Sesión 2: Teoría de Probabilidad
|
|
|
- Laura Juárez Aguilar
- hace 8 años
- Vistas:
Transcripción
1 Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe conocimiento absoluto [August De Morgan, 1838]
2 Conceptos de Probabilidad Interpretaciones Definición y axiomas Probabilidad condicional Teorema de Bayes Independencia e independencia condicional Variables aleatorias y distribuciones básicas Teoría de información E. Sucar, PGM: 2 Probabilidad 2
3 Qué es probabilidad? Interpretaciones Definición matemática E. Sucar, PGM: 2 Probabilidad 3
4 Interpretaciones Clásica eventos equiprobables Lógica medida de grado de creencia racional (inferencia respecto a evidencia) Subjetiva medida del grado de creencia personal (factor de apuesta) Frecuencia medida del número de ocurrencias con muchas repeticiones Propensión medida del número de ocurrencias bajo condiciones repetibles E. Sucar, PGM: 2 Probabilidad 4
5 Interpretaciones Dos principales enfoques: Objetiva (clásica, frecuencia, propensión) las probabilidades existen y se pueden medir en el mundo real Epistemológica (lógica, subjetiva) las probabilidades tienen que ver con el conocimiento humano, medida de creencia E. Sucar, PGM: 2 Probabilidad 5
6 Definición Dado un experimento E y el espacio de muestreo S, a cada evento A le asociamos un número real P(A), el cual es la probabilidad de A y satisface los siguientes axiomas S A E. Sucar, PGM: 2 Probabilidad 6
7 Axiomas 0 P(A) 1 P(S) = 1 P(A B C ) = P(A) + P(B) + P(C) + A, B, C mutuamente exclusivos E. Sucar, PGM: 2 Probabilidad 7
8 Justificaciones de Probabilidad Argumento del libro holandés Deducción de Cox Demostración lógica E. Sucar, PGM: 2 Probabilidad 8
9 Teoremas P (0) = 0 P ( A) = 1 P(A) P(A B) = P(A) + P(B) P(A B) E. Sucar, PGM: 2 Probabilidad 9
10 Probabilidad Condicional P(A B) = P(A B) / P(B) Probabilidad de que ocurra un evento dado que ocurrió otro: Dado que el dado cayó par, cuál es probabilidad de que sea un número primo? Dado que tiene catarro, cuál es la probabilidad de que tenga gripe? E. Sucar, PGM: 2 Probabilidad 10
11 Regla de Bayes De la definición de probabilidad condicional se puede deducir: P(B A) = P(B) P(A B) / P(A), dado P(A) > 0 Esto permite invertir las probabilidades, por ejemplo obtener la P de una enfermedad dado un síntoma, con conocimiento de la P de los síntomas dado que alguien tiene cierta enfermedad E. Sucar, PGM: 2 Probabilidad 11
12 Probabilidad Total Dada una partición, B, de S, la probabilidad de un evento A se puede obtener como: P(A) = Σ i P(A B i ) P(B i ) B1 B3 B4 B2 A B5 E. Sucar, PGM: 2 Probabilidad 12
13 Teorema de Bayes Con la definición de probabilidad total, el teorema de Bayes se puede escribir como: P(B A) = P(B) P(A B) / Σ i P(A B i ) P(B i ) E. Sucar, PGM: 2 Probabilidad 13
14 Eventos independientes Dos eventos son independientes si la ocurrencia de uno no altera la probabilidad de ocurrencia del otro: P(A B) = P(A) ó P(B A) = P(B) Lo que es equivalente a: P(A B) = P(A) P(B) Independientes mutuamente exclusivos E. Sucar, PGM: 2 Probabilidad 14
15 Independencia condicional A es condicionalmente independiente de B dado C, si el conocer C hace que A y B sean independientes: P(A B,C) = P(A C) Ejemplo: A regar el jardín B predicción del clima C lluvia E. Sucar, PGM: 2 Probabilidad 15
16 Regla de la Cadena De la definición de probabilidad condicional, se puede evaluar la probabilidad de A 1 A 2 A 3... A N (probabilidad conjunta) como: P(A 1, A 2,..., A N ) = P(A 1 A 2,..., A N ) P(A 2 A 3,..., A N )... P(A N ) E. Sucar, PGM: 2 Probabilidad 16
17 Variables Aleatorias A cada evento A se le asigna un valor numérico X(A) = k, de forma que a cada valor le corresponde una probabilidad P(X = k) X es una variable aleatoria Ejemplos: X= Número de águilas en N lanzamientos Y= Número del dado al lanzarlo Z= Número de fallas antes de darle a un blanco E. Sucar, PGM: 2 Probabilidad 17
18 Tipos de Variables Aleatorias Discretas: el número de valores de X (rango) es finito o contablemente finito Continua: puede asumir todos los posibles valores en cierto intervalo a b, ejemplos: X= temperatura ambiente Y= tiempo en el que falle cierto dispositivo Z= distancia del robot a la pared E. Sucar, PGM: 2 Probabilidad 18
19 Distribución de probabilidad Variables discretas: p(x): p(x) 0 Σ p(x) = 1 Variables continuas: f(x): f(x) 0 f(x) = 1 E. Sucar, PGM: 2 Probabilidad 19
20 Función acumulativa Probabilidad de que la variable X tome un valor menor a x Discretas: P(X) = Σ x p(x) Continuas: F(X) = x f(x) Propiedades: 0 F(X) 1 F(X1) F(X2), si X1 X2 F(- ) = 0 F(+ ) = 1 E. Sucar, PGM: 2 Probabilidad 20
21 Estadísticas Moda: valor de mayor probabilidad Mediana: valor medio (divide el área en 2) Promedio: valor esperado : E(X) = Σ x X p(x) Varianza: dispersión σ 2 (X) = Σ x (X E(X)) 2 p(x) Desviación estandar σ(x) = σ 2 E. Sucar, PGM: 2 Probabilidad 21
22 Variables aleatorias en 2-D X y Y son dos funciones que asignan números reales a los eventos en S, entonces (X, Y) es una variable aleatoria en dos dimensiones Propiedades p(x,y) 0 ΣΣp(X,Y) = 1 Ejemplos: Número de artículos terminados en dos líneas de producción Número de pacientes con cáncer y número que fuma E. Sucar, PGM: 2 Probabilidad 22
23 Probabilidad conjunta, marginal, y condicional Probabilidad conjunta: p(x,y) Probabilidad marginal: p(x) = Σ Y p(x,y) Probabilidad condicional: p(x Y) = p(x,y) / p(y) E. Sucar, PGM: 2 Probabilidad 23
24 Independencia y Correlación Dos variables aleatorias son independientes si su probabilidad conjunta es el producto de las marginales: p(x,y) = p(x) p(y) Correlación: grado de relación lineal entre dos variables aleatorias (diferente independencia): ρ (X,Y) = E{[(X E(X)][Y E(Y)]}/ σ x σ Y,, [-1, 1] E. Sucar, PGM: 2 Probabilidad 24
25 Distribuciones básicas Uniforme Binomial Gaussiana o normal Histograma de una variable aleatoria E. Sucar, PGM: 2 Probabilidad 25
26 Uniforme Todos los valores en el rango son equiprobables E. Sucar, PGM: 2 Probabilidad 26
27 Binomial X es el número de valores verdaderos en N repeticiones de un proceso de Bernoulli con probabilidad P de verdadero (éxito) P(X=k) = (n k) p k (1-p) n-k E. Sucar, PGM: 2 Probabilidad 27
28 Gaussiana Aproximación a la binomial con p=0.5 y N muy grande (corresponde a la suma de muchas variables aleatorias independientes) f(x) = 1/σ(2π) 1/2 exp[-1/2 ((x-µ)/σ) 2 ] E. Sucar, PGM: 2 Probabilidad 28
29 Histograma Muestra el número de datos por intervalo en forma absoluta o relativa E. Sucar, PGM: 2 Probabilidad 29
30 Referencias [Neapolitan] Cap. 2 [Wesserman] Caps. 1, 2 Libros básicos de probabilidad, por ej.: Meyer, Introductory Probability and Statistical Applications Waserman, All of statistics E. Sucar, PGM: 2 Probabilidad 30
31 Actividades Leer sobre temas de probabilidad (ver documentos sobre interpretaciones y argumentos en la página) Hacer ejercicios de probabilidad en la página del curso (no entregar) Ir adquiriendo herramientas de software E. Sucar, PGM: 2 Probabilidad 31
Teoría de Probabilidad
Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos
matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4
PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA PRAXIS MES XXI NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA PARA CIENCIAS ECONÓMICO ADMINISTRATIVAS FECHA DE ELABORACIÓN: ENERO
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN
CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro
Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos
INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Carrera: Ingeniería Civil CIM 0531
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA
Probabilidad, Variables aleatorias y Distribuciones
Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer
Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar
Indicaciones para el lector... xv Prólogo... xvii
ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...
Teoría de la decisión
Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
CENTRO UNIVERSITARIO UTEG DIRECCIÓN ACADÉMICA
Objetivo general de la materia/asignatura El alumno se familiarizará con: a) La simbología, b) Los conceptos, c) y el lenguaje utilizado en la estadística, apreciará la importancia que tiene la probabilidad
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Maestría en Bioinformática Probabilidad y Estadística: Clase 1
Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS
Programa de estudios por competencias Licenciatura en Administración
Programa de estudios por competencias Licenciatura en Administración 1. IDENTIFICACIÓN DEL CURSO Centro Universitario: CENTRO UNIVERSITARIO DEL NORTE Departamento: FUNDAMENTOS DEL CONOCIMIENTO Academia:
3 PROBABILIDAD Y DISTRIBUCION NORMAL
3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL ASIGNATURA: ESTADÍSTICA I CODIGO : 5B0067 I.- DATOS GENERALES SILABO
PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT 6 10 3 2 5
PROGRAMA DE CURSO Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT
T1. Distribuciones de probabilidad discretas
Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Probabilidad y Estadística
Probabilidad y Estadística Grupo Lunes jueves 1PM22 11:00-12:00 11:00-13:00 Prof. Miguel Hesiquio Garduño. Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] 1 de Agosto de 2011 OBJETIVO
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar problemas
Facultad de Ciencias Sociales - Universidad de la República
Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 1.1. Aleatoriedad e incertidumbre 1.2 Probabilidad
ESTADISTICA DESCRIPTIVA Y PROBABILIDAD
ESTADISTICA DESCRIPTIVA Y PROBABILIDAD CODIGO 213543 (COMPUTACION) 223543 (SISTEMAS) 253443 (CONTADURIA) 263443( ADMINISTRACION) 273443 (GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE PRE
Estadística Aplicada
Estadística Aplicada Universidad Maimónides 2016 Clase 3. Algunos Conceptos de Probabilidad Pedro Elosegui Conceptos Probabilísticos - Probabilidad: valor entre cero y uno (inclusive) que describe la posibilidad
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.
Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
CONTENIDO PROGRAMÁTICO
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2015/09/30 Revisión No. 2 AC-GA-F-8 Página 1 de 5 ESTADÍSTICA II CÓDIGO 160012 PROGRAMA ECONOMÍA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto
Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas
Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones
PE - Probabilidad y Estadística
Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 GRADO EN INGENIERÍA
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS
I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS
FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de
Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Licenciatura en Informática IFM - 0429 3-2-8 2.- HISTORIA DEL PROGRAMA
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad
PROGRAMA ACADEMICO Ingeniería Industrial
1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional
Tema I. Introducción. Ciro el Grande ( A.C.)
1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente
CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...
CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
Métodos Estadísticos Capítulo II
Métodos Estadísticos Capítulo II Dr. Gabriel Arcos Espinosa Contenidos El campo de la probabilidad y estadística Conceptos básicos Enfoque para asignar probabilidades Contenidos Reglas de probabilidad
Probabilidad y Estadística
Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Probabilidad y Estadística
Probabilidad y Estadística Grupo Jueves Viernes 13:00-15:00 14:00-15:00 Prof. Miguel Hesiquio Garduño. Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] [email protected] http://hesiquiogm.wordpress.com
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público
Sede y localidad Carrera Sede Atlántica, Viedma Contador Publico Programa Asignatura: Estadística Aplicada Año calendario: 2012 Carga horaria semanal: 6 (seis) hs. Cuatrimestre: Primer Cuatrimestre. Segundo
Curso de nivelación Estadística y Matemática
Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad
