Resumen de Probabilidad
|
|
|
- Juan Salazar Marín
- hace 7 años
- Vistas:
Transcripción
1 Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS los posibles resultados de un experimento aleatorio. * σ álgebra(f) Es la clase de todos los eventos de interés. Este conjunto debe satisfacer: - Ω F. - Si A F entonces A C F. - Si tenemos una sucesión de eventos de interés, entonces A 1 A 2 A 3... A n = * Medida de probabilidad A i F Una medida de probabilidad es una función P: F [0, 1] tal que: - P(Ω)=1 - Si A 1, A 2,..., A n son mutuamente excluyentes ( i, j : i j : A i A j = ) entonces P ( A i ) = P (A i ) * Continuidad por la izquierda de la medida de probabilidad lím A n = A i n * Continuidad por la derecha de la medida de probabilidad lím A n = A i n * Probabilidad Condicional P (A B) = P (A B) P (B) 1
2 * Probabilidad Total P (A) = P (A B i ) * Fórmula de Bayes P (B i A) = P (A B i )P (B i ) P (A B i)p (B i ) * Independencia Dos eventos A,B son independientes si P (A B) = P (B). Otra manera P (A B) = P (A)P (B) * Espacios Equiprobables Dado Ω = {w 1, w 2,..., w n }, decimos que (Ω, P ) es un espacio equiprobable si Ω es finito y ( i : 1 i n w i Ω : P (w i ) = 1 n ) * Esperanza Dada una variable aleatoria discreta X con p(x) = P (X = x), llamamos esperanza o valor esperado al número: E(x) = x = x xp (X = x) * Varianza La varianza de una variable aleatoria X me permite saber que tan alejado está un resultado del valor esperado, es decir, conocer cual es la dispersión del valor respecto a la muestra. Se calcula de la siguiente forma: V ar(x) = E(X 2 ) E 2 (X) Variables Aleatorias Discretas Definición Una variable aleatoria X discreta es una función sobre un espacio muestral numerable y cuyo conjunto de llegada es el de los números reales (R) X : Ω R Llamaremos Función de masa de probabilidad de una variable aleatoria discreta X a la probabilidad de que X tome un valor x R P (x) = P (X = x) = P ({w Ω : X(w) = x}) Llamaremos Imagen de una variable aleatoria al conjunto de los posibles valores que puede tomar dicha variable: Im(X) = {x : x = X(ω) ω Ω} 2
3 Vectores Aleatorios Un vector aleatorio es un par ordenado (X, Y ) definido en ΩxΩ (X, Y ) toma valores en R. La función de masa de probabilidad de un vector aleatorio (X, Y ) es: p(x, Y ) = P (X = x, Y = y) = P ({ω : X(ω) = x, Y (ω) = y)}) Además definimos las funciones de probabilidad marginal de una variable aleatoria: p(x) = P (X = x) = y P (X = x, Y = y) probabilidad marginal de X p(y) = P (Y = y) = x P (X = x, Y = y) probabilidad marginal de Y - Si el vector aleatorio (X, Y ) tiene función de masa de probabilidad conjunta p(x, Y ) = P x (X)P y (Y ) entonces X, Y con independientes. En caso general: P (X 1 = x 1, X 2 = x 2, X 3 = x 3,... ; X n = x n ) = n P (X i = x i ) i=1 - Si k(p (X = k) = P (Y = k)), entonces se dice que las variables X, Y están igualmente distribuidas. Acerca de las variables aleatorias independientes Nos interesa conocer la probabilidad de que la suma de dos variables independientes tomen un valor determinado. Si queremos que X + Y = z, entonces tenemos que tomar todos los eventos tal que X = k y Y = z k para algun k(0 k z). Si X, Y son variables aleatorias independientes entonces: P (X + Y = z) = x P (X = x)p (Y = x z) Además si Im(X) = Im(Y ) = {0, 1, 2...}, entonces: P X+Y (z) = P (X + Y = z) = z P x (k)p y (z k) = P x (x)p y (z k) k=0 Distribuciones de variables aleatorias * Modelo de Bernoulli Es una distribución que modela experimentos en los que los posibles resultados son éxito o no éxito. Se define una variable aleatoria X tal que: X = { 1 si hay un éxito 0 si no hay éxito La función de masa de probabilidad de la distribución de Bernoulli es: 3
4 P (X = 1) = p P (X = 0) = 1 p donde p es la probabilidad de éxito (p es el parámetro de la distribución). La esperanza de X variable que se distribuye Bernoulli es E(X) = p La varianza de X distribuida Bernoulli es var(x) = p p 2 * Modelo Hipergeométrico Es una distribución que modela experimentos donde se toma una muestra de tamaño n de un conjunto de tamaño N (sin repetición) y se quiere saber cúal es la probabilidad de que k elementos de la muestra cumplen con una característica dada. Los parámetros de esta distribución son el tamaño del conjunto (N), el tamaño de la muestra tomada (n) y la cantidad de elementos del conjunto que cumplen con la característica (a). La función de masa de probabilidad de la distribución hipergeométrica es: ( a N a ) k)( P (X = k) = n k ( N n) con 0 k min(n, a). La esperanza de X si se distribuye hipergeométrica es E(X) = n a N La varianza de una variable que se distribuya hipergeométrica es var(x) = n N n N 1 * Modelo Binomial a N (1 a N Es una distribución para modelar una sucesión de intentos de un experimento tipo Bernoulli (donde se puede obtener éxito o fracaso). Se define una variable aleatoria X tal que X va a ser el número de exitos en todos los intentos realizados. Los parámetros de la binomial son: p (la probabilidad de éxito) y n (el número de intentos). La función de masa de probabilidad de la distribución binomial es: ( ) n P (X = k) = p k (1 p) n k p La Esperanza de una variable aleatoria X que se distribuya binomial es: E(X) = np La varianza de una variable aleatoria X que se distribuya binomial es: var(x) = np(1 p) 4
5 * Modelo Geométrico Es una distribución para modelar una sucesión de intentos fracasados de un experimento hasta que se obtiene un éxito (debe haber igualdad de condiciones en cada intento). Se define una variable aleatoria X tal que X va a ser el número de fracasos antes de obtener un éxito. El parámetro del modelo geométrico es p (la probabilidad de éxito). La función de masa de probabilidad de la distribución geométrica es: P (X = k) = (1 p) k p La esperanza de una variable X que se distribuye geométrica es: E(X) = 1 p La varianza de una variable que se distribuya geométrica es: var(x) = 1 p p 2 * Modelo Poisson Es una distribución para modelar experimentos que se llevan a cabo sobre un espacio continuo (como el tiempo), la variable aleatoria definida X va a representar el numero de éxitos que se obtienen sobre ese espacio. El parámetro de la distribución Poisson es λ. La función de masa de probabilidad de la distribución Poisson es: P (X = k) = e λ λ k k! La esperanza de una variable X que se distribuye Poisson es: E(X) = λ La varianza de una variable X que se distribuya Poisson es: E(X) = λ Esperanza Sea Y una variable aleatoria discreta y Y = g(x) con g : R R, entonces: E(Y ) = y yp (Y = y) = x g(x)p (X = x) (Caso multidimensional)sea g : R x R R y sea z = g(x, Y ), entonces: E(z) = E(g(X, Y )) = g(x, Y )P (X = x, Y = y) x y Las operaciones sobre la esperanza son lineales, es decir, E(aX + by ) = ae(x) + be(y) Si X, Y son independientes: -E(XY ) = E(X)E(Y ) -E(X 1 X 2 X 3... X n ) = n i=1 E(X i) 5
6 Covarianza la covarianza se define como: cov(x, Y ) = E[(X µ x )(Y µ y )] cov(x, Y ) = E(XY ) E(X)E(Y ) Donde µ x y µ y son las esperanzas de X y de Y respectivamente. Si X, Y son independientes, entonces la covarianza es cero. Esperanza condicional Llamaremos esperanza condicionada, a la esperanza de una variable dado un evento: E(X B) = x xp (X = x B) Fórmula de particionamiento Si B 1, B 2, B 3,..., B n es una partición del espacio muestral, entonces E(X) = i 1 E(X B i )P (B i ) Varianza La varianza se define como: var(x) = E(X 2 ) E 2 (X) * La varianza no es lineal: var(ax + by ) = a 2 var(x) + b 2 var(y ) + 2abcov(X, Y ) * Si X, Y son independientes: var(x + Y ) = var(x) + var(y ) var(x 1 + X 2 + X 3... X n ) = n var(x i ) i=1 6
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Momentos de Funciones de Vectores Aleatorios
Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
Variables aleatorias discretas
Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria
PROBABILIDAD Tema 2.2: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular
Tema 3. Probabilidad y variables aleatorias
1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Variables aleatorias. Tema Introducción Variable aleatoria. Contenido
Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
Tema 4: Variable Aleatoria Bidimensional
Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones
Modelos de distribuciones discretas y continuas
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Probabilidad y Estadística
Vectores aleatorios Probabilidad y Estadística Vectores aleatorios Federico De Olivera Cerp del Sur-Semi Presencial curso 2015 Federico De Olivera (Cerp del Sur-Semi Presencial) Probabilidad y Estadística
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos
Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Modelos Básicos de Distribuciones Discretas y Continuas
Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Estadística Descriptiva y Probabilidad FORMULARIO
Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.
Modelos Estocásticos I. Notas de Curso. Cimat, A.C.
Modelos Estocásticos I Notas de Curso Joaquín Ortega Sánchez Víctor Rivero Mercado Cimat, A.C. Índice general 1. Introducción a la Teoría de Probabilidad 1 1.1. Introducción............................................
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Variables aleatorias bidimensionales discretas
Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,
Práctica 3 Esperanza Condicional
1. Generalidades Práctica 3 Esperanza Condicional 1. Sea (X i ) i I una familia de variables aleatorias definidas sobre un mismo espacio medible (Ω, F) y sea Y otra variable aleatoria en este espacio.
Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:
Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.
En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en
Capítulo 3 Variable Aleatoria 3.. Introducción En muchos estudios no estamos interesados en saber cual evento ocurrió, sino en el número de veces que ha ocurrido un evento. Por ejemplo, al lazar dos monedas,
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................
Funciones generadoras de probabilidad
Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados
Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial
Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
Modelos de distribuciones discretas y continuas
Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución
Ruido en los sistemas de comunicaciones
Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para
ECONOMETRÍA I. Tema 1: La naturaleza de la econometría y los datos econométricos
ECONOMETRÍA I Tema 1: La naturaleza de la econometría y los datos econométricos Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I
Cálculo de Probabilidades II Preguntas Tema 2
Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución
Distribución conjunta de variables aleatorias
Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:
Apuntes de Clases. Modelos de Probabilidad Discretos
2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
Distribuciones multivariadas
Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =
Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}
1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función
VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios
VECTORES ALEATORIOS 1 Introducción En la vida real es muy frecuente enfrentarnos a problemas en los que nos interesa analizar varias características simultáneamente, como por ejemplo la velocidad de transmisión
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;
Definición de variable aleatoria
Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables
CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA
1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática
Tablas de Probabilidades
Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
MODELOS DISCRETOS DE PROBABILIDAD
MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea
VARIABLES ALEATORIAS
VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento
CURSO INTRODUCTORIO DE PROBABILIDAD. Universidad Carlos III de Madrid
CURSO INTRODUCTORIO DE PROBABILIDAD Raúl Jiménez y Haydée Lugo Universidad Carlos III de Madrid Septiembre 2009 2 Índice general Prefacio 5 1. Conceptos básicos 7 1.1. Espacios de probabilidad......................
2.5. Vectores aleatorios
2.5. Vectores aleatorios Hasta ahora, dado un espacio de probabilidad (Ω, F, P), sólo hemos considerado una variable aleatoria X sobre Ω a la vez. Sin embargo, nos puede interesar estudiar simultáneamente
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación
Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
Distribución de probabilidad
Los experimentos aleatorios originan resultados y los resultados nos permiten tomar decisiones Por ejemplo, en un partido de fútbol si se lanza una moneda y sale cara parte la visita, de lo contrario parte
Modelo de Probabilidad
Capítulo 1 Modelo de Probabilidad 1.1 Definiciones y Resultados Básicos Sea Ω un conjunto arbitrario. Definición 1.1 Una familia no vacía F de subconjuntos de Ω es llamada una σ-álgebra de subconjuntos
Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD
Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson
Algunas Distribuciones EstadísticasTeóricas Distribución de Bernoulli Distribución de Binomial Distribución de Poisson Aproximación de la Distribución Binomial por la Distribución de Poisson Distribución
TEMA 2.- VARIABLES ALEATORIAS
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 16/17 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias. 2.2. Variables aleatorias discretas. Diagrama de barras. 2.3. Función de
Introducción a la Teoría de Probabilidades
Capítulo 1 Introducción a la Teoría de Probabilidades 1.1. Introducción El objetivo de la Teoría de Probabilidades es desarrollar modelos para experimentos que están gobernados por el azar y estudiar sus
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST. Tema
2 Modelos de probabilidad discretos sobre R
UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,
Vectores aleatorios. Estadística I curso 2008 2009
Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a
Introducción al Tema 9
Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables
Tema 2: Variables Aleatorias Unidimensionales
Tema 2: Variables Aleatorias Unidimensionales Teorı a de la Comunicacio n Curso 27-28 Contenido 1 Concepto de Variable Aleatoria 2 Función Distribución 3 Clasificación de Variables Aleatorias 4 Función
Tema 5: Vectores aleatorios bidimensionales.
Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,
Tema 2 Modelos de probabilidad
Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución
Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por:
Capítulo 3 Variables aleatorias 3.1 Definición, tipos En ocasiones de un experimento aleatorio sólo nos interesará conocer ciertas características del mismo. En estos casos nos bastará con conocer la distribución
Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.
Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales
ESTADÍSTICA I. Unidad 4: Resumen de Contenidos Teóricos 1. Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS
ESTADÍSTICA I Unidad 4: Resumen de Contenidos Teóricos Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS. VARIABLES ALEATORIAS DISCRETAS. Distribución Binomial Definición previa: Prueba
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
1. Teoría de probabilidad
Disclaimer: Este apunte no es autocontenido y fue pensado como un repaso de los conceptos, no para aprenderlos de aquí directamente 1 Teoría de probabilidad Definición 1 (espacio muestral) Un espacio muestral
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
