Ecuaciones de 2do grado
|
|
|
- Juan Antonio Alarcón Velázquez
- hace 9 años
- Vistas:
Transcripción
1 Ecuaciones de 2do grado Las ecuaciones de segundo grado o también llamadas cuadráticas de una variable es una ecuación donde tenemos un polinomio de segundo grado o cuadrático cuya grafica es una función cuadrática o parábola. La expresión canónica general de una ecuación de segundo grado es: ax 2 + bx + c = 0 con a 0 (1) En esta ecuación definimos los siguientes términos:.x: variable de la ecuación.a: coeficiente cuadrático (distinto de cero).b: coeficiente lineal.c: término independiente A continuación veremos cómo obtener las raíces o soluciones, propiedades y gráfico. I. Raíces de la ecuación de segundo grado Las raíces o soluciones de una ecuación de segunda grado pueden ser reales o complejas, dejando estas últimas excluidas de la presente ficha centrándonos en las soluciones reales. Las raíces de la ecuación canónica (1) tiene la siguiente expresión general: x = b ± b2 4ac 2a (2) Al emplear el símbolo E indicamos que tenemos dos soluciones, estas son: x 1 = b + b2 4ac 2a x 2 = b b2 4ac 2a (3) 1
2 La gráfica de la ecuación de segundo grado es una parábola que intersecta el eje de las abscisas (eje X) en las raíces y dependiendo del comportamiento del discriminante pueden ser en dos puntos (dos soluciones reales distintas), un punto (solución real doble) o no intersectar el eje (complejas). En las ecuaciones (2) y (3) el término dentro de la raíz se denomina discriminante y nos permite determinar el número y tipo de soluciones de la dos soluciones reales, una solución doble real y finalmente soluciones no reales (complejas), luego sea el discriminante: = b 2 4ac 1. Caso 1 > 0 b 2 4ac > 0 En este caso, donde el discriminante es positivo, tenemos dos soluciones reales y distintas intersectando la parábola en dos puntos el eje de las abscisas. 2. Caso 2 = 0 b 2 4ac = 0 En este caso, donde el discriminante es igual a cero, tenemos una solución real doble intersectando la parábola en un solo punto en el eje de las abscisas. 3. Caso 3 < 0 b 2 4ac < 0 En este caso, donde el discriminante es negativo, tenemos dos soluciones complejas (no reales) no intersectando la parábola el eje de las abscisas. Veamos lo anterior en la siguiente figura. 2
3 Fuente: Wikipedia II. Propiedades de las raíces Las raíces de la ecuación de segundo grado, si conocemos estas, podemos obtener la ecuación canónica general. - La suma de las soluciones de una ecuación de segundo grado x 1 + x 2 = b a - Producto de las soluciones de una ecuación de segundo grado x 1 x 2 = c a Luego podemos construir la ecuación canónica como sigue: x x 1 x x 2 = 0 x 2 x 1 + x 2 x + x 1 x 2 = 0 / a ax 2 a(x 1 + x 2 )x + a(x 1 x 2 ) = 0 3
4 ax 2 a( b a )x + a(c a ) = 0 ax 2 + bx + c = 0 III. Casos especiales de ecuaciones de segundo grado Existen casos especiales de ecuaciones de segundo grado que veremos a continuación: 1. Ecuaciones Bicuadradas Estas ecuaciones se resuelven al efectuar un cambio de variables de forma tal de llevar la ecuación original a una de segundo grado normal, solo si son ecuaciones de cuarto grado sin términos impares, veamos un ejemplo: Sea la siguiente x 4 15x = 0 Como podrá notar, esta ecuación es de cuarto grado y además no tiene términos impares en sus grados, luego hacemos el siguiente cambio de variable y reemplazamos. Sea t = x 2 t 2 = x 4 t 2 15t + 36 = 0 Resolviendo la ecuación obtenemos las siguientes soluciones: t 1 = 12 t 2 = 3 Pero como habíamos efectuado cambio de variable tenemos: t 1 = 12 = x 2 x = ± 12 x 1 = 12 x 2 = 12 t 2 = 3 = x 2 x = ± 3 x 3 = 3 x 4 = 3 4
5 Finalmente, note que podemos emplear este procedimiento para resolver ecuaciones de la siguiente forma: ax 2n + bx n + c = 0 con el cambio de variable t = x n t 2 = x 2n 2. Ecuaciones Racionales Este tipo de ecuaciones las encontramos cuando tenemos dentro de uno de sus términos una raíz y su forma de solución es eliminar dicha raíz para luego resolver la ecuación resultante, veamos un ejemplo: Sea la siguiente ecuación 3x 3 x + 1 = 0 Para eliminar la raíz dejamos está a un lado de la ecuación y los otros términos al otro lado de la igualdad, luego tenemos 3x 3 = 1 x Elevando al cuadrado ambos lados de la ecuación (eliminamos la raíz) obtenemos 3x 3 = 1 2x + x 2 Reordenando obtenemos x 2 5x + 4 = 0 Resolviendo obtenemos x 1 = 1 x 2 = 4 En este punto siempre se debe verificar las soluciones, luego: 3x 3 x + 1 = = 3 3 = 0 3x 3 x + 1 = = = 9 3 = 3 3 = 0 5
6 3. Ecuaciones de grado superior a dos Este tipo de ecuaciones se resuelven mediante la combinación del método de Ruffini y el teorema del resto hasta llevar nuestro polinomio a una descomposición de factores donde uno de estos quede reducido a una ecuación de segundo grado 6
7 TEST 1.- Indique las soluciones de la siguiente ecuación x 2 6x + 8 = Indique las soluciones de la siguiente x 4 5x = 0 a) -2 y 4 b) 2 y 4 c) 2 y -4 d) -2 y -4 a) 4, 1 y 1 b) -4, 1 y -1 c) 4, 1 y -1 d) 4 y Indique las soluciones de la siguiente ecuación 2x 3 162x = Indique las soluciones de la siguiente a) 0, -9 y -9 b) 0, 9 y 9 c) 0, 9 y -9 d) 9 y -9 a) 2 b) -2 c) 4 d) -4 x 25 x 2 1 = Determine el valor de a para que la siguiente ecuación tenga una sola solución. x 2 + a x + 16 = Indique las soluciones de la siguiente x + 5x = 0 a) 8 b) -8 c) 8 y -8 d) 4 a) -4 b) 4 c) -3 d) 3 7
8 4.- Indique las soluciones de la siguiente ecuación x + 1 x 1 = 2 x a) No tiene solución real b) -5 y 3 c) -5 y -3 d) 5 y Indique las soluciones de la siguiente 12x 2 3x = 0 a) 0 y -1/4 b) 0 y 1/4 c) 0 y -1/2 d) 0 y 1/2 5.- Indique las soluciones de la siguiente x 4 5x 2 36 = Indique las soluciones de la siguiente 6x x = 3 a) 9, 4, 3 y -3 b) 9, -4, 3 y -3 c) 9, -4, 3 y 3 d) 9, 4, 3 y -3 a) 4 y 1/2 b) 4 c) 1/2 d) 4 y -1/2 8
GUIA DE MATEMÁTICA. ECUACIÓN DE 2 GRADO. I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas.
GUIA DE MATEMÁTICA. ECUACIÓN DE GRADO. Nombre: Curso: 3 medio Fecha: I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas.. La fórmula general de la ecuación de
ECUACIONES DE 2º GRADO. Se resuelve mediante la siguiente fórmula:
ECUACIONES DE 2º GRADO Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Se resuelve mediante la siguiente fórmula: ( 1). Si es a
ECUACIONES POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer
Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo
Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
Ecuaciones de Segundo Grado
Ecuaciones de Segundo Grado Julio Yarasca UNI April 15, 2015 Julio Yarasca (UNI) Ecuaciones de Segundo Grado April 15, 2015 1 / 36 Denición Ecuacion de Segundo Grado Una ecuación de segundo grado es de
Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica
Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica Cuántas veces hemos pensado para qué sirven cosas tan raras de las matemáticas como la ecuación de segundo grado, por ejemplo.
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Polinomios II. I. Regla de Ruffini
Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas
Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.
Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación
La ecuación de segundo grado.
La ecuación de segundo grado. Sean números reales Se denomina ecuación de segundo grado (o ecuación cuadrática) en la variable a la ecuación cuya forma canónica es Ejemplos. Son ecuaciones cuadráticas:
GUIA DE ESTUDIO FUNCIONES CUADRÁTICAS. Se llama FUNCION POLINOMICA DE SEGUNDO GRADO o FUNCION CUADRÁTICA a la función:
GUIA DE ESTUDIO FUNCIONES CUADRÁTICAS Se llama FUNCION POLINOMICA DE SEGUNDO GRADO o FUNCION CUADRÁTICA a la función: f: R R f(x) = ax + bx + c a 0 y a, b, c R El término ax se denomina término cuadrático,
Una ecuación de segundo grado con una incógnita es de la forma:
ECUACIONES CUADRÁTICAS CON UNA INCÓGNITA Una ecuación de segundo grado con una incógnita es de la forma: ax 2 + bx + c = 0, en donde a, b y c son constantes, con a IR, b IR y c IR, además a 0 y x es la
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
Ecuación Función cuadrática
Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene
ECUACIONES. Sergio Stive Solano Sabié 1. Julio de 2013 MATEMÁTICA. Sergio Solano. Ecuaciones. Clases de ecuaciones
ECUACIONES Sergio Stive Solano 1 Julio de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES Sergio Stive Solano 1 Julio de 2013 1 Visita http://sergiosolanosabie.wikispaces.com Una ecuación
Clase. Función cuadrática y ecuación de segundo grado
Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando
P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S
P O L I N O M I O S Y E C U A C I O N E S. A P L I C A C I O N E S. R E P A S O D E P O L I N O M I O S Un polinomio en la variable es una epresión del tipo P()=a n n +a n- n- + +a +a 0, donde n es un
Ecuaciones Ecuación cuadrática Ejercicios resueltos. x 2 8x + 15 = 0. x = 8 ± 4 2
Ecuaciones Ecuación cuadrática Ejercicios resueltos 1. Resolver la ecuación: ( 3)( + 4) = 1( ) ( 3)( + 4) = 1( ) + 5 1 = 1 4 8 + 15 = 0 coeficientes de la ec. cuadrática: a = 1, b = 8, c = 15 Discriminante
Lección 6 - Ecuaciones cuadráticas
Ecuaciones cuadráticas Objetivos: Al terminar esta lección podrás definir lo que es una ecuación cuadrática y podrás resolver ecuaciones cuadráticas. En la lección previa aprendimos lo que es una ecuación
open green road Guía Matemática CUADRADA profesor: Nicolás Melgarejo .cl
Guía Matemática FUNCIÓN CUADRÁTICA Y RAÍZ CUADRADA profesor: Nicolás Melgarejo.cl 1. Contexto Detrás del movimiento que describe un proyectil, la distancia que recorre un objeto que acelera o en la caída
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN
GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
Tema 4: Ecuaciones y sistemas de ecuaciones.
Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0
M A T E R I A L C O M P L E M E N T A R I O P R E P A R A C I Ó N P R U E B A C O R P O R A T I V A. Formulario. Ecuación de 2 Grado.
Nivel: º Año M A T E R I A L C O M P L E M E N T A R I O P R E P A R A C I Ó N P R U E B A C O R P O R A T I V A Ecuación de Grado Formulario Fórmula General Discriminante Suma de las Raíces Producto de
ax 2 + bx + c = 0, con a 0
RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO Las ecuaciones de segundo grado son de la forma: a + bx + c = 0, con a 0 1. Identificación de coeficientes: Al empezar con las ecuaciones de segundo grado, resulta
Tema 3: Ecuaciones. 1.- Ecuaciones de primer y segundo grado. 2.- Ecuaciones del tipo.
Tema 3: Ecuaciones. En este tema, estudiaremos las denominadas ecuaciones, que no son más que igualdades entre expresiones algebraicas, junto con una incógnita que debemos encontrar. Empezaremos dando
Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy.
Función polinómica: La función polinómica está compuesta por una serie de operaciones; sumas, restas, productos potencias. Todas ellas están perfectamente definidas en el conjunto de los números reales.
( 3) esto no es igual a 3 ya que sería
MATEMÁTICA MÓDULO 3 Eje temático: Álgebra y Funciones 1. RAÍCES CUADRADAS Y CÚBICAS Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: si el área de un cuadrado es 15 cm, cuál es su
Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA.
Reemplazos Algebraicos Gabriel Darío Uribe Guerra Universidad de Antioquia XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Universidad de Nariño San Juan de Pasto Mayo 2016 1/23 Introducción
Hallar las raíces enteras de los siguientes polinomios:
Hallar las raíces enteras de los siguientes polinomios: 1) x 3 + 2x 2 - x - 2 Las raíces enteras se encuentran entre los divisores del término independiente del polinomio: ±1 y ±2. P(1) = 1 3 + 2 1 2-1
Función cuadrática. Ecuación de segundo grado completa
Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto
5. Función cuadrática y ecuación de segundo grado
Nivelación en Matemática 2010 46 5 Función cuadrática y ecuación de segundo grado 51 Funciones cuadráticas Definición: Una función cuadrática es una función f : R R definida por la fórmula f(x) =ax 2 +
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor
INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor Coordinación Vo. Bo. Eje temático: METODOS COMPLETACION CUADRADO PERFECTO Y FORMULA GENERAL Área: MATEMÁTICAS Asignatura:
Resumen de funciones y ejercicios resueltos de cuadráticas
Resumen de funciones y ejercicios resueltos de cuadráticas 1. Definición Llamaremos ecuaciones cuadráticas o ecuaciones de segundo grado a las ecuaciones que pueden reducirse a la forma ax 2 + bx + c =
Ecuaciones de Segundo Grado
Ecuaciones de Segundo Grado René Descartes nació en Francia en el siglo XVII. Fue un gran filósofo y matemático. Considerado por muchos como el fundador de la filosofía moderna, hace famosa su frase: "PIENSO,
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
Tema 3: Ecuaciones. Tema 3: Ecuaciones. Ecuaciones de primer grado. Ecuaciones de segundo grado. Ecuaciones polinómicas de grado superior
Tema 3: Ecuaciones Ecuaciones Igualdades de expresiones algebraicas Polinómicas Racionales Primer grado ax=b Segundo grado ax 2 + bx+c=0 Bicuadradas ax 4 + bx 2 +c=0 solución Determinada: Indeterminada:
1. x = 2. Solución : x = 2 o x = x = 2. Solución x = 2 o x= x = 0. Solución: x = 0
Problemas que involucran igualdades con valor absoluto. x =. Solución : x = o x = -. x =. Solución x = o x= -.. x = 0. Solución: x = 0. x =. No hay solución posible. No existen valores absolutos negativos.
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
Tema 4. Ecuaciones e Inecuaciones.
Tema 4. Ecuaciones e Inecuaciones. 1. Ecuaciones con una incógnita. 1.1. Ecuaciones de primer grado 1.. Ecuaciones de segundo grado 1.3. Ecuaciones bicuadráticas 1.4. Ecuaciones polinómicas 1.5. Ecuaciones
TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS
TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS Ecuaciones Cuadráticas Toda función cuadrática se puede expresar de la siguiente forma: f(x) = ax ± bx ±
ECUACIONES E INECUACIONES.
CAPÍTULO 3 ECUACIONES E INECUACIONES www.mathspace.jimdo.com [email protected] 3.1. ECUACIONES Una ecuación es una igualdad donde por lo menos hay un número desconocido, llamado incógnita o variable,
Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso
Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a
MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS
UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones
1 Ecuaciones, desigualdades y modelaje
Programa Inmersión, Verano 07 Notas escritas por Dr M Notas del cursos Basadas en los prontuarios de MATE 300 y MATE 303 Clase #: jueves, 7 de agosto de 07 Ecuaciones, desigualdades y modelaje 7 Ecuaciones
Los puntos comunes de una parábola con el eje X (recta y=o), si los hubiese, son las soluciones reales de la ecuación cuadrática.
Los puntos comunes de una parábola con el eje X (recta y=o), si los hubiese, son las soluciones reales de la ecuación cuadrática. Una ecuación de segundo grado, ecuación cuadrática o resolvente es una
Integración por fracciones parciales
Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las
3 Polinomios y funciones racionales
Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: jueves, 3 de junio de 06. 3 Polinomios y funciones racionales 3. Funciones
3 Polinomios y funciones racionales
Programa Inmersión, Verano 07 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: miércoles, 3 de agosto de 07. 3 Polinomios y funciones racionales 3.
UNIDAD DE APRENDIZAJE VI
UNIDAD DE APRENDIZAJE VI Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Relaciona la ecuación algebraica de segundo grado
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación
CEROS DE UNA FUNCIÓN POLINOMIAL DIVISIÓN SINTÉTICA TEOREMA DEL RESIDUO TEOREMA DEL FACTOR. Ing. Caribay Godoy
CEROS DE UNA FUNCIÓN POLINOMIAL DIVISIÓN SINTÉTICA TEOREMA DEL RESIDUO TEOREMA DEL FACTOR OBJETIVOS Definir el teorema del residuo. Utilizar el teorema del residuo para evaluar funciones polinomiales.
OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios
OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de
4 ACTIVIDADES DE REFUERZO
4 ACTIVIDADES DE REFUERZO. Resuelve estas ecuaciones de primer grado. a) 5( ) 7( + ) = b) ( + ) 5 = + 8 5. Halla los valores de a y b para que las siguientes ecuaciones sean equivalentes. 4 = = a + = b.
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 27 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma ax 2 + bx + c = 0,
1º BACH MATEMÁTICAS I
1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.
GUÍA MATEMÁTICAS 3CHA ECUACIÓN CUADRÁTICA O DE SEGUNDO GRADO NOMBRE: FECHA:
FUNDACION CATALINA DE MARÍA LICEO SAGRADO CORAZÓN- COPIAPÓ 8 AÑOS, 1949 017 Con Madre Catalina, en misión compartida, hacemos vida el Amor y la Reparación GUÍA MATEMÁTICAS 3CHA ECUACIÓN CUADRÁTICA O DE
Fundamentos matemáticos. Tema 1 Números reales. Polinomios
Grado en Ingeniería agrícola y del medio rural Tema 1 Números reales. Polinomios José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative
S2: Polinomios complejos
S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes
Matemáticas 3. ax + by + c = 0
Matemáticas 3 Ecuaciones Lineales Una ecuación lineal es una ecuación de primer grado con 2 incógnitas cuya forma general es: ax + by + c = 0 a, b, c son constantes reales, X, Y" son variables. Toda ecuación
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3
TEMA 4. POLINOMIOS. Los números reales son polinomios de grado 0.
TEMA 4. POLINOMIOS. ACCESO CICLO SUPERIOR 1) INTRODUCCIÓN. CONJUNTOS NUMÉRICOS. El concepto de número es tan antiguo o más que la propia civilización. El primer conjunto del que se tiene conocimiento es
Apéndice 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas. . Analizando el
Apéndice 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define Rx a 0 a 1 x a 2 x 2...a n x n a 0,a 1,a 2,...,a
ECUACIONES. SISTEMAS DE ECUACIONES. Matemáticas 3º eso
ECUACIONES. SISTEMAS DE ECUACIONES Matemáticas 3º eso Identidades y ecuaciones Una ecuación es una igualdad entre dos expresiones en la que aparecen números y letras llamadas incógnitas ligados por operaciones.
1 NÚMEROS REALES Representación sobre la recta Entre dos números cualesquiera pertenecientes a él hay infinitos números racionales.
1 NÚMEROS REALES 1.1 NÚMEROS RACIONALES Contiene a los Naturales (N), que son los números usados para contar, y a los enteros (Z), que son los naturales y sus opuestos, y se pueden representar por una
METODOS DE INTEGRACION IV FRACCIONES PARCIALES
METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción
Encontramos soluciones exactas o aproximadas de ecuaciones cuadráticas graficando las funciones asociadas a estas que se denominan PARABOLA
INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor Coordinación Vo. Bo. Eje temático: GRAFICA DE UNA ECUACION CUADRATICA Área: MATEMÁTICAS Asignatura: Matemáticas Profesor:
Ejercicios de funciones
Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
LÍMITES. Ing. Ronny Altuve
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Enero de 2016 INDICADOR DE LOGRO Aplicar la definición
Cuánto vale x si la balanza está equilibrada? Hay que resolver le ecuación x + 3 = 7 x = 7 3 x = 4. La solución es x = 4 porque = 7
TEMA 3. ECUACIONES DE PRIMER Y SEGUNDO GRADO 1. ECUACIÓN DE PRIMER GRADO 1.1 Planteamiento general Identidad: Es una expresión con una igualdad que se cumple siempre. Identidad numérica: Sólo aparecen
Unidad 3 Ecuaciones y sistemas
Unidad Ecuaciones y sistemas PÁGINA 8 SOLUCIONES Resolver ecuaciones de primer grado. a) b) ( 5) ( ) 5 (6) () 6 15 56186 15 6 1 11 6 c) d) ( ) 1 8 6 6 866 5 1 1 5 97 Resolver sistemas de ecuaciones. a)
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
USO DE LA FÓRMULA CUADRÁTICA y 9.1.3
Capítulo 9 USO DE LA FÓRMULA CUADRÁTICA 9.1.2 y 9.1.3 Cuando una ecuación cuadrática no es factorizable, necesitas otro método para hallar x. La Fórmula cuadrática puede usarse para calcular las raíces
, x es la variable independiente e y es la variable dependiente.
INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO OCAÑA N.S. ASIGANTURA: MATEMÁTICAS OCTAVO GRADO DOCENTE: Esp. HENRY CARRASCAL C. III PERÍODO FUNCIÓN Y ECUACIÓN CUADRÁTICA 1. DEFINICIÓN
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,
Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIPO DE GUIA: MATEMÁTICAS MATEMÁTICAS EDISON MEJIA MONSALVE CONCEPTUAL - EJERCITACION PERIODO GRADO 9 N 0 4 FECHA 7 DE ABRIL
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.
Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones
Ecuaciones de segundo grado con una incógnita
Instituto Dr. Juan Segundo Fernández Área y curso: Matemática 4º año. Profesora: Graciela Bejar TRABAJO PRÁCTICO Nº 6 Ecuaciones de segundo grado con una incógnita Las ecuaciones de segundo grado o cuadráticas
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Departamento de Matemáticas. ÁLGEBRA: Ecuaciones
3.5. Ecuaciones bicuadradas. Empezamos ahora a analizar qué pasa cuando el polinomio tiene grado más grande que dos. Todas éstas se engloban dentro de la misma estrategia de resolución que, como posteriormente
Sec FUNCIONES POLINOMICAS
Sec. 3.1-3.2 FUNCIONES POLINOMICAS Función Polinómica Un polinomio o una función polinómica es una expresión algebraica de la forma n n 1 n 2 P( x) a x a x a x... a x a, n n 1 n 2 1 0 donde los coeficientes
Segundo caso. Tercer caso. Resolviendo cada una de las desigualdades: d. (x - 5) 2 0. Si: < 0; (a > 0), el polinomio: ax 2 + bx + c, se transforma
Inecuaciones Cuadráticas Inecuación cuadrática Forma general: Donde: {a; b; c} IR Del rectángulo se obtiene: P () = a 2 + b + c > < 0 ; a 0 a 2 + b + c > 0; a 2 + b + c < 0 a 2 + b + c 0; a 2 + b + c 0
Factorización de Polinomios
Factorización de Polinomios Objetivo: Efectuar la factorización de polinomios en forma completa mediante la combinación de métodos. Contenido: Factorización por factor común. Factorización por diferencia
BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE
BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,
