Tema 4: Variable aleatoria. Métodos Estadísticos
|
|
|
- Marcos Aguirre Suárez
- hace 9 años
- Vistas:
Transcripción
1 Tema 4: Variable aleatoria. Métodos Estadísticos
2 Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función real en el espacio muestral, X:Ω R Los valores de la variable aleatoria se notarán con letras minúsculas x en este caso.
3 Ejemplos de v.a. Ejemplos: Supongamos un experimento aleatorio consistente en lanzar dos dados al aire. Bajo este experimento lo siguiente serían v.a: 1. Sea X la v.a. suma de los valores de los dados donde X puede tomar valores x=2,3,4,, Sea Y la v.a número de pares en los dados donde Y puede tomar los valores y=0,1,2. 3. Sea Z la v.a número de impares en los dados donde Z puede tomar los valores z=0,1,2.
4 Variable aleatoria discreta Definición: Se dice que una v.a. es discreta si el conjunto de todos los valores que puede tomar es un conjunto numerable. Ejemplos: Número de caras al lanzar dos dados. Número de cifras acertadas en un sorteo de la lotería.
5 Variable aleatoria discreta Definición: Dada una v.a. discreta, X, se define la función masa de probabilidad como: f(x)=p[x=x], para cada x R. Proposición: Sea X v.a. discreta y f(x) su función masa de probabilidad. Entonces: 1. f(x) 0 para todo x R 2. Σ x R f(x)=1 3. En general, para cualquier conjunto B, P[X B]=Σ x B f(x), donde x son los posibles valores de B
6 Variable aleatoria discreta Definición: Se define la función de probabilidad una v.a. discreta, X, como: distribución de F(x)=P[X x]= Σ xi x f(x), para cada x R. Proposición: Sea X v.a. discreta y f(x) su función masa de probabilidad y F(x) su función de distribución. Entonces: 1. lim F(x)=0 x - 2. lim x F(x)=1 3. F es creciente 4. F es continua a la derecha
7 Variable aleatoria discreta Además: 1. P[X a]=f(a)=σ f(x) x a 2. P[X<a]=F(a - )=Σ x <a f(x) 3. P[X a]=1- F(a - )= Σ f(x) x a 4. P[X>a]=1- F(a)= Σ x>a f(x) 5. P[a < X<b]=F(b - )-F(a) 6. P[a X<b]= F(b - )-F(a - ) 7. P[a < X b]=f(b)-f(a) 8. P[a X b]=f(b)- F(a - )
8 Variable aleatoria discreta Ejemplo 1: Sea el experimento lanzar tres monedas, y sea X v.a. número de caras. Calcular su función masa de probabilidad y su función de distribución. Ejemplo 2: Sea el experimento sacar 2 bolas de una urna que contiene 2 bolas blancas y 3 bolas rojas, y sea Y v.a. número de bolas rojas. Calcular su función masa de probabilidad y su función de distribución.
9 Variable aleatoria continua Definición: Se dice que una v.a. es continua si el conjunto de todos los valores que puede tomar no es numerable. Ejemplos: Duración de una llamada a un servicio de atención al cliente. Tiempo que un médico tarda en atender un paciente
10 Variable aleatoria continua Definición: Dada una v.a. continua, X, se define la función de densidad de probabilidad de X, f(x) como aquella función tal que para cualquier a,b R, o a,b=±, P[a<X<b]= b af(x) dx, Proposición: Sea X v.a. continua y f(x) su función de densidad de probabilidad. Entonces: 1. f(x) 0 para todo x R 2. R f(x)=1 3. En general, para cualquier conjunto de números reales B, P[X B]= x B f(x)
11 Variable aleatoria continua Definición: Se define la función de distribución de probabilidad una v.a. continua, X, como: para cada x R. F(x)=P[X x]= x - f(t) dt, Proposición: Sea X v.a. discreta y f(x) su función masa de probabilidad y F(x) su función de distribución. Entonces:
12 Variable aleatoria continua Ejemplo: Sea f(x)=e x-2 si x < 2 y f(x)=0 en otro caso, calcular su función de distribución. Ejemplo: Sea el experimento lanzar una pelota en una habitación rectangular 2x4 y la puerta se encuentra en la pared de lado 2. Sea Y la v.a continua distancia a la pared de la puerta. Calcular su función de distribución y su función de densidad.
13 Momentos de una v.a Definición: Dada una v.a. X, y sea Y=g(X) un función suya, es decir una transformación de la variable. Entonces, se define la media de la función g(x) como, E[g(X)]= R g(x)f(x) dx, si X es continua E[g(X)]= R g(x)f(x), si X es discreta
14 Esperanza matemática de una v.a Definición: Dada una v.a. X, se define la media o esperanza matemática como, EX = R x f(x) dx, si X es continua EX= R x f(x), si X es discreta
15 Transformación de una v.a. Definición: Dada una v.a. X, a 1,..., a n constantes y g 1 (X),...,g n (X) funciones de la variable. Entonces, E[a 1 g 1 (X)+...+ a n g n (X)] = a 1 E[g 1 (X)]+...+ a n E[g n (X)]
16 Varianza de una v.a. Definición: Dada una v.a. X. Se define su varianza como, Var[X] = E[(X-EX) 2 ] = E [X 2 ] (EX) 2 Proposición: Dada una v.a. X, y sean a,b R. Entonces, E[aX+b] = a E[X] + b Var[aX+b] = a 2 Var[X]
17 Tema 4: VARIABLE ALEATORIA FIN
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias
Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................
2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria
2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un
Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez
Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
TEMA 2.- VARIABLES ALEATORIAS
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.
Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,
Distribuciones de Probabilidad Para Variables Aleatorias Continuas
Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}
1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,
Unidad III Variables Aleatorias Unidimensionales
Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos
LA FUNCIÓN VARIABLE ALEATORIA (va.)
LA FUNCIÓN VARIABLE ALEATORIA (va.) Una variable aleatoria X es una función que asocia un número real con cada elemento del espacio muestral. Ej: Se sacan fichas de manera sucesiva sin reemplazo de una
Probabilidad. Distribuciones binomial y normal
Tema 7 Probabilidad. Distribuciones binomial y normal 7.1. Introducción En este tema trataremos algunas cuestiones básicas sobre Probabilidad. Tanto la Probabilidad como la Estadística son dos campos de
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.
MODELO DE RESPUESTAS Objetivos del 1 al 9
PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ
Variables aleatorias
Capítulo 5 Variables aleatorias 5.1. Introducción Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
3. Variables aleatorias
3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución
Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría
Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto
Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.
Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar
4.1. Definición de variable aleatoria. Clasificación.
Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces
Resumen de Probabilidad
Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS
Introducción al Tema 9
Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables
6. VARIABLES ALEATORIAS
6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
Tema 5 Modelos de distribuciones de Probabilidad
Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto
Tema 5: Modelos probabilísticos
Tema 5: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Tema 12: Distribuciones de probabilidad
Tema 12: Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E, de un experimento aleatorio, un número real: X:
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
EJERCICIOS VARIABLES ALEATORIAS
EJERCICIOS VARIABLES ALEATORIAS 1.- Tenemos dos urnas, en la urna A hay 5 bolas blancas y 4 rojas y en la B hay 6 blancas y 3 rojas. Se sacan, sin reemplazamiento, dos bolas de cada urna. Sea X el nº de
Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :
Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)
5. VARIABLES ALEATORIAS Y SUS MOMENTOS
5. VARIABLES ALEATORIAS Y SUS MOMENTOS Una variable aleatoria Objetivos Introducir la idea de una variable aleatoria y su distribución y sus características como la media, la varianza, los cuartíles etc.
Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22
Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de
Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez
Felipe José Bravo Márquez 11 de noviembre de 2013 Motivación Las probabilidades son el lenguaje de la incertidumbre que a la vez es la base de la inferencia estadística. El problema estudiado en probabilidades
Variables aleatorias
Estadística Variables aleatorias Supongamos que realizamos el experimento: tirar dos veces un dado. Hasta ahora, hemos tratado sucesos, por ejemplo: A2 = la suma de dos tiradas de un dado es 2. Podemos
VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos
1 Definiciones VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos Aleatoria: Azar 1. Una variable aleatoria ( v.a.) es una función que asigna un número real a cada resultado en el
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
Distribuciones discretas. Distribución binomial
Variables aleatorias discretas y continuas Se llama variable aleatoria a toda función definida en el espacio muestral de un experimento aleatorio que asocia a cada elemento del espacio un número real.
Distribución de Probabilidad Normal
Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias
Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial
Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
CALIFICACIÓN: Consejería de Educación, Ciencia y Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Junio 2011 Resolución de 9 de marzo de 2011 (DOCM de 5 de abril)
Distribuciones unidimensionales discretas
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución de Bernouilli de parámetro p 2 3 4 5 6 7 Distribución de Bernouilli de parámetro p Experimento de Bernouilli Es un experimento
Propiedades en una muestra aleatoria
Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables
Tema 4: Variables aleatorias.
Estadística 46 Tema 4: Variables aleatorias. El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos aleatorios, que en muchos
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
Momentos de Funciones de Vectores Aleatorios
Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica ([email protected]) Marí Benlloch, Manuel ([email protected]) Departamento Centro Estadística,
Ejercicios de Variables Aleatorias
Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada
Tema 5. Variables Aleatorias Conjuntas.
Tema 5. Variables Aleatorias Conjuntas. Objetivo: El alumno conocerá el concepto de variables aleatorias conjuntas podrá analizar el comportamiento probabilista, conjunta e individualmente, de las variables
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.
x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua.
PROBABILIDAD Tema 2.3: Variables aleatorias continuas Objetivos Distinguir entre variables aleatorias discretas y continuas. Dominar el uso de las funciones asociadas a una variable aleatoria continua.
TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL
ESTADÍSTICA II TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL II.1.- Distribución chi-cuadrado. II.1.1.- Definición. II.1..- Función de densidad. Representación gráfica. II.1.3.- Media y varianza.
APUNTES DE PROBABILIDAD Y ESTADISTICA ING. GUILLERMO CASAR MARCOS
CAPITULO III VARIABLES ALEATORIAS. DEFINICION.- UNA VARIABLE ALEATORIA ES UNA FUNCION DE LOS VALORES DEL ESPACIO MUESTRAL. ESTO ES, EL DOMINIO DE DEFINICION DE UNA VARIABLE ALEATORIA ES UN ESPACIO MUESTRAL,
VARIABLES ALEATORIAS INTRODUCCIÓN
DOCENTE: SERGIO ANDRÉS NIETO DUARTE CURSO: ESTADÍSTICA DE LA PROBABILIDAD VARIABLES ALEATORIAS INTRODUCCIÓN Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son
Distribuciones de probabilidad
Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
VARIABLES ALEATORIAS
VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento
VARIABLES ALEATORIAS. Ing. Andrés Álvarez Cid
VARIABLES ALEATORIAS Ing. Andrés Álvarez Cid VALOR ESPERADO CASO DISCRETO Sea X una variable aleatoria discreta con un conjunto de valores posibles D y una función de probabilidad p(x). El valor esperado
Distribuciones de Probabilidad
Variables Aleatorias y Distribuciones de Probabilidad Jhon Jairo Padilla A., PhD. Ejemplo Suponga el caso de laprueba de tres Resultado Número componentes electrónicos tomados componentes al azar de un
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
Estadística I Tema 5: Modelos probabiĺısticos
Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.
Tema 3: Estimadores de máxima verosimilitud
Tema 3: Estimadores de máxima verosimilitud 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: motivación Método
Variables Aleatorias Discretas
Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.
TEMA 3. VARIABLES ALEATORIAS.
TEMA 3. VARIABLES ALEATORIAS. Objetivo: El alumno conocerá el concepto de variable aleatoria y podrá analizar el concepto probabilista de la variable a través de su distribución y sus características numéricas.
Integración por el método de Monte Carlo
Integración por el método de Monte Carlo Georgina Flesia FaMAF 29 de marzo, 2012 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para seleccionar muestras aleatorias de una
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Introducción al Diseño de Experimentos.
Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas
Variables aleatorias continuas y Teorema Central del Limite
Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R
La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si
La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
