Capítulo 5: Probabilidad e inferencia
|
|
- Sofia Álvarez Cáceres
- hace 4 años
- Vistas:
Transcripción
1 Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia
2 Contenidos Principios de la probabilidad Conceptos básicos Definición de probabilidad Propiedades de la probabilidad Probabilidad condicionada Números combinatorios Variables aleatorias Variables aleatorias continuas La función de densidad La función de distribución Media y varianza La distribución normal
3 Principios de la probabilidad Conceptos básicos Conceptos básicos de la probabilidad Experimento aleatorio: es aquel experimento para el cual, partiendo de las mismas condiciones iniciales, no podemos predecir cuál va a ser su resultado. Suceso (A, B,...): cada resultado de un experimento aleatorio. Espacio muestral (Ω): unión de todos los sucesos.
4 Principios de la probabilidad Definición de probabilidad Cálculo de Probabilidades Definición de probabilidad Si un experimento aleatorio da lugar a un número finito de sucesos, todos ellos igualmente posibles (es decir, no se conoce razón alguna que favorezca a uno u otro), entonces la probabilidad de un suceso A es: P(A) = (Regla de Laplace) no de casos favorables al suceso A n o de casos posibles del experimento. Interpretación intuitiva de la probabilidad (ley del azar): Si realizamos un experimento aleatorio un número muy grande de veces, la frecuencia relativa de un suceso A (es decir, el número de veces que ocurre dicho suceso dividido por el total de realizaciones) tiende a estabilizarse en torno a un número fijo llamado probabilidad del suceso. Se representa por P(A).
5 Principios de la probabilidad Propiedades de la probabilidad Propiedades básicas de la probabilidad I Propiedad fundamental de la probabilidad: 0 P(A) 1, para todo suceso A. Probabilidad del espacio muestral (o suceso seguro): P(Ω) = 1. Probabilidad del suceso complementario: P(A c ) = 1 P(A), donde A c denota el complementario (o contrario) del suceso A. Probabilidad del conjunto vacío (suceso imposible): P( ) = 0.
6 Principios de la probabilidad Propiedades de la probabilidad Propiedades básicas de la probabilidad II Probabilidad de la unión de dos sucesos incompatibles: Si A y B son dos sucesos incompatibles, entonces P(A B) = P(A) + P(B). Probabilidad de la unión de n sucesos incompatibles: Si varios sucesos son incompatibles dos a dos, entonces P(A 1... A n ) = P(A 1 ) P(A n ). Probabilidad de la unión de dos sucesos cualesquiera: P(A B) = P(A) + P(B) P(A B). Probabilidad de la unión de tres sucesos cualesquiera: P(A B C) =P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C).
7 Principios de la probabilidad Probabilidad condicionada Probabilidad condicionada. Independencia de sucesos La probabilidad de un suceso B condicionada al suceso A es P(B/A) = Los sucesos A y B son independientes si P(A B), si P(A) 0. P(A) P(B/A) = P(B) y P(A/B) = P(A). Equivalentemente, A y B son independientes si P(A B) = P(A) P(B). El teorema de Bayes afirma que P(A) P(B/A) = P(A/B) P(B).
8 Principios de la probabilidad Números combinatorios Números combinatorios Si tenemos un conjunto de n objetos diferentes, de cuántas formas podemos ordenar los elementos, sin repetirlos? n! = n (n 1) (n 2) = permutación (con el convenio 0! = 1). Si tenemos un conjunto de n objetos diferentes y queremos escoger k de ellos, (sin importar el orden de elección), cuántas formas posibles hay de efectuar la elección? ( ) n k = n! = coeficiente binomial. k!(n k)!
9 Variables aleatorias Conceptos básicos de una variable aleatoria Una variable aleatoria es una función que asigna un número a cada suceso elemental de un experimento aleatorio. Cualquier variable estadística cuantitativa estudiada en el capítulo anterior podría considerarse una variable aleatoria (con la condición de que esté observada en todos los individuos de una población). Una variable aleatoria puede ser: Variable aleatoria discreta: sólo puede tomar valores numéricos aislados (fijados dos consecutivos, no puede existir ninguno intermedio). Ej.: n o de hijos, n o de pacientes, etc. Variable aleatoria continua: puede tomar cualquier valor numérico dentro de un intervalo, de modo que entre cualesquiera dos de ellos siempre existe otro posible valor. Ej.: altura, peso, etc.
10 Variables aleatorias continuas La función de densidad Función de densidad de una variable aleatoria continua Una variable aleatoria continua X queda totalmente identificada si conocemos su función de densidad f (x), que debe verificar: 1 f (x) 0 para todo x. 2 El área total bajo la curva y = f (x) vale 1: + f (x) dx = 1.
11 Variables aleatorias continuas La función de distribución Función de distribución de una variable aleatoria continua La función de distribución de una variable aleatoria X se representa por F, y se define como F (t) = P(X t) para todo t. La relación entre la función de distribución F (x) y f (x) es F (x) = x f (t) dt, es decir, F (x) = f (x).
12 Variables aleatorias continuas La función de distribución Función de distribución de una variable aleatoria continua La probabilidad de que la variable aleatoria X esté comprendida entre a y b, P(a X b), viene determinada por el área bajo la curva y = f (x) entre x = a y x = b: P(a X b) = b a f (x) dx = F (b) F (a).
13 Variables aleatorias continuas Media y varianza Media y varianza de una variable continua La media y la varianza de una variable aleatoria continua se determinan mediante una integral impropia. La media de una variable aleatoria continua X viene dada por µ= + x f (x) dx. La varianza de una variable aleatoria continua X viene dada por σ 2 = + x 2 f (x) dx µ 2. La desviación típica de una variable aleatoria X viene dada por σ= σ 2.
14 Variables aleatorias continuas La distribución normal La distribución normal Una variable aleatoria continua X tiene una distribución normal de parámetros µ y σ si su función de densidad es: ( f (x) = 1 σ 2π exp 1 ( ) ) 2 x µ, 2 σ donde µ, σ R con σ > 0. La variable aleatoria normal de parámetros µ y σ se representará por N (µ, σ). La gráfica de la función f (x) se llama la campana de Gauss (de parámetros µ y σ).
15 Variables aleatorias continuas La distribución normal Propiedades de la distribución normal La distribución normal cumple las siguientes propiedades: 1 La media µ ( N (µ, σ) ) = µ. 2 La desviación típica σ ( N (µ, σ) ) = σ. 3 La curva que representa a la función de densidad de la distribución N (µ, σ) es simétrica respecto de la recta vertical x = µ. 4 La variable aleatoria normal N (0, 1) de parámetros 0 y 1 se llama variable aleatoria normal estándar, y sus valores están tabulados. 5 Estandarización de la variable X : Si X = N (µ, σ), para poder utilizar la tabla de la normal estándar se transforma X en otra variable Z = N (0, 1): Z = X µ. σ
16 Variables aleatorias continuas La distribución normal.
1 CÁLCULO DE PROBABILIDADES
1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD
GRADO TURISMO TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD Prof. Rosario Martínez Verdú TEMA 7: INTRODUCCIÓN A LOS MODELOS DE PROBABILIDAD 1. Nociones básicas de teoría de la probabilidad. 2. Variable
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo
NIVELACIÓN DE ESTADISTICA Qué es la probabilidad? La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Por ejemplo: tiramos un dado al aire y
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Repaso de Probabilidad y Estadística
Repaso de Probabilidad y Estadística Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Probabilidad 2 Definición.............................................................
VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.
VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Tema 3. Probabilidad y variables aleatorias
1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad
Tema 2 Modelos de probabilidad
Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución
Tema 12: Distribuciones de probabilidad
Tema 12: Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E, de un experimento aleatorio, un número real: X:
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad
Cálculo de probabilidad Tema 1: Combinatoria y probabilidad Guión Guión 1.1. Análisis combinatorio Regla de multiplicación Este es el método de conteo más sencillo que existe. Supongamos que realizamos
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 3. Probabilidad y variable aleatoria
Estadís5ca Tema 3. Probabilidad y variable aleatoria María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema
Distribuciones de probabilidad
Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD
PRINCIPALES CONCEPTOS DE LA TEORÍA DE LA PROBABILIDAD CONCEPTOS PREVIOS EXPERIMENTO RESULTADO ESPACIO DE RESULTADOS, W ÁLGEBRA DE SUCESOS SUCESO PROBABILIDAD (AXIOMÁTICA) PROPIEDADES Y TEOREMAS DERIVADOS
Probabilidad. Estadística II. Curso 2011/2012. Universidad de Salamanca
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 3 4 5 6 Introducción Cuándo se utiliza? Utilizamos el cálculo de probabilidades cuando necesitamos obtener conclusiones
Bloque I: Estadística y Probabilidad
Bloque I: Estadística y Probabilidad 1. Probabilidad 1. Teoría de la probabilidad 2. Probabilidad condicionada 3. Dependencia e independencia de sucesos 4. Técnicas de recuento: diagramas de árbol, tablas
Conjunto de todos los posibles resultados de una experiencia aleatoria. Los sucesos admiten una representación gráfica que facilita su interpretación
www.clasesalacarta.com 1 Experimentos aleatorios Tema 10.- Distribuciones Discretas. Distribución inomial Existen experimentos en los que podemos predecir el resultado antes de que finalicen o incluso
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Distribuciones de Probabilidad
Distribuciones de Probabilidad Experimento aleatorio Probabilidad Definición variable aleatoria: discretas y continuas Función de distribución y medidas Distribución Binomial Distribución de Poisson Distribución
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.
Estadística Descriptiva y Probabilidad FORMULARIO
Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.
2. Conceptos Básicos de Probabilidad. ESTADÍSTICA Esp. Paola G. Herrera S.
2. Conceptos Básicos de Probabilidad ESTADÍSTICA Esp. Paola G. Herrera S. Introducción La probabilidad es la rama de las matemáticas que estudia los fenómenos con incertidumbre. Es un mecanismo por medio
Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD
Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma
Ensayo o prueba: es la realización concreta de un experimento aleatorio.
Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
1. Variables Aleatorias Discretas
Tema 4: Variables Aleatorias Modelos de Probabilidad 1. Variables Aleatorias Discretas Lo que pretendemos en este tema es transformar el problema de la asignación de probabilidades a otro consistente en
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
Distribución de probabilidad
Los experimentos aleatorios originan resultados y los resultados nos permiten tomar decisiones Por ejemplo, en un partido de fútbol si se lanza una moneda y sale cara parte la visita, de lo contrario parte
Probabilidad del suceso imposible
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA 6.- ESTADÍSTICA INFERENCIAL PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------.-
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y
CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los
Probabilidad y Procesos Aleatorios
y Dr. Héctor E. Poveda P. hector.poveda@utp.ac.pa www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
Objetivos 1-0. Francisco José García Álvarez
Objetivos Recordar los conocimientos elementales de las herramientas estadísticas que se aplican en el Control de Calidad. En base al conocimiento de los modelos probabilísticos más utilizados y teniendo
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;
Variables aleatorias. Tema Introducción Variable aleatoria. Contenido
Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función
Métodos Matemá4cos en la Ingeniería Tema 7. Probabilidad
Métodos Matemá4cos en la Ingeniería Tema 7. Probabilidad Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA License:
DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π
DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para
MATEMÁTICAS 2º BACHILLERATO
MATEMÁTICAS 2º BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
CALCULO DE PROBABILIDADES
CALCULO DE PROBABILIDADES Los experimentos o fenómenos aleatorios son aquellos que al ser repetidos en condiciones uniformes presentan resultados variables de manera que no puede predecirse con exactitud
CONCEPTOS BÁSICOS DE INFERENCIA
CONCEPTOS BÁSICOS DE INFERENCIA Ciencia encargada de suministrar diferentes técnicas y procedimientos que permitan recolectar, organizar, analizar e interpretar datos. La estadística es un método empleado
Bioestadística Probabilidad 1. La población es el conjunto de elementos en los que se desea investigar la ocurrencia de una característica
Bioestadística Probabilidad 1 Probabilidad Introducción a la probabilidad La población es el conjunto de elementos en los que se desea investigar la ocurrencia de una característica o propiedad. Son experimentos
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
Estadística I Tema 4: Probabilidad y modelos probabiĺısticos
Estadística I Tema 4: Probabilidad y modelos probabiĺısticos Tema 4. Probabilidad y modelos probabiĺısticos Contenidos Probabilidad: Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos.
ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas
ESTADÍSTICA INFERENCIAL Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros,
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Tema 4. Axiomática del Cálculo de Probabilidades
Tema 4. Axiomática del Cálculo de Probabilidades mjolmo@ujaen.es Curso 2007/2008 Espacio muestral finito equiprobable El espacio muestral contiene un número finito de sucesos elementales todos ellos con
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Tema 3: Probabilidad
Tema 3: Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Probabilidad Curso 2009-2010 1 / 13 Índice 1 Fenómenos Aleatorios
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
ENUNCIADO y SOLUCIONES. Problema 1
Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2017-2018 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Combinatoria. Regla del producto 1.2.- Probabilidad condicionada.
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
Objetivo del Cálculo de Probabilidades:
Objetivo del Cálculo de Probabilidades: Establecer y desarrollar modelos matemáticos adaptados al estudio de situaciones que presentan cierto grado de incertidumbre Definición de Estadística (Barnett,
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE º BACHILLERATO DE CIENCIAS SOCIALES.
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE 2017 UNIDAD 1.-Matrices. Conceptos: 2º BACHILLERATO DE CIENCIAS SOCIALES. Tipos de matrices. Tipos de matrices cuadradas.
Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS
Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Distribución de Probabilidad
Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas
Tema I. Introducción. Ciro el Grande ( A.C.)
1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente