Resumen de Probabilidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resumen de Probabilidad"

Transcripción

1 Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS los posibles resultados de un experimento aleatorio. * σ álgebra(f) Es la clase de todos los eventos de interés. Este conjunto debe satisfacer: - Ω F. - Si A F entonces A C F. - Si tenemos una sucesión de eventos de interés, entonces A 1 A 2 A 3... A n = * Medida de probabilidad A i F Una medida de probabilidad es una función P: F [0, 1] tal que: - P(Ω)=1 - Si A 1, A 2,..., A n son mutuamente excluyentes ( i, j : i j : A i A j = ) entonces P ( A i ) = P (A i ) * Continuidad por la izquierda de la medida de probabilidad lím A n = A i n * Continuidad por la derecha de la medida de probabilidad lím A n = A i n * Probabilidad Condicional P (A B) = P (A B) P (B) 1

2 * Probabilidad Total P (A) = P (A B i ) * Fórmula de Bayes P (B i A) = P (A B i )P (B i ) P (A B i)p (B i ) * Independencia Dos eventos A,B son independientes si P (A B) = P (B). Otra manera P (A B) = P (A)P (B) * Espacios Equiprobables Dado Ω = {w 1, w 2,..., w n }, decimos que (Ω, P ) es un espacio equiprobable si Ω es finito y ( i : 1 i n w i Ω : P (w i ) = 1 n ) * Esperanza Dada una variable aleatoria discreta X con p(x) = P (X = x), llamamos esperanza o valor esperado al número: E(x) = x = x xp (X = x) * Varianza La varianza de una variable aleatoria X me permite saber que tan alejado está un resultado del valor esperado, es decir, conocer cual es la dispersión del valor respecto a la muestra. Se calcula de la siguiente forma: V ar(x) = E(X 2 ) E 2 (X) Variables Aleatorias Discretas Definición Una variable aleatoria X discreta es una función sobre un espacio muestral numerable y cuyo conjunto de llegada es el de los números reales (R) X : Ω R Llamaremos Función de masa de probabilidad de una variable aleatoria discreta X a la probabilidad de que X tome un valor x R P (x) = P (X = x) = P ({w Ω : X(w) = x}) Llamaremos Imagen de una variable aleatoria al conjunto de los posibles valores que puede tomar dicha variable: Im(X) = {x : x = X(ω) ω Ω} 2

3 Vectores Aleatorios Un vector aleatorio es un par ordenado (X, Y ) definido en ΩxΩ (X, Y ) toma valores en R. La función de masa de probabilidad de un vector aleatorio (X, Y ) es: p(x, Y ) = P (X = x, Y = y) = P ({ω : X(ω) = x, Y (ω) = y)}) Además definimos las funciones de probabilidad marginal de una variable aleatoria: p(x) = P (X = x) = y P (X = x, Y = y) probabilidad marginal de X p(y) = P (Y = y) = x P (X = x, Y = y) probabilidad marginal de Y - Si el vector aleatorio (X, Y ) tiene función de masa de probabilidad conjunta p(x, Y ) = P x (X)P y (Y ) entonces X, Y con independientes. En caso general: P (X 1 = x 1, X 2 = x 2, X 3 = x 3,... ; X n = x n ) = n P (X i = x i ) i=1 - Si k(p (X = k) = P (Y = k)), entonces se dice que las variables X, Y están igualmente distribuidas. Acerca de las variables aleatorias independientes Nos interesa conocer la probabilidad de que la suma de dos variables independientes tomen un valor determinado. Si queremos que X + Y = z, entonces tenemos que tomar todos los eventos tal que X = k y Y = z k para algun k(0 k z). Si X, Y son variables aleatorias independientes entonces: P (X + Y = z) = x P (X = x)p (Y = x z) Además si Im(X) = Im(Y ) = {0, 1, 2...}, entonces: P X+Y (z) = P (X + Y = z) = z P x (k)p y (z k) = P x (x)p y (z k) k=0 Distribuciones de variables aleatorias * Modelo de Bernoulli Es una distribución que modela experimentos en los que los posibles resultados son éxito o no éxito. Se define una variable aleatoria X tal que: X = { 1 si hay un éxito 0 si no hay éxito La función de masa de probabilidad de la distribución de Bernoulli es: 3

4 P (X = 1) = p P (X = 0) = 1 p donde p es la probabilidad de éxito (p es el parámetro de la distribución). La esperanza de X variable que se distribuye Bernoulli es E(X) = p La varianza de X distribuida Bernoulli es var(x) = p p 2 * Modelo Hipergeométrico Es una distribución que modela experimentos donde se toma una muestra de tamaño n de un conjunto de tamaño N (sin repetición) y se quiere saber cúal es la probabilidad de que k elementos de la muestra cumplen con una característica dada. Los parámetros de esta distribución son el tamaño del conjunto (N), el tamaño de la muestra tomada (n) y la cantidad de elementos del conjunto que cumplen con la característica (a). La función de masa de probabilidad de la distribución hipergeométrica es: ( a N a ) k)( P (X = k) = n k ( N n) con 0 k min(n, a). La esperanza de X si se distribuye hipergeométrica es E(X) = n a N La varianza de una variable que se distribuya hipergeométrica es var(x) = n N n N 1 * Modelo Binomial a N (1 a N Es una distribución para modelar una sucesión de intentos de un experimento tipo Bernoulli (donde se puede obtener éxito o fracaso). Se define una variable aleatoria X tal que X va a ser el número de exitos en todos los intentos realizados. Los parámetros de la binomial son: p (la probabilidad de éxito) y n (el número de intentos). La función de masa de probabilidad de la distribución binomial es: ( ) n P (X = k) = p k (1 p) n k p La Esperanza de una variable aleatoria X que se distribuya binomial es: E(X) = np La varianza de una variable aleatoria X que se distribuya binomial es: var(x) = np(1 p) 4

5 * Modelo Geométrico Es una distribución para modelar una sucesión de intentos fracasados de un experimento hasta que se obtiene un éxito (debe haber igualdad de condiciones en cada intento). Se define una variable aleatoria X tal que X va a ser el número de fracasos antes de obtener un éxito. El parámetro del modelo geométrico es p (la probabilidad de éxito). La función de masa de probabilidad de la distribución geométrica es: P (X = k) = (1 p) k p La esperanza de una variable X que se distribuye geométrica es: E(X) = 1 p La varianza de una variable que se distribuya geométrica es: var(x) = 1 p p 2 * Modelo Poisson Es una distribución para modelar experimentos que se llevan a cabo sobre un espacio continuo (como el tiempo), la variable aleatoria definida X va a representar el numero de éxitos que se obtienen sobre ese espacio. El parámetro de la distribución Poisson es λ. La función de masa de probabilidad de la distribución Poisson es: P (X = k) = e λ λ k k! La esperanza de una variable X que se distribuye Poisson es: E(X) = λ La varianza de una variable X que se distribuya Poisson es: E(X) = λ Esperanza Sea Y una variable aleatoria discreta y Y = g(x) con g : R R, entonces: E(Y ) = y yp (Y = y) = x g(x)p (X = x) (Caso multidimensional)sea g : R x R R y sea z = g(x, Y ), entonces: E(z) = E(g(X, Y )) = g(x, Y )P (X = x, Y = y) x y Las operaciones sobre la esperanza son lineales, es decir, E(aX + by ) = ae(x) + be(y) Si X, Y son independientes: -E(XY ) = E(X)E(Y ) -E(X 1 X 2 X 3... X n ) = n i=1 E(X i) 5

6 Covarianza la covarianza se define como: cov(x, Y ) = E[(X µ x )(Y µ y )] cov(x, Y ) = E(XY ) E(X)E(Y ) Donde µ x y µ y son las esperanzas de X y de Y respectivamente. Si X, Y son independientes, entonces la covarianza es cero. Esperanza condicional Llamaremos esperanza condicionada, a la esperanza de una variable dado un evento: E(X B) = x xp (X = x B) Fórmula de particionamiento Si B 1, B 2, B 3,..., B n es una partición del espacio muestral, entonces E(X) = i 1 E(X B i )P (B i ) Varianza La varianza se define como: var(x) = E(X 2 ) E 2 (X) * La varianza no es lineal: var(ax + by ) = a 2 var(x) + b 2 var(y ) + 2abcov(X, Y ) * Si X, Y son independientes: var(x + Y ) = var(x) + var(y ) var(x 1 + X 2 + X 3... X n ) = n var(x i ) i=1 6

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria PROBABILIDAD Tema 2.2: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los

Más detalles

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática A. Distribuciones de variables aleatorias. 1. Descripción de una distribución

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Vectores aleatorios Probabilidad y Estadística Vectores aleatorios Federico De Olivera Cerp del Sur-Semi Presencial curso 2015 Federico De Olivera (Cerp del Sur-Semi Presencial) Probabilidad y Estadística

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Probabilidades y Estadísticas

Probabilidades y Estadísticas Facultad de Ciencias Físicas y Matemtáticas, Universidad de Chile Apuntes de Clases Profesor: Roberto Cortez Tomás Wolf y Pedro Franz 6 de febrero de 2014 Santiago, Chile. Índice general I Probabilidades

Más detalles

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos Básicos de Distribuciones Discretas y Continuas Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

6-1. Dos preguntas sobre 100 tiradas de dado

6-1. Dos preguntas sobre 100 tiradas de dado Semana 6 Esperanza y Varianza 6-1. Dos preguntas sobre 100 tiradas de dado 6-2. Esperanza 6-3. Propiedades básicas de la esperanza 6-4. Distancia esperada a la media 6-5. Varianza 6-6. Demostraciones 6-1.

Más detalles

Estadística Descriptiva y Probabilidad FORMULARIO

Estadística Descriptiva y Probabilidad FORMULARIO Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.

Más detalles

Modelos Estocásticos I. Notas de Curso. Cimat, A.C.

Modelos Estocásticos I. Notas de Curso. Cimat, A.C. Modelos Estocásticos I Notas de Curso Joaquín Ortega Sánchez Víctor Rivero Mercado Cimat, A.C. Índice general 1. Introducción a la Teoría de Probabilidad 1 1.1. Introducción............................................

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

Práctica 3 Esperanza Condicional

Práctica 3 Esperanza Condicional 1. Generalidades Práctica 3 Esperanza Condicional 1. Sea (X i ) i I una familia de variables aleatorias definidas sobre un mismo espacio medible (Ω, F) y sea Y otra variable aleatoria en este espacio.

Más detalles

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:

Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales: Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.

Más detalles

En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en

En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en Capítulo 3 Variable Aleatoria 3.. Introducción En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en el número de veces que ha ocurrido un evento. Por ejemplo, al lazar dos monedas,

Más detalles

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA Probabilidades y Estadística

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA Probabilidades y Estadística Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA3403 - Probabilidades y Estadística Vectores Aleatorios Alberto Vera Azócar, albvera@ing.uchile.cl.

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Ruido en los sistemas de comunicaciones

Ruido en los sistemas de comunicaciones Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para

Más detalles

ECONOMETRÍA I. Tema 1: La naturaleza de la econometría y los datos econométricos

ECONOMETRÍA I. Tema 1: La naturaleza de la econometría y los datos econométricos ECONOMETRÍA I Tema 1: La naturaleza de la econometría y los datos econométricos Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Distribuciones multivariadas

Distribuciones multivariadas Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =

Más detalles

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX} 1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,

Más detalles

Vectores aleatorios (distribuciones multivariantes)

Vectores aleatorios (distribuciones multivariantes) Vectores aleatorios (distribuciones multivariantes) Tema 9. Distribución conjunta de un vector aleatorio. Distribuciones marginales y condicionadas Ignacio Cascos Depto. Estadística, Universidad Carlos

Más detalles

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función

Más detalles

VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios

VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios VECTORES ALEATORIOS 1 Introducción En la vida real es muy frecuente enfrentarnos a problemas en los que nos interesa analizar varias características simultáneamente, como por ejemplo la velocidad de transmisión

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

Definición de variable aleatoria

Definición de variable aleatoria Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables

Más detalles

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA 1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática

Más detalles

Tablas de Probabilidades

Tablas de Probabilidades Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

VARIABLES ALEATORIAS

VARIABLES ALEATORIAS VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento

Más detalles

CURSO INTRODUCTORIO DE PROBABILIDAD. Universidad Carlos III de Madrid

CURSO INTRODUCTORIO DE PROBABILIDAD. Universidad Carlos III de Madrid CURSO INTRODUCTORIO DE PROBABILIDAD Raúl Jiménez y Haydée Lugo Universidad Carlos III de Madrid Septiembre 2009 2 Índice general Prefacio 5 1. Conceptos básicos 7 1.1. Espacios de probabilidad......................

Más detalles

2.5. Vectores aleatorios

2.5. Vectores aleatorios 2.5. Vectores aleatorios Hasta ahora, dado un espacio de probabilidad (Ω, F, P), sólo hemos considerado una variable aleatoria X sobre Ω a la vez. Sin embargo, nos puede interesar estudiar simultáneamente

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Distribución de probabilidad

Distribución de probabilidad Los experimentos aleatorios originan resultados y los resultados nos permiten tomar decisiones Por ejemplo, en un partido de fútbol si se lanza una moneda y sale cara parte la visita, de lo contrario parte

Más detalles

Tema 1. Probabilidad y modelos probabiĺısticos

Tema 1. Probabilidad y modelos probabiĺısticos 1 Tema 1. Probabilidad y modelos probabiĺısticos En este tema: Probabilidad Variables aleatorias Modelos de variables aleatorias más comunes Vectores aleatorios 2 Tema 1. Probabilidad y modelos probabiĺısticos

Más detalles

Modelo de Probabilidad

Modelo de Probabilidad Capítulo 1 Modelo de Probabilidad 1.1 Definiciones y Resultados Básicos Sea Ω un conjunto arbitrario. Definición 1.1 Una familia no vacía F de subconjuntos de Ω es llamada una σ-álgebra de subconjuntos

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad

Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Sistemas de ayuda a la decisión Modelización de la incertidumbre Tema 2. Incertidumbre y Probabilidad Indice 1) Sucesos aleatorios. Espacio muestral. 2) Operaciones con sucesos. 3) Enfoques de la Probabilidad.

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson

Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson Algunas Distribuciones EstadísticasTeóricas Distribución de Bernoulli Distribución de Binomial Distribución de Poisson Aproximación de la Distribución Binomial por la Distribución de Poisson Distribución

Más detalles

C L A S E N 5 I N S E M E S T R E O T O Ñ O,

C L A S E N 5 I N S E M E S T R E O T O Ñ O, Unidad 1 a. Probabilidades y Estadística 1 C L A S E N 5 I N 3 4 0 1 S E M E S T R E O T O Ñ O, 2 0 1 2 Características de las v.a 2 Parámetros v.a. La función de densidad o la distribución de probabilidad

Más detalles

TEMA 2.- VARIABLES ALEATORIAS

TEMA 2.- VARIABLES ALEATORIAS TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de

Más detalles

Introducción a la Teoría de Probabilidades

Introducción a la Teoría de Probabilidades Capítulo 1 Introducción a la Teoría de Probabilidades 1.1. Introducción El objetivo de la Teoría de Probabilidades es desarrollar modelos para experimentos que están gobernados por el azar y estudiar sus

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST. Tema

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Tema 2: Variables Aleatorias Unidimensionales

Tema 2: Variables Aleatorias Unidimensionales Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función

Más detalles

Tema 5: Vectores aleatorios bidimensionales.

Tema 5: Vectores aleatorios bidimensionales. Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,

Más detalles

Tema 2 Modelos de probabilidad

Tema 2 Modelos de probabilidad Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución

Más detalles

Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por:

Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por: Capítulo 3 Variables aleatorias 3.1 Definición, tipos En ocasiones de un experimento aleatorio sólo nos interesará conocer ciertas características del mismo. En estos casos nos bastará con conocer la distribución

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

A. Probabilidad. Resultados. Elementos ω del espacio muestral, también llamados puntos muestrales o realizaciones.

A. Probabilidad. Resultados. Elementos ω del espacio muestral, también llamados puntos muestrales o realizaciones. Tema 1. Espacios de Probabilidad y Variables Aleatorias: Espacios de Probabilidad. 1 A. Probabilidad. Un experimento aleatorio tiene asociados los siguientes elementos: Espacio muestral. Conjunto Ω de

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico Solución. Curso 016 Ejercicio 1 Suponemos que hay independencia en la concurrencia o no entre las personas. Dado este supuesto y las características

Más detalles

ESTADÍSTICA I. Unidad 4: Resumen de Contenidos Teóricos 1. Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS

ESTADÍSTICA I. Unidad 4: Resumen de Contenidos Teóricos 1. Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS ESTADÍSTICA I Unidad 4: Resumen de Contenidos Teóricos Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS. VARIABLES ALEATORIAS DISCRETAS. Distribución Binomial Definición previa: Prueba

Más detalles

4. Modelos Multivariantes

4. Modelos Multivariantes 4. Curso 2011-2012 Estadística Distribución conjunta de variables aleatorias Definiciones (v. a. discretas) Distribución de probabilidad conjunta de dos variables aleatorias X, Y Función de distribución

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

1. Teoría de probabilidad

1. Teoría de probabilidad Disclaimer: Este apunte no es autocontenido y fue pensado como un repaso de los conceptos, no para aprenderlos de aquí directamente 1 Teoría de probabilidad Definición 1 (espacio muestral) Un espacio muestral

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles