de una moneda, se planteó el debate de determinar
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
Tema 3 Espacios de probabilidad: Definición axiomática y propiedadades básicas de la probabilidad
Tema 3 Espacios de probabilidad: Definición axiomática y propiedadades básicas de la probabilidad 1. Objetivo del Cálculo de Probabilidades El objetivo del Cálculo de Probabilidades es establecer y desarrollar
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad
Estadís3ca y Métodos Numéricos Tema 2. Probabilidad Ángel Barón Caldera Ángel Cobo Ortega María Dolores Frías Domínguez Jesús Fernández Fernández Francisco Javier González Or@z Carmen María Sordo García
PROBABILIDAD. 1.- Halla el espacio muestral asociado al experimento de lanzar al aire un dado y observar el resultado.
PRBABILIDAD EXPERIMENTS ALEATRIS Experimento determinista y aleatorio Un experimento aleatorio tiene un resultado impredecible al repetirlo en condiciones similares. Un experimento determinista tiene un
Ensayo o prueba: es la realización concreta de un experimento aleatorio.
Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
PROBABILIDAD EXPERIMENTO ALEATORIO. ESPACIO MUESTRAL. SUCESOS
PROBBILIDD EXPERIMENTO LETORIO. ESPCIO MUESTRL. SUCESOS En la vida real, hay experimentos cuyos resultados se pueden predecir de antemano (experimentos deterministas y otros, cuyo resultado en imposible
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)
TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio
