PROBABILIDAD Y ESTADÍSTICA
|
|
- Pedro Cárdenas Campos
- hace 5 años
- Vistas:
Transcripción
1 FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro
2 T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la probabilidad. 3. Variables aleatorias. 4. Modelos probabilísticos comunes. 5. Variables aleatorias conjuntas. 6. Distribuciones muestrales.
3 CONTENIDO TEMA 4 4. Modelos probabilísticos comunes. Objetivo: El alumno conocerá algunas de las distribuciones más utilizadas en la práctica de la ingeniería y seleccionará la más adecuada para analizar algún fenómeno aleatorio en particular. 4.1 Ensayo de Bernoulli y Distribución de Bernoulli. 4.2 Distribucion Binomial, Geométrica, Pascal e Hipergeométrica. 4.3 Proceso de Poisson y Distribución de Poisson. 4.4 Distribución uniforme continua. 4.4 Distribuciones normal y normal estándar. 4.5 Generación de números aleatorios.
4 MODELOS PROBABILÍSTICOS COMUNES DISTRIBUCIONES DE PROBABILIDAD DISCRETAS
5 ENSAYO DE BERNOULLI Consiste en realizar un sólo experimento (ensayo) en el cual existen únicamente dos posibles resultados: S { éxito, fracaso } Por ejemplo: observar un artículo y ver si es defectuoso Definimos a la variable aleatoria de Bernoulli de la siguiente forma: I 0 ; 1 ; Si el resultado del ensayo es fracaso. Si el resultado del ensayo es éxito. A ésta última se le conoce como función indicadora
6 DISTRIBUCIÓN DE BERNULLI (1/3) Supongamos que en un ensayo de Bernoulli la probabilidad de obtener éxito es p. Como el ensayo tiene únicamente dos resultados posibles, entonces la probabilidad de obtener un fracaso es 1-p. llamaremos q a la probabilidad de fracaso. p Probabilidad de éxito q (1-p) Probabilidad de fracaso Con esto, la distribución de probabilidad de la variable aleatoria de Bernoulli es: P( I ) q ; I 0 p ; I 1 0 ; c.o.c
7 DISTRIBUCIÓN DE BERNULLI (2/3) P( I ) q ; I 0 p ; I 1 0 ; c.o.c La media o valor esperado de la variable aleatoria de Bernoulli es: E [ I] 0q + 1p p La varianza de la variable aleatoria de Bernoulli es: V I ] 2 [ ] E I E I [ [ ] 2 µ I p V [ I] (0 q + 1 p) p p p p(1 p) pq 2 σ I pq
8 DISTRIBUCIÓN DE BERNULLI (3/3) Si llamamos X, en lugar de I, a la Variable aleatoria de Bernoulli, su distribución de probabilidad queda: P( x ) La cual también se puede abreviar de la forma: q ; p ; 0 ; c.o.c x 0 x 1 P( x) p x q 1 x ; x 0,1 0 c.o. c. Esta es la forma más usual de representar a la distribución de Bernoulli µ 2 p σ pq X X
9 ENSAYO BINOMIAL Consiste en realizar n veces el ensayo de bernoulli, de manera independiente uno de otro y suponiendo que la probabilidad de éxito p permanence constante en cada uno de ellos. Por ejemplo: observar cinco artículos de un mismo lote y contar el número de artículos con defecto. Definimos a la variable aleatoria de Binomial de la siguiente forma: X I + I + n I n I donde las I j son variables aleatorias de Bernoulli j j 1 independientes, cada una con media p y varianza pq. Así definida, X representa entonces el número de éxitos obtenidos al realizar n veces el ensayo de Bernoulli.
10 Para n 2 Para n 3 Para n 4 1 p q + 1 p q q + 1 p q q q + q p p 1 q q q p p 1 2 q (3 veces) q q p q + 2 p p p 2 q 0 (1 vez) q q q p p1 q 3 (4 veces) 2 p p q + p q p + 2 p p q q + q p p p 2 q p q q p + 3 p p p p 3 q q p q p + q q p p p 2 q 2 ( 6 veces) 3 p p p q + p p q p + p q p p + q p p p p 3 q 1 (4 veces DISTRIBUCIÓN BINOMIAL (1/3) Al realizar el ensayo binomial, la variable aleatoria puede adquirir los valores: X{0,1,2,...,n} Supongamos que se realizan n ensayos de Bernoulli y la probabilidad de éxito es p, la distribución de X para n 2, 3 ó 4 es: Se observa que el término genérico es p x q n-x repetido un determinado número de veces cuántas? X P(x) X P(x) X P(x) 0 q q p 0 q 2 (1 vez) 0 q q q p0 q 3 (1 vez) 0 q q q q p0 q 4 1 (2 veces) q p q + q p q q + 1 (3 veces) p q p q + 0 (1 vez) q p p q + 4 p p p p p 4 q 0
11 DISTRIBUCIÓN BINOMIAL (2/3) Supongamos que se obtienen consecutivamente primero los X éxitos y luego los n-x fracasos: A{ e, e, e, e,...e, f, f, f, f,..., f } x éxitos Para encontrar el número de formas en que se pueden obtener X éxitos y n-x fracasos, recordemos la expresión para el cálculo de permutaciones con grupos de objetos iguales: P k n m1, m2,.., m Hagamos m 1 x y m 2 n-x: P(A)p x q n-x m 1 n-x fracasos! m 2 n!!... m k! n n! P x, n x x!( n - x)! C n x Es decir que el número de formas en que se pueden ordenar los éxitos y los fracasos es C(n,x)
12 DISTRIBUCIÓN BINOMIAL (3/3) Finalmente, tenemos que el término p x q n-x se repite un numero de veces igual a C(n,x) : n! P( x) x!( n - x)! 0; p x q n x ; x 0,1, 2,.., n c.o. c En forma resumida, la distribución de la variable aleatoria binomial es: n P( x) P( X x) p x q n x ; x 0,1, 2,.., n x Puesto que la forma de P(x) depende de p y de n, éstos son los pámetros de la distribución binomial: P(x; n,p) La media de la VA binomial es: E X ] E[ I + I I I ] E[ I ] + E[ I ] E[ I ] E[ I p + p [ 1 2 j n 1 2 j n] p np µ X np La varianza de la VA binomial es: V[ X ] V[ I1 + I I j I n] V[ I1] + V[ I 2] V[ I j ] V[ In] pq + pq pq npq 2 σ npq X
13 DISTRIBUCIÓN BINOMIAL ACUMULATIVA La distribución de probabilidad acumulativa de la variable aleatoria binomial es: x i i i q n p i n x X P x F 0 x 2,.., 0,1, i ; ) ( ) ( Como el cálculo de F(X) puede resultar tedioso cuando x es relativamente grande, existen tablas de F(x) hasta para n30.
14 Ejercicio: Se afirma que 30% de la producción de ciertos instrumentos se realiza con material nacional y los demás con material importado. Si se toma una muestra aleatoria con reemplazo de 25 de estos instrumentos: n25, p cuál es la probabilidad de que 3 de ellos sean de material nacional? P(X3) 2.- cuál es la probabilidad de que no más de 3 de ellos sean de material nacional? P(X 3)P(X0)+P(X1)+P(X2)+P(X3) 3.- cuál es la probabilidad de que al menos 3 sean de material nacional? P(X 3)1-P(X 2) 4.- Cuántos instrumentos fabricados con material nacional se esperaría encontrar en la muestra? E[X]np
15 Distribución Geométrica Definamos una variable aleatoria X como el número de ensayos de Bernoulli, independientes, necesarios para obtener el primer éxito. donde la próbabilidad de éxito es p Implica que realizamos repetidamente el ensayo y nos detenemos al obtener el primer éxito. Cada ensayo es realizado de manera independiente uno de otro y suponiendo que la probabilidad de éxito p permanence constante en cada uno de ellos. P(X1)P(e)p P(X2)P(f,e)pq P(X3)P(f,f,e)q 2 p P(X4)P(f,f,fe)q 3 p... P(Xx)q x-1 p P( x) pq 1 p x 1 2 µ X σ X 2 ; x 1, 2,3,... La media y varianza de la variable aletoria Geométrica son: q p El único parámetro de la distribución geométrica es p.
16 Distribución de Pascal ( Binomial Negativa) Definamos una variable aleatoria X como el número de ensayos de Bernoulli necesarios para obtener exactamente K éxitos x 1 P( x) p k q x k ; x k, k + 1, k + k 1 La media y varianza de la variable aletoria de Pascal son: k p kq p µ σ 2 X X 2 Los parámetros de la distribución de Pascal son p y k. k 1, 2, 3,
17 Distribución Hipergeométrica Definamos una variable aleatoria X como el número de éxitos en n ensayos de Bernoulli, donde los ensayos se realizan sobre una población finita de tamaño N Sea K el número de elementos en la población que poseen una característica en particular, tal que p K/N Prob de éxito inicial. k N k x 0,1,2,..., n ( ) x n x P x ; x k, (n - x) N - k N N, n, k enteros positivos n La media y varianza de la variable aletoria de Hipergeométrica son: k 2 k µ X n np k N n N n σ X n 1 npq N N N N 1 N 1 Los parámetros de la distribución de Hipergeométrica son: N, n y k
18 Distribución de Poisson Definamos una variable aleatoria X como el número de eventos independientes que ocurren a una rapidez constante P( x) e λ x λ x! ; x 0,1, 2, λ > 0 3,... Donde λ es el número promedio de ocurrencias del evento por unidad de tiempo o espacio. A esta unidad de tiempo o espacio le podemos llamar intervalo. La media y varianza de la variable aletoria de Poisson son: µ λ X 2 σ X λ El único parámetro de La distribución de Poisson es λ. La distribución de Poisson es sesgada a la derecha y leptocúrtica, pero tiende a ser insesgada y mesocúrtica cuando aumenta λ.
19 Distribución de Poisson Propiedades de la distribución de Poisson: El número de eventos que ocurren en un intervalo, es independiente del número de eventos que ocurren en cualquier otro intervalo. La probabilidad de que ocurra un evento en un intervalo, es la misma para cualquier otro intervalo de las mismas dimensiones. La probabilidad de que ocurra un determinado número de eventos es proporcional al tamaño del intervalo. La probabilidad de que ocurran dos o más eventos en un intervalo, tiende a cero cuando el tamaño del intervalo tiende a cero.
20 La Distribución de Poisson como límite de la Distribución Binomial* Sea X una VA con dsitribución binomial con parámetros n y p n! P( x; n, p) p x q n x ; x x!( n - x)! 0,1, 2,.., n Si para n1, 2,... se cumple la realación p λ/n, para alguna λ>0, entonces: lim n p 0 p( x; n, p) e λ x λ ; x! x 0,1, 2,... la aproximación es mejor cuando n es grande y p pequeño, de tal forma que λnp tiene un valor moderado *Ver Canavos.
21 MODELOS PROBABILÍSTICOS COMUNES DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Continuará..
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos.
Experimento Binomial Experimento que consiste en ensayos independientes repetidos, cada uno con dos posibles resultados que se denominan éxito y fracaso, donde la probabilidad de éxito es la misma en cada
T1. Distribuciones de probabilidad discretas
Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
5 DISTRIBUCIONES BINOMIAL Y DE POISSON
5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...
Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
5. MODELOS PROBABILISTICOS.
5. MODELOS PROBABILISTICOS. 5.1 Experimento de Bernoulli Un modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos aleatoriamente. Pueden ser modelos probabilísticos discretos
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
Curso de nivelación Estadística y Matemática
Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Condiciones para una distribución binomial
ESTADÍSTICA INFERENCIAL FUNCIONES DE PROBABILIDAD DISCRETAS: BINOMIAL y POISSON EJERCICIOS RESUELTOS DE FUNCIÓN DE PROBABILIDAD BINOMIAL USANDO TABLAS y EXCEL Prof.: MSc. Julio R. Vargas A. Fórmulas de
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
UNIVERSIDAD DEL NORTE
UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Maestría en Administración Universidad Nacional Autónoma de México DISTRIBUCIONES DE PROBABILIDAD Introducción Una distribución de probabilidad indica toda la gama de valores
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar
Distribuciones de probabilidad discretas
Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
Distribuciones unidimensionales discretas
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución de Bernouilli de parámetro p 2 3 4 5 6 7 Distribución de Bernouilli de parámetro p Experimento de Bernouilli Es un experimento
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante
Tema 4 Variables Aleatorias
Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.
Distribuciones de probabilidad con R Commander
Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Objetivos. Epígrafes 3-1. Francisco José García Álvarez
Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN
CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas
Modelos Estocásticos I Tercer Examen Parcial Respuestas
Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS
1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO
Problemas. Variables Aleatorias. Modelos de Probabilidad
Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )
Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)
Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación
CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD
CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos
Facultad de Ciencias Sociales - Universidad de la República
Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura
Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua
Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones
Clase 6: Algunas Distribuciones de Probabilidad Discreta
Clase 6: Algunas Distribuciones de Probabilidad Discreta Distribución Uniforme discreta La más simple de todas las distribuciones de probabilidad discreta es una donde la v.a. toma cada uno de sus valores
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre
CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE?
TEOREMA DE BAYES Explica como considerar matemáticamente la nueva información en la toma de decisiones. P( AΙB) = P( A B) P( B) = P( A) P( BΙA) P( B) PROBLEMA: En cierto lugar llueve el 40% de los días
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.
PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado
Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Licenciatura en Informática IFM - 0429 3-2-8 2.- HISTORIA DEL PROGRAMA
TEMA 3: Inspección Estadística por Variables
TEMA 3: Inspección Estadística por Variables 1 Planes de muestreo por variables 2 Inspección en cadena 3 Inspección por muestreo continuo 4 Planes de muestreo por lotes salteados 5 Consideración de errores
X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?
Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja
Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema
Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características
PROBABILIDAD Y ESTADISTICA
PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:
ESTADÍSTICA SEMANA 3
ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
Teléfono:
Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:
ESTRUCTURA DE LINEAS DE ESPERA
ESTRUCTURA DE LINEAS DE ESPERA La teoría de las colas es el estudio de líneas de espera. Cuatro características de un sistema de la formación de colas o líneas de espera son: la manera en que los clientes
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
Aversión al riesgo, equivalente cierto y precios de reserva
Aversión al riesgo, equivalente cierto y precios de reserva Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo, equivalente cierto y precios de reserva Economía Financiera
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta
F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0
Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución
ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que
Indicaciones para el lector... xv Prólogo... xvii
ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
Tema 5: Principales Distribuciones de Probabilidad
Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática
Distribución Chi (o Ji) cuadrada (χ( 2 )
Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably
Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.
Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,
Tema 5. Variables aleatorias discretas
Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso
Distribuciones de Probabilidad Normal [Gaussiana]
Distribuciones de Probabilidad Normal [Gaussiana] Distribución Normal o Gaussiana Una variable aleatoria X es llamada variable aleatoria normal (guassiana) si su pdf está dado por, 1 2 2 x / 2 f X x e
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
La distribución de Probabilidad normal, dada por la ecuación:
La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada
DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)
DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores
Tema 6 Algunos modelos de distribuciones discretas.
Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares
Conceptos básicos estadísticos
Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto
SISTEMA DE NUMEROS REALES
SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto
3.7. FONDOS DE AMORTIZACIONES
1 BIBLIOTECA VIRTUAL de Derecho, Economía y Ciencias Sociales ADMINISTRACIÓN FINANCIERA I Arturo García Santillán 3.7. FONDOS DE AMORTIZACIONES 3.7.1. CONCEPTOS BÁSICOS Habiendo estudiado las amortizaciones
6. ESTIMACIÓN DE PARÁMETROS
PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza
Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL
Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el
Tema 5. Muestreo y distribuciones muestrales
Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:
Distribuciones de Probabilidad, Binomial& Otros (Cap. 5) Math. 298 Prof. Gaspar Torres Rivera
Distribuciones de robabilidad, inomial& Otros (Cap. 5) Math. 9 rof. aspar Torres Rivera Distribución de robabilidad Def. Es la distribución de las probabilidades asociadas con cada uno de los valores de