S2: Polinomios complejos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "S2: Polinomios complejos"

Transcripción

1 S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes pueden ser reales. Ejemplos de polinomios complejos de grado dos serían: p x = i i x + 8 i x p x = 1 + 4i x + 7x Nos interesa encontrar los valores de x 0 C tales que p x 0 existen los llamaremos ceros o raíces del polinomio p x : = 0, a tales números x 0 si p x 0 = a 0 + a 1 x 0 + a x a n x 0 n = 0 Teorema Fundamental del Álgebra Todo polinomio complejo de grado mayor ó igual que 1 tiene, al menos, un cero complejo. Teorema x 0 C es un cero de p x p x = x x 0 q(x), donde q(x) es un polinomio complejo.

2 Estos dos teoremas nos llevan a una conclusión muy importante. Si p(x) es un polinomio complejo y x 0 es un cero de p(x) entonces por el teorema anterior podemos escribir: p x = x x 0 q(x), Como q(x) es un polinomio complejo, por el teorema fundamental del algebra tiene al menos un cero complejo, por ejemplo, x 1, entonces: q x = x x 1 r(x) Donde r x es un polinomio complejo. Por lo que: p x = x x 0 q x = x x 0 x x 1 r(x) Si repetimos este razonamiento podemos escribir el polinomio p(x) como producto de factores lineales: p x = C x x 0 x x 1 x x n C C Esto significa que todo polinomio complejo de grado n 1, tiene exactamente n ceros complejos. Por ejemplo el polinomio complejo: p x = x i x i x i Se puede escribir como p x = x i x 4 + 5i x 3, con p i = p 4 5i = p 3 = 0

3 Otro ejemplo sería: p x = x i x i x i x i x i Que se puede factorizar como: p x = x i x i + 3 x 5i Donde las primeras dos raíces tienen multiplicidad dos. Podemos generalizar nuestra definición para que incluya la multiplicidad de las raíces: Si un polinomio complejo p(x) de grado n 1 tiene k ceros complejos distintos cada uno de multiplicidad m k entonces: p x = C x x 1 m 1 x x m x x 3 m 3 x x k m k, C C Donde: m 1 + m + m m k = n Y si los coeficientes son números reales y el polinomio tiene raíces complejas? Por ejemplo: p x = x 3 5x + x 5. Que se puede escribir como p x = x + i x i x 5. Para estos polinomios, que llamaremos polinomios reales, tenemos el siguiente resultado.

4 Teorema Sea p x un polinomio complejo con coeficientes reales. Si x 0 = a + ib es un cero de p x, es decir, p x 0 = 0, entonces su conjugado x 0 = a ib es también un cero de p x, es decir, p x 0 =0. Sea p x = a 0 + a 1 x + + a n x n, donde los a i R, y sea x 0 = a + ib un cero de p x, es decir p x 0 = 0. p x 0 = 0 p x 0 = 0 a 0 + a 1 x a n x 0 n = 0 a 0 + a 1 x a n x 0 n = 0 Como los coeficientes a i son números reales a i = a i y por las propiedades del conjugado: En consecuencia x 0 también es cero de p x. p x 0 = a 0 + a 1 x a n x 0 n = p x 0. Propiedades del conjugado de un número complejo x = a + bi, con a, b R: 1) x = x ) x = x b = 0 3) x 1 + x = x 1 + x 4) x 1 x = x 1 x 5) x x = a + b Teorema Si multiplicamos x x 0 x x 0 obtenemos un polinomio real de grado. Sea x 0 = a + ib y x 0 = a ib. Entonces: x x 0 x x 0 = x a ib x a + ib = x a ib x a + ib = x a i b = x ax + a + b. Como a, a y b son reales, entonces p x = x ax + a + b es un polinomio real.

5 Como consecuencia del teorema anterior y para un polinomio real de la forma: p x = C x x 1 m 1 x x m x x 3 m 3 x x k m k, C R Podemos agrupar cada cero complejo con su conjugado, por lo que un polinomio real de grado n 1 puede descomponerse como producto de polinomios de grado correspondientes a parejas de ceros complejos conjugados y de grado 1, correspondiente a ceros reales. Es decir como: p x = C x x 1 m 1 x x m x x 3 m 3 x x k m k x + a 1 x + b 1 n 1 x + a j x + b j n j Con todos los x i números reales distintos, todos los polinomios x + a j x + b j reales y con: m 1 + m + m m k + n n j = n n j sin ceros El siguiente problema consiste en calcular los ceros de un polinomio real. Para calcular los ceros de un polinomio de grado usaremos la fórmula conocida: p x = ax + bx + c x 1 = b + b 4ac a, x = b b 4ac a Para polinomios de grado mayor usaremos cuando sea posible la regla de Ruffini (para ceros reales enteros o fraccionarios).

6 Por ejemplo considera el siguiente polinomio real: p x = x 5 5x 4 + 6x 3 x + 5x 6 Aplicamos Ruffini para calcular sus ceros: x 1 x 4 4x 3 + x + x x x 3 x x x 3 x + x Luego x 5 5x 4 + 6x 3 x + 5z 6 = x 1 x x 3 x + x + 1 Entonces los ceros de x + x + 1 son: x 1 = Finalmente: = 1+ 3i ; x = = 1 3i x 5 5x 4 + 6x 3 x + 5z 6 = x 1 x x 3 x + 1 3i ; x i

7 P) Sin efectuar la división, comprueba que p x = 13x x es divisible por x + 1 p x = 13x x p 1 = = = 0 P3) Sabiendo que x 4 + x 3 7x 8x + 1 tiene a 1 y a como ceros, halla el polinomio de segundo grado cuyos ceros son los dos ceros restantes del polinomio original y calcúlalos. Aplicamos Ruffini para calcular sus ceros: x 1 x 3 + 3x 4x x x + x Los ceros de x + x 6 son: x 1 = = = ; x = = 1 5 = 3

8 Si x 0 C es un cero doble de un polinomio p x, entonces el polinomio p x se puede expresar como el siguiente producto: Si derivamos la expresión anterior: p x = x x 0 q(x), donde q(x) es un polinomio complejo. p x = x x 0 q x + x x 0 q x Si ahora sustituimos x 0 en p x, resulta que x 0 también es cero de p x : p x 0 = x 0 x 0 q x 0 + x 0 x 0 q x 0 = 0 Si x 0 C es un cero triple de p x, x 0 es también un cero doble de p (x) y un cero de p x.

9 P4) Aplica los dos resultados anteriores para resolver los siguientes ejercicios i) Busca los ceros dobles de p x = x 3 7x + 15x 9. ii) Busca los ceros dobles de g x = x 4 8x iii) Busca los ceros triples de h x = x 4 6x 8x 3. i) Si x 1 es cero doble de p x, por el resultado anterior x 1 también es cero de p (x). Así que derivamos el polinomio x 3 7x + 15x 9 y calculamos sus ceros: p x = 3x 14x + 15 = 0, como es un polinomio de grado : x 1 = = = = 18 = 3; x 6 = = 10 6 = 5 3 Obtenemos que 3, 5 3 son ceros de p (x). Comprobemos que 3 es cero de p x : p 3 = = = 0, luego 3 es cero doble de p x. No es necesario verificar que 5 3 es cero doble porque p x es de grado tres. Cuál es el otro cero de p x = x 3 7x + 15x 9? Respuesta: 1

10 ii) Los ceros simples de g (x) son ceros dobles de g x = x 4 8x Entonces primero calculamos los ceros de g (x): g x = 4x 3 16x = 4x x 4 = 4x x + x ; tenemos que 0,, son ceros de g (x). Como: g = = 0 g = = 0 g 0 = 16 0 Luego y son ceros simples de g (x) y son ceros de g(x), por lo tanto son ceros dobles de g x : g x = x x + iii) Los ceros triples de h x = x 4 6x 8x 3 los obtenemos derivando h(x) dos veces: h x = 4x 3 1x 8; h x = 1x 1 Calculamos el cero de h x que sea también cero de h x : 1x 1 = 0 1x =1 x = 1 x = ±1 Los ceros de h x son 1 y 1. Como: h 1 0, h 1 = 0, h 1 = 0, 1 es cero triple de h x. Cuál es el otro cero de h x = x 4 6x 8x 3? Respuesta: 3

11 P5) Dado el polinomio p x = x 3 x 4x 6, comprueba que x = 3 es un cero de p x y halla un polinomio de segundo grado q(x) que tenga como ceros los otros dos ceros de p x. Para comprobar que x = 3 es un cero sustituimos: p 3 = = = 0 Para hallar los otros ceros aplicamos Ruffini: P6) Sabiendo que p x = x 4 1x x 6x + 9 tiene a otros ceros del polinomio Entonces x 3 x 4x 6 = x 3 x + x +. Si ahora calculamos los ceros de polinomio de grado : x 1 = i = = 1 + i; x = 1 i. i como cero, hallar los Sabiendo que p(x) es un polinomio de coeficientes reales i es también solución de p(x). Entonces el polinomio x i calculamos p(x) x + 1 x + i = x i = x + 1 divide a p(x). Así que

12 x 4 1x x 6x + 9 x + 1 x 4 x x 1x + 18 Por lo tanto podemos descomponer p(x) como p x = x + 1 x 1x Además el polinomio x 1x + 18 se puede poner como x 6x + 9 = x 3 por lo que 3 es un cero doble. P7) El polinomio p x = x i x i x 1 1i tiene la raíz 1 + i. Significa esto que también tiene la raíz 1 i? Como p(x) no es un polinomio con coeficientes reales no podemos asegurar que el conjugado de 1 + i es también raíz de p(x). Para comprobar si 1 i es cero de p(x) calculamos p(1 i)* : *Porque p(x) x a = q x + resto x a 1x x 6x + 9 1x 3 + 6x 18x x 9 p 1 i = (1 i) i 1 i i 1 i 1 1i = 10 10i Por lo tanto como p 1 i 0 0, 1 i no es raíz de p x. Podemos verificar con Ruffini: p x = x a q x + resto p a = a a q a + resto = resto, si el resto es cero a es raíz de p x.

13 Aplicamos Ruffini: 1 8 i i 1 1i 1 i 1 i 9 + 5i + i 1 7 i i 10 10i Como el resto es 10 10i, entonces p 1 i = 10 10i 0, por lo tanto 1 i no es cero de p x.

14 P8) Descomponer en fracciones simples x4 x 3 x 1 x 3 x. Como se trata de una fracción impropia primero dividimos: x 4 x 3 x 1 x 3 x x 4 + x 3 x Obtenemos que x 4 x 3 x 1 x 3 x fracciones simples a la fracción x 1 = x x+1, por lo que tenemos que descomponer en x 3 x x+1 x 3 x : x + 1 x 3 x = x + 1 x (x 1) = A x + B x + C x 1 x + 1 x 3 x = Ax A + Bx Bx + Cx x (x 1) = A x 1 + Bx x 1 + Cx x (x 1) = B + C x + A B x A x x 1 Comparando los numeradores x + 1 = B + C x + A B x A nos queda que: B + C = 0 A B = 1 A = 1 A = 1; B = A 1 = ; C = B = ; x+1 x 3 x = 1 x x + x 1 Finalmente la descomposición queda como x 4 x 3 x 1 x 3 x = x + 1 x + x x 1

15 P9) Descomponer en fracciones simples 3x 4 +5 x +1 x Como el grado del denominador es mayor que el numerador se trata de una fracción propia. Además el polinomio del denominador está expresado en factores irreducibles en R, esta fracción admite la descomposición tipo: 3x x + 1 x = A x + Bx + C x Dx + E x + 1 = x + 1 A + x + 1 x Bx + C + x Dx + E x + 1 x 3x 4 +5 = x4 +x +1 A+ x 3 +x Bx+ x 3 +x C+Dx +Ex x +1 x x +1 x Comparando los numeradores: = A+B x4 + C x 3 + A+B+D x + C+E x+ A x +1 x A + B = 3 C = 0 A + B + D = 0 A = 5; B = 3 A = ; C = 0; D = B A = 10 C + E = 0 A = 5 = 8; E = 0 Sustituyendo estos valores para A, B, C, D, E obtenemos la descomposición: 3x x + 1 x = 5 x x x + 1 8x x + 1

16 P10) Descomponer en fracciones simples x5 x 4 +4x 3 4x +8x 4 x + 3. Esta fracción admite la descomposición tipo: x 5 x 4 + 4x 3 4x + 8x 4 x + 3 = Ax + B x + + Cx + D x + + Ex + F x + 3 Hacemos denominador común en el miembro de la derecha: Ax + B x + + Cx + D x + + Ex + F x + 3 El numerador de la expresión anterior queda como: Ax 5 + Bx 4 + 4A + C x 3 + 4B + D x + 4A + C + E x + 4B + D + F Si el numerador anterior lo comparamos con el otro numerador obtenemos el sistema de ecuaciones: A=1; B = 1; 4A + C = 4 C = 0; 4B + D = 4 D = 0; 4A + C + E = 8 E = 4; 4B + D + F = 4 F = 0 x5 x 4 + 4x 3 4x + 8x 4 x + 3 = x 1 x + + 4x x + 3

17 Extra) Calcula los ceros de p(x) = x C y factoriza p x como producto de polinomios irreducibles en C. A continuación factoriza p x como producto de polinomios irreducibles en R. Vamos a necesitar valorar i. Para calcularlo hacemos: i = a + ib i = a b + abi a = b, a = b ab = 1 a = 1 = (NOTA a = b conduce a la misma solución) i = + i i = + i x = x 4i x + 4i x 4i = x i x + i x + 4i = x i i x + i i = x i i x + i + i = x i x + + i = x + i x + i Descomposición en C: x = x i x + + i x + i x + i Para la descomposición en R reagrupamos el primer término con el cuarto y el segundo con el tercero: x = x i x + i x + + i x + i x i x + i = x x + 4 x + x + 4

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1) 1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2) 1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

METODOS DE INTEGRACION IV FRACCIONES PARCIALES

METODOS DE INTEGRACION IV FRACCIONES PARCIALES METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo. POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

GUÍA DE EJERCICIOS. Área Matemática - Polinomios GUÍA DE EJERCICIOS Área Matemática - Polinomios Resultados de aprendizaje. Realizar operaciones entre polinomios. Aplicar Regla de Ruffini, para determinar raíces de un polinomio. Aplicar los procedimientos

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R

Más detalles

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables. RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 6 Pág. Página 86 El maestro carpintero reparte entre sus dos ayudantes la construcción de un gran armario. Y cada uno de ellos, a su vez, imagina su parte de la obra despiezada para poder construirla a

Más detalles

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo. IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,

Más detalles

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.

Más detalles

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto

Más detalles

CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios

CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios Polinomios Contenidos 1. Expresiones algebraicas De expresiones a ecuaciones Valor numérico Expresión en coeficientes. División de polinomios División División con coeficientes Regla de Ruffini Teorema

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES

GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el denominador son polinomios y el grado

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x] Capítulo 5 Polinomios Definición 22 Sea K igual a Z,Q,R,C, un polinomio en la variable x con coeficientes en K es una expresión de la forma p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0, donde a i con i desde

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL DESCOMPOSICIÓN FACTORIAL 1 RAÍCES DE UN POLINOMIO. TEOREMA DEL FACTOR Se dice que el valor x = a es una raíz de un polinomio P(x) si el valor numérico de P(x) para x = a es 0, es decir: x = a es raíz de

Más detalles

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n POLINOMIOS (Versión Preliminar) Estas notas deben ser complementadas con ejercicios de la guía o de algun texto. En esta sección denotaremos por N al conjunto de los números naturales incluido el cero.

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.

Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 Página 44 Conviene recordar que: V CILINDRO πr 2 h A TOTALDEUNCILINDRO 2πr h + 2πr 2 Expresa, mediante un polinomio, el volumen de cada una de las velas cilíndricas en función del radio de su base,

Más detalles

Álgebra I Práctica 7 - Polinomios

Álgebra I Práctica 7 - Polinomios FCEyN - UBA - 2do cuatrimestre 2016 Generalidades Álgebra I Práctica 7 - Polinomios 1. Calcular el grado y el coeficiente principal de f Q[X] en los casos i) f = (4X 6 2X 5 + 3X 2 2X + 7) 77. ii) f = (

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio

Más detalles

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno: Unidad 6 Raíces de polinomios Objetivos Al finalizar la unidad, el alumno: Comprenderá el Teorema Fundamental del Álgebra. Aplicará los teoremas del residuo y del factor en la obtención de las raíces de

Más detalles

Teoría Tema 5 Integrales con fracciones de polinomios

Teoría Tema 5 Integrales con fracciones de polinomios Asignatura: Matemáticas II ºBachillerato página 1/9 Teoría Tema 5 Integrales con fracciones de polinomios Índice de contenido Grado del numerador P(x) menor que Grado del denominador Q(x)... Raíces reales

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

Polinomios en R[x] - Función Polinómica

Polinomios en R[x] - Función Polinómica Polinomios en R[x] - Función Polinómica. Indicar cuáles de las siguientes expresiones son polinomios: a) A( x) = x 6x + b) B( x) = x 6x c) C( x) = x + x + x d) D( x) = + x +. Determinar el grado y el término

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO TEMA 7: FRACCIONES ALGEBRAICAS Matemáticas 3º ESO 1. Fracciones algebraicas valor numérica Una fracción algebraica es el cociente indicado de dos polinomios, el denominador debe ser un polinomio no nulo.

Más detalles

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Una expresión racional con coeficientes en un campo K, es una expresión de la forma ax ( ) bx ( ) donde ax ( ), bx ( ) K[ x] ax ( ) cx ( )

Más detalles

FRACCIONES PARCIALES. 2011

FRACCIONES PARCIALES. 2011 DESCOMPOSICIÓN EN FRACCIONES PARCIALES El método de descomposición en fracciones parciales fue introducido por John Bernoulli, matemático suizo cuyas investigaciones fueron fundamentales en el desarrollo

Más detalles

1.- Sean los polinomios:

1.- Sean los polinomios: . EJERCICIOS DE POLINOMIOS 1.- Sean los polinomios: A(x) = 6x 5-4x 4-4x - x + x + 8 B(x) = 5x 5 + 4x 4 - x - x + 5x - 8 C(x) = - 8x 6 + 4x 5 + x 4 - x + 4 Hallar: 1.- A(x) + B(x).- A(x) - C(x).- A(x) -

Más detalles

Tema 5. Factorización de Polinomios y fracciones algebraicas.

Tema 5. Factorización de Polinomios y fracciones algebraicas. Tema. Factorización de Polinomios y fracciones algebraicas.. Polinomio múltiplo y divisor. Factor de un polinomio. Ruffini. Valor numérico de un polinomio. Raíz del polinomio.. Factorización de un polinomio..

Más detalles

1. Expresiones polinómicas con una indeterminada

1. Expresiones polinómicas con una indeterminada C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una

Más detalles

Ejercicios de Polinomios y Fracciones Algebráicas

Ejercicios de Polinomios y Fracciones Algebráicas Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Polinomios y Fracciones Algebráicas. Pág 1/12 1. Dados los polinomios: Ejercicios de Polinomios y Fracciones Algebráicas 1. P(x) = 4x 2 1 2. Q(x) = x 3 3x 2

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

EXPRESIÓN ALGEBRAICA Monomios, Polinomios

EXPRESIÓN ALGEBRAICA Monomios, Polinomios EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,

Más detalles

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1) . Un polinomio con raíces únicas, 0, 2, 2, 3 es: a) 4 +4 3 + 2 6 b) 4 +6 3 +9 2 42 c) 5 6 4 +9 3 +4 2 2 d) 5 +6 4 +9 3 4 2 2 e) 4 4 3 + 2 +6 2. Calcula cociente y resto en la siguiente división de polinomios:

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

Grado de un monomio en una indeterminada: Es el exponente de esa indeterminada. Grado de un monomio: Es la suma de los exponentes de su parte literal.

Grado de un monomio en una indeterminada: Es el exponente de esa indeterminada. Grado de un monomio: Es la suma de los exponentes de su parte literal. ÁLGEBRA 2014-15 El álgebra es la parte de la matemática que consiste en operar con expresiones formadas por números y letras ligadas por las operaciones usuales de suma, resta, producto, cociente, potenciación

Más detalles

Polinomios (Parte 1) 1) Sean los polinomios: A(x) = 1 3 x4 +5x 10x 2 C(x) = 7x 3 -x 5-2x B(x) = -2x 3 + 2x 2-5 D(x) = -5x-x 2 +1

Polinomios (Parte 1) 1) Sean los polinomios: A(x) = 1 3 x4 +5x 10x 2 C(x) = 7x 3 -x 5-2x B(x) = -2x 3 + 2x 2-5 D(x) = -5x-x 2 +1 ESCUELAS TECNICAS ORT SEDE BELGRANO Nombre y apellido: Curso: MA Prof: Eric Lescano Polinomios (Parte Sean los polinomios: A(x) = 1 x +x 10x C(x) = 7x -x -x + 1 B(x) = -x + x - D(x) = -x-x +1 a. Indicar

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:

Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Tema 2. Polinomios y fracciones algebraicas

Tema 2. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades

Más detalles

Curs MAT CFGS-18

Curs MAT CFGS-18 Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 0 Ceros complejos y el teorema fundamental del álgebra En las secciones anteriores se ha discutido que un polinomio de grado n puede tener a lo más

Más detalles

PRODUCTOS, COCIENTES NOTABLES Y FACTORIZACIÓN 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA

PRODUCTOS, COCIENTES NOTABLES Y FACTORIZACIÓN 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA Otros polinomios pueden tener tres variables, por ejemplo x, y, z o bien, para el caso, cualquier número de variables. La adición, sustracción y multiplicación

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

Integrales racionales

Integrales racionales hapter Integrales racionales Son del tipo dx donde P(x) y Q(x) son dos polinomios en x Q(x) asos: ) Si grado Q(x). Efectuamos la división entre ambos polinomios y: Q(x) dx = (x)dx + R(x) Q(x) dx siendo

Más detalles

Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta:

Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta: Simplifica las siguientes epresiones: 0y 8 y z 8( z + )( ) + Suprimiendo los factores comunes en numerador y denominador resulta: 5y z Sacando factor común en el denominador resulta: 8( + )( ) ( ) ( +

Más detalles

Raíces de polinomios

Raíces de polinomios Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles