COLISIONES EN DOS DIMENSIONES
|
|
|
- Felisa María Victoria San Martín Bustamante
- hace 9 años
- Vistas:
Transcripción
1 Objetivo COLISIONES EN DOS DIMENSIONES Estudiar las leyes de conservación del momento lineal y la energía mecánica en colisiones elásticas en dos dimensiones. Equipo Plano inclinado con canal de aluminio, dos esferas metálicas de 1 o 2 cm de diámetro, regla de un metro de longitud, una hoja de papel de 90 cm x 70 cm, cinta de enmascarar, plomada, calibrador, dos balanzas digitales y transportador. Teoría Con el propósito de entender fundamentos de la teoría en que se basa este experimento, consideremos el montaje que se ilustra en la figura 1. En este aparece una esfera de masa m 1, que rueda por un canal de aluminio y que en el punto P choca con otra esfera de masa m 2, la cual está en reposo Figura 1 representación esquemática del montaje experimental Queremos utilizar estos elementos para examinar la validez de la conservación del momento lineal, el cual dice que cuando la fuerza externa neta que actúa sobre un sistema es nula, el momento lineal total del sistema permanece constante. Pero el sistema nuestro de dos esferas está sometido a fuerzas externas: la fuerza gravitatoria terrestre y la fricción; a la fuerza de fricción con el aire la consideramos despreciable, lo cual nos permite afirmar que no actúan fuerzas sobre las esferas en las direcciones x, y, paralelas al plano del piso y por lo tanto el momento lineal de las dos esferas se conserva en estas dos direcciones, pero no en la dirección z perpendicular al piso. Esta es la base del experimento. Consideremos que m 2 está colocada en un punto Q tal que m 1 no la golpea frontalmente. Esto da lugar a dos fenómenos: primero, las esferas adquieren cierto "efecto"
2 rotacional alrededor de un eje perpendicular al piso (además del que tendrán por rotación alrededor de un eje paralelo al piso debido a la rodadura sobre el canal) y segundo la colisión se va a efectuar en dos dimensiones tal como lo vemos en la figura 2. Es necesario notar que los movimientos de rotación involucran cierta energía cinética de rotación. La energía cinética rotacional de la esfera incidente, asumiendo que rueda sin deslizar, es igual a En el extremo inferior del canal, y representa un 29% de la energía cinética total, pero no es una causa de error importante el despreciarla ( por qué?). Por otra parte el proceso de colisión puede dar lugar a otros movimientos rotacionales en los que no es simple expresar la velocidad en términos de la velocidad lineal, razón por la cual estos movimientos deben incluirse dentro de las causas de error. Si en un punto Q que está fuera de la dirección que trae m 1, pero al alcance de esta, se coloca la esfera de masa m 2 la colisión se va a efectuar en dos dimensiones tal como lo vemos en la figura 2. Figura 2 La conservación del momento lineal para las componente x y y se expresa matemáticamente como Si se acepta que la colisión entre dos esferas metálicas es elástica, la energía cinética de las dos esferas antes y después del choque es la misma, es decir, Lo cual nos está diciendo que si las esferas tienen masas iguales, si el momento lineal se conserva y si la energía cinética se conserva, entonces, después de la colisión, las dos esferas se alejan siguiendo trayectorias que forman 'entre sí un ángulo recto.
3 Para hallar las velocidades de las esferas utilizaremos lo que hemos aprendido sobre el movimiento del tiro parabólico. Sabemos que cuerpos lanzados desde el borde de una mesa con diferentes velocidades horizontales tardan el mismo tiempo para caer al suelo. Si h es la altura a la que se encuentra el bordo del canal con respecto al piso, entonces, el tiempo que tardan las esferas para caer al suelo es Si despreciamos la resistencia del aire, la componente horizontal de su velocidad permanece constante, y por tanto, la distancia que recorren horizontalmente es proporcional a la velocidad en esa dirección. Podemos utilizar esto para medir las velocidades de las esferas Donde L 0 es la distancia horizontal que recorre la esfera de masa m 1 sin que colisione, L 1 es la distancia horizontal que recorre la esfera m 1 después de la colisión, L 2 es la distancia horizontal que recorre la esfera m 2 después de la colisión y h es la altura a la que se encuentra el borde del canal, con respecto al piso. Reemplazando las ecuaciones (8), (9) y (10) en la ecuación (6), se tiene Del teorema de Pitágoras y de la relación (11) se concluye que las los segmentos de longitudes L 0, L 1 y L 2 forman un triángulo rectángulo con hipotenusa L 0 y catetos L 1 y L 2 Como el eje x está a lo largo de L 0 se concluye que (figura 3) De dicha figura 3 se concluye también que Si se va cambiando el ángulo de impacto escogiendo diferentes puntos Q (figura 2), sin cambiar la altura desde la cual se deja rodar m 1, los puntos de caída de cada esfera van a quedar situados sobre una circunferencia de diámetro L 0. En la figura 3 se ilustra esto.
4 Las leyes de conservación que estamos considerando en el experimento (ecuaciones 3, 4 y 5) se pueden reducir a las siguientes tres relaciones en la figura 3: En el experimento se miden la cantidades L 1, L 2, L 0, θ 1 y θ 2 con errores ΔL 1, ΔL 2, ΔL 0, Δθ 1, Δθ 2. Los errores del experimento se pueden caracterizar por los errores en Δƒ 1, Δƒ 2 y Δƒ 3: Procedimiento 1. Pesar cada una de las esferas para estar seguro que las masas son iguales y llámela m. 2. Medir la altura (h) del borde del canal con respecto al piso. 3. Hacer el montaje de la figura Pegar al piso la hoja de papel de tal manera que uno de sus bordes angosto quede paralelo a eje, y a unos 1 0 cm detrás de la plomada y centre la hoja. 5. Deje rodar libremente por el canal una esfera y marque el punto en el cual golpea la hoja de papel; marque también la posición de la plomada; la línea que une estos dos puntos será el eje x. 6. Calculo del momento lineal inicial de la esfera proyectil: Gire la placa del tornillo de tal manera que no interrumpa el movimiento de la esfera que se mueve sobre el plano inclinado. Elija la altura desde la cual se dejara rodar la esfera incidente (punto A del
5 canal), que será la misma para todos los ensayos y repita 5 veces. Haga un promedio de las posiciones donde cayó la esfera y mida la distancia entre la marca de la plomada y la posición promedio, llámela L 0 y llévelo a la tabla I. 7. Colocar una esfera en el extremo inferior del canal y la otra sobre el tornillo de la lamina y ajuste su posición para que las dos esferas se encuentren al mismo nivel. 8. Retirar las esferas y aflojar el tornillo que ajusta la placa para que rote un pequeño ángulo de tal manera que el centro de la esfera que sirve de blanco quede a 2.5 radios del borde del canal (figura 4). 9. Momento final de las dos esferas Coloque la esfera blanco encima del tomillo y ajuste el nivel para no cambiarlo más y tenga la esfera incidente sobre una marca del canal cercano al extremo superior (punto A de la figura 1), déjela rodar libremente, otros dos estudiantes estarán pendientes de atrapar las esferas después del impacto al piso para evitar el rebote. Coloque el número 1 al pie de las marcas dejadas por cada esfera. Repita este procedimiento 5 veces. Con las marcas que tiene de cada esfera, encuentre una posición promedio de caída para cada una de las esferas y trace con la regla una recta de la marca de la plomada en el papel, a cada una de las dos posiciones promedio. Estas dos rectas son L 1 y L 2 que definimos en la teoría. Mida las longitudes de las rectas L 1 y L 2 lleve estos valores a la tabla I. Compruebe si la suma vectorial de L 1 y L 2 es L 0 (construyendo el paralelogramo de lados L 1 y L 2 y viendo sí L 0 es su diagonal). Mida los ángulos θ 1 y θ 2 que hacen las rectas L 1 y L 2 con L 0 y lleve estos valores a la tabla I. Observe si es el mismo que predice la teoría (θ 1 + θ 2 = 90 ). Evalúe los errores con ayuda de las formulas (16), (17) y (18) y lleve estos valores a la tabla I. Repita 8 veces este procedimiento cambiando el ángulo de impacto (4 veces hacia la izquierda y 4 hacia la derecha de la dirección incidente del proyectil) y termine de llenar la tabla I. Para cambiar el punto de colisión mueva el tornillo una pequeña distancia, paralelamente al borde final del canal del plano inclinado. De acuerdo a la teoría todos los puntos van a estar situados en una circunferencia de diámetro L 0.
6 INFORME SOBRE COLISIONES EN DOS DIMENSIONES Nombres:.. Mesa #... Fecha: Llene la tabla I. Medidas experimentales L 0 = m = h = Posición del tornillo Preguntas 1. Se conserva la energía cinética y el momento lineal en esta colisión? 2. Por qué no se espera que se conserve el momento lineal en la dirección perpendicular al plano del piso? 3. Por qué no es necesario considerar la fricción de la esfera proyectil al rodar por el canal? 4. Cuál es la diferencia entre rodar y deslizar? 5. Cuál es el valor de la energía cinética de rotación de la esfera incidente en el extremo inferior del canal? 6. Por qué en la ecuación (3) no se tiene en cuenta la energía cinética de rotación? Hay alguna aproximación? 7. Numere las conclusiones principales de su experimento (sólo se aceptan conclusiones que se deduzcan en forma lógica del experimento) 8. Enumere las causas de error diciendo cómo influyen en sus resultados. Nota: Debe entregar la hoja con las marcas y los vectores respectivos.
y v y Trayectoria de un proyectil
EXPERIMENTO 1- Lanzamiento Horizontal I OBJETIVO: Comprobar que el lanzamiento de proyectiles es la superposición de dos movimientos: un movimiento a velocidad constante en la dirección horizontal y un
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?
LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,
fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente
y d dos vectores de igual módulo, dirección y sentido contrario.
MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo
Sistemas de Partículas
Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento
LABORATORIO No. 5. Cinemática en dos dimensiones Movimiento Parabólico
LABORATORIO No. 5 Cinemática en dos dimensiones Movimiento Parabólico 5.1. Introducción Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Este movimiento
GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO
LANZAMIENTO HORIZONTAL DE PROYECTIL
Manual de Instrucciones y Guía de Experimentos LANZAMIENTO HORIZONTAL DE PROYECTIL OBSERVACIÓN SOBRE LOS DERECHOS AUTORALES Este manual está protegido por las leyes de derechos autorales y todos los derechos
MOVIMIENTO BIDIMENSIONAL
MOVIMIENTO BIDIMENSIONAL EXPERIENCIA N 03 Nota Galileo Galilei (1564-1542) Calificado como Padre de la Cinemática, que a partir del movimiento del proyectil se eplica la velocidad de escape que deben alcanzar
LABORATORIO DE MECANICA PÉNDULO BALÍSTICO
DEPARTAMENTO DE FISICA Y GEOLOGIA No 9 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS LABORATORIO DE MECANICA Objetivos Verificar el principio de conservación de cantidad de movimiento y de la no
TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un
TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de
Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares)
Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Una placa circular homogénea de radio r tiene un orificio circular cortado en ella de radio r/2
Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre
Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por
CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo
Examen de Ubicación. Física del Nivel Cero Enero / 2009
Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles
COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO
1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE
GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO.
GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR 2014-2015 FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO. A. Instrucción. En los espacios en blanco, escribe la palabra
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-B
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-B (Septiembre 3 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización.
Guía para oportunidades extraordinarias de Física 2
Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento
CINEMÁTICA Y DINÁMICA. PRÁCTICA DE LABORATORIO No. 5 PÉNDULO BALÍSTICO (COLISIONES)
CINEMÁTICA Y DINÁMICA PRÁCTICA DE LABORATORIO No. 5 PÉNDULO BALÍSTICO (COLISIONES) 1. INTRODUCCIÓN. Los principios de conservación son fundamentales para la Física. Por medio de estos principios es posile
6.- Indica las fuerzas que actúan sobre un cuerpo situado en las proximidades de la superficie
Cuestiones de Mecánica Olimpiada de Física 2004 Universidad de Murcia 1 1.- De las siguientes frases relativas a un cuerpo en movimiento uniforme, cuál no puede ser cierta?: (a) su velocidad puede ser
LABORATORIO DE MECANICA PENDULO BALISTICO
No 9 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Verificar el principio de conservación de cantidad de movimiento y de la
MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 03
MOVIMIENTO DE UN PROYECTIL EXPERIENCIA N 03 Galileo Galilei Nació en Pisa el 15 de febrero de 1564. Consiguió completar la última más importante de sus obras: los Discorsi e dimostrazioni matematiche intorno
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Tema 3. Magnitudes escalares y vectoriales
1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,
LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES
No 3 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar el movimiento de proyectiles. 2. Identificar los valores para cada
LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO
No 4 LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO MOVIMIENTO PARABOLICO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BASICAS Objetivos Encontrar la velocidad inicial
TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO
TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en
TEMA 2. Dinámica, Trabajo, Energía y Presión
TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.
LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA
Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objectivos. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica
de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.
1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de
Equipo requerido Cantidad Observaciones Balanza de torque ME Soporte 1 Juego de masas 1 Con gancho para poder colgarlas.
No 7 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender las condiciones de equilibrio de traslación y de rotación utilizando
Semana 10. Movimiento parabólico. Semana Movimiento 11 circular uniforme. Empecemos! Qué sabes de...? El reto es...
Semana Movimiento 11 circular uniforme Semana 10 Empecemos! Continuando con los temas de Física, esta semana te presentamos uno de los más interesantes tipos de movimientos: el movimiento parabólico o
CONSERVACION DE LA ENERGIA MECANICA
CONSERVACION DE LA ENERGIA MECANICA EQUIPOS REQUERIDOS. Pista de Montaña Rusa (Roller Coaster) Carro Masas Fotocompuertas Metro Balanza OBJETIVOS. Al finalizar la práctica, el estudiante debe estar en
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y
Práctica 1: Fundamentos
Práctica 1: Fundamentos En esta práctica se realiza un repaso de conceptos que los alumnos van a necesitar en las prácticas siguientes. Así, se les explica mediante el uso de ejemplos qué es una magnitud
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Serway, física, volumen 1, tercera edición. Un niño se desliza desdeel reposo, por una resbaladilla
PRE-INFORME L6. Daniela Andrea Duarte Mejía May 13, 2016
PRE-INFORME L6 Daniela Andrea Duarte Mejía May 13, 2016 1 Introducción Se llama energía mecánica o energía mecánica total, la energía del movimiento mecánico y de la interacción. La energía mecánica W
Área de Ciencias Naturales LABORATORIO DE FÍSICA. Física I. Actividad experimental No. 4. Tiro Parabólico
Área de Ciencias Naturales LABORATORIO DE FÍSICA Física I ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No. 4 Tiro Parabólico EXPERIMENTO No. 1 Movimiento de proyectiles
Interacción electromagnética I. Campo eléctrico
Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué
Carril de aire. Colisiones
Laboratori de Física I Carril de aire. Colisiones Objetivo Analizar la conservación de la cantidad de movimiento y estudiar las colisiones entre dos cuerpos. Material Carril de aire, soplador, dos puertas
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
Las Leyes de Newton. 1. El principio de la inercia. 2. Proporcionalidad entre la fuerza ejercida sobre un cuerpo y la aceleración resultante.
COMPLEJO EDUCATIVO SAN FRANCISCO Profesor: José Miguel Molina Morales Primer Periodo GUIA DE CIENCIAS FISICAS Segundo Año General Las Leyes de Newton El trabajo teórico de Isaac Newton diferencia dos etapas
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,
Unidad VII: Trabajo y Energía
1. Se muestra un bloque de masa igual a 30 Kg ubicado en un plano de 30º, se desea levantarlo hasta la altura de 2,5 m, ejerciéndole una fuerza de 600 N, si el coeficiente de fricción cinética es de 0,1.
28/02/ Sobre un bloque de 50 kg de masa se ejercen dos fuerzas F 1. = 200 N y F 2
Un bloque se desliza hacia abajo, por un plano inclinado, con velocidad constante. Cúal es la dirección de la fuerza neta sobre el bloque? A B C D) Ninguna de las anteriores 1. Dos carros, uno de 1200
UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico
UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico a) Indica en los siguientes casos si se realiza o no trabajo mecánico: Un cuerpo en caída libre (fuerza de gravedad Un cuerpo apoyado en una meda
MOMENTO LINEAL Y COLISIONES
MOMENTO LINEAL Y COLISIONES Tomado de Física para ingenieria y ciencias, Volumen 1 Hans C. Ohanian John T. Markett Estimado alumno, a continuación se le pide que revise una serie de conceptos importantes
PARÁBOLA { } Según esta definición y haciendo referencia al gráfico, se tiene:
PARÁBOLA Definición.- Una parábola es el conjunto de todos los puntos en el plano que equidista de una recta fija, llamada directriz, y un punto fijo, denominado foco, que no pertenece a la recta, es decir:
TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS
TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se
UNIDAD II Ecuaciones diferenciales con variables separables
UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial
Ejercicios. Movimiento horizontal
U.E.C. Agustiniano Cristo Rey Cátedra de Física. Cuarto año C de Bachillerato Prof.: Rosa Fernández Guía orientada a los temas más importantes para la prueba de revisión Ejercicios Movimiento horizontal
Tema 9: Introducción a la Dinámica
Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática
UTalca - Versión Preliminar
1. Definición La parábola es el lugar geométrico de todos los puntos del plano que equidistan de un punto y una recta dada. Más claramente: Dados (elementos bases de la parábola) Una recta L, llamada directriz
PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)
FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I MOVIMIENTO EN DOS DIMENSIONES MOVIMIENTO PARABÒLICO
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I MOVIMIENTO EN DOS DIMENSIONES MOVIMIENTO PARABÒLICO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS 1. OBJETIVOS GENERALES: MOVIMIENTO
Ejercicios Dinámica. R. Tovar.
Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz.
REFLEXIÓN Y REFRACCIÓN 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. b) Un rayo de luz monocromática incide con un ángulo de incidencia de 30º sobre una lámina
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum
Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo
EXPERIMENTO 7 PLANO INCLINADO
EXPERIMENTO 7 PLANO INCLINADO 1. OBJETIVO Mediante el uso de un carril de aire inclinado calcular el valor de la gravedad en el laboratorio. Analizar la estimación de la incertidumbre de medidas indirectas
LANZAMIENTO HORIZONTAL DE PROYECTILES GRUPO 6
LANZAMIENTO HORIZONTAL DE PROYECTILES GRUPO 6 ESTUDIANTE: OMAIRA ACEVEDO CODIGO: 141002800 ESTUDIANTE: JESSICA PAOLA MARIN LOPEZ CODIGO: 141002823 SEMESTRE: SEGUNDO MECANICA I LICENCIATURA EN MATEMATICAS
LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS).
LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS). Physics Labs with Computers. PASCO. Actividad Práctica 37. Teacher s Guide Volumen 2. Pág. 9. Student Workbook Volumen 2. Pág. 7. EQUIPOS REQUERIDOS. Fotocompuerta
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas
BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA
Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética
PROBLEMAS MOVIMIENTOS EN EL PLANO
1 PROBLEMAS MOVIMIENTOS EN EL PLANO 1- Dados los puntos del plano XY: P 1 (2,3), P 2 (-4,1), P 3 (1,-3). Determina: a) el vector de posición y su módulo para cada uno; b) el vector desplazamiento para
a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.
Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero
Ejercicios de Física 4º de ESO
Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R
Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014
Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia
La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.
En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.
XXIII OLIMPIADA ESTATAL DE FÍSICA (2015)
XXIII OLIMPIADA ESTATAL DE FÍSICA (2015) 1. Qué distancia recorre en 18 segundos el objeto cuya gráfica de velocidad contra tiempo se muestra en la figura? En la gráfica de velocidad versus tiempo para
Ecuaciones Claves. Conservación de la Energía
Ecuaciones Claves Conservación de la Energía La ley de conservación de la energía establece que dentro de un sistema cerrado, la energía puede cambiar de forma, pero la cantidad total de energía es constante.
Guía 5. Leyes de Conservación
I. Energía mecánica Guía 5. Leyes de Conservación 1) Un bloque de 44.5 Kg resbala desde el punto más alto de un plano inclinado de 1,5 m de largo y 0,9 m de altura. Un hombre lo sostiene con un hilo paralelamente
SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA).
SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA). Physics Labs with Computers. PASCO. Actividad Práctica 10. Teacher s Guide Volumen 1. Pág. 89. Student Workbook Volumen 1. Pág.
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas
ENERGÍA Y CANTIDAD DE MOVIMIENTO
Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento
10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si
Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten
FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III
FS-11 Ciencias Plan Común Física 2009 Trabajo y energía III Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.
RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1
RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo
Física para Ciencias: Trabajo y Energía
Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado
2DA PRÁCTICA CALIFICADA
2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
TERCERA EVALUACIÓN DE FÍSICA NIVEL 0-B
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS TERCERA EVALUACIÓN DE FÍSICA NIVEL 0-B (Septiembre 10 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización.
Física Movimiento en 2 dimensiones
Física Movimiento en 2 dimensiones Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Ejemplo 1 Una piedra se deja caer de un acantilado de 100 metros de altura. Si la velocidad inicial de la piedra
GUIA Nº5: Cuerpo Rígido
GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 10 DE 2014 SOLUCIÓN TEMA 1 (8 puntos) Una persona corre
REFLEXIÓN Y REFRACCIÓN DE LA LUZ
PRÁCTICA 3 REFLEXIÓN Y REFRACCIÓN DE LA LUZ OBJETIVOS A. Investigación de la ley de la reflexión de la luz. B. Determinación de los índices de refracción del plástico y del agua, investigación de la ley
Problemas de Física 1º Bachillerato 2011
Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
c.) Eso depende de otras variables. d.) Eso depende de la distancia recorrida. e.).
OLIMPIADA PANAMEÑA DE FÍSICA SOCIEDAD PANAMEÑA DE FÍSICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ - UNIVERSIDAD DE PANAMÁ - UNIVERSIDAD AUTONÓMA DE CHIRIQUÍ PRUEBA NACIONAL DEL XI GRADO 2012 SELECCIÓN MÚLTIPLE
